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ON THE CONVERGENCE AND 
ABSOLUTE CONTINUITY OF SIGNED STATES 

ON A LOGIC 

VLADIMIR PALKO 

Let Sf be a a-algebra of subsets of a set X, \i a measure and v a signed measure 
on Sf. v is said to be absolutely continuous with respect to \i (written v<e\i) if for 
every £ > 0 there exists <5>0 such that \i(A)<b implies | v (A) | <e for all AeSf. 
Let JU be a finite measure on Sf and v„, n = 1, 2, ..., a sequence of finite signed 
measures on Sf such that vn <efi for all n and for every AeSf there exists a finite 

limit lim vn(A) = v(A). Then the well-known Vitali—Hahn—Saks theorem asserts 

that v is a signed measure, v<tE[i as well and v„ are uniformly continuous with 
respect to ]U, i.e. for every £ > 0 there exists <5>0 such that JU(A)<<5 implies 
|v„(A) |<£, « = 1,2, ..., for every AeSf. The purpose of this paper is to 
investigate, whether this theorem holds for finite signed states on a logic. 
A counterexample is shown and a sufficient condition for the validity of this 
theorem is given. Finally, the case of finite signed states on the logic S£(H) of all 
closed subspaces of a separable Hilbert space H is partially solved. A characteriza­
tion of absolute continuity of nonnegative finite signed states on Z£(H) is given. 

1. Preliminaries 

We state some necessary definitions and known assertions which we shall use. 
Let (S£, ^ ) be a partially ordered set with at least two elements, the largest 
element 1 and the smallest 0. Let S£ be equipped with an orthocomplementation 
_L: a—>ax, a, axeS£, which satisfies 

(i) (a±y = a for all ae$ 
(ii) if a^b, then bL^a± 

(Hi) ava± = l, aAa± = 0 for all aeS£. 
We say that a, b e S£ are orthogonal (written a±b)if a^b±. We shall assume that 

if {a.}r=-i is a sequence of pairwise orthogonal elements of S£, then \/'at exists in S£. 
i = i 

Finally, we insist that in S£ there holds the orthomodular identity: a^b implies 
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b = a v (b A (7X). The set cf satisfying all the conditions above will be called a logic. 
We note that a logic need not be a lattice. Two elements a, b e ^ are said to be 
compatible if there exist pairwise orthogonal elements au b\, c e !£ such that 
a = a\ v C, b = b\ v c. A Boolean sub-o-algebra £8 of a logic !£ ([6]) is a subset of £ 
which satisfies the following conditions: 

(i) 0, 1 e m 
(ii) a, be 3ft implies that a, b are compatible, avbeSft, a Abe Sft 

(Hi) if aeffi. then a±e2ft 

(iv) if {a, },"=, is a sequence of pairwise orthogonal elements of £$, then Va t e £8. 

Every Boolean sub-a-algebra is also a Boolean a-algebra in the usual sense. Every 
Boolean sub-a-algebra is contained in a maximal ([6]). A very important case of 
logic is the logic f(H), whose elements are closed subspaces of a separable Hilbert 
space H over real or complex scalars. The partial ordering in Sf(H) is given by the 
usual set inclusion and for every Me!£(H) M x is the orthogonal complement of 
M. A collection 3 of subsets of the set X is called a o-class if SI satisfies: 

(i) 0, XeSt 
(ii) A e SI implies X - A e 2 

(Hi) if {Af}r=i is a sequence of mutually disjoint sets from 3 , then (J A, eSL. 

One can easily verify that SI is a logic, where the partial ordering is also given by the 
set inclusion and A x is defined as X— A. A a-class St is not a lattice in general. Let 
Stt be the a-class of subsets of the set Xt for every te A, A is an index set. Let 

X = Y[ Xt be the cartesian product of X,, t e A. A a-class SI of subsets of X is called 
teA 

the o-class product of Sit (written St = [~[ Stt) if St is the smallest a-class containing 

sets U7l(E) for every teA,Ee£Lt. Denote ^ = {f l r^E) , E e 2,}. It is evident that 
if % is a a-algebra, then s&t is a maximal Boolean sub-a-algebra of the logic SI. A 
signed state on a logic ££ is a map m from i^ into .Ru{o°}u{ — oo} such that (7) 

m(0) = 0, (ii) m \\fai\ = yyjm(al) if a,, i = l , 2 , ..., are mutually orthogonal 
\ , = i / , = i 

elements of !£. A nonnegative signed state m is called a sfare if m( l ) = 1. Let co be 
a nonnegative signed state, m a signed state on !£; then m is said to be absolutely 
continuous with respect to a) if for every e > 0 there exists a > 0 such that (o(a) < 6 
implies \m(a)\<e for every ae!£. We say that m is dominated by co (written 
m<£(o) if oKa) = 0 implies m(a) = 0 for all a e i ^ . 
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2. The Vitali—Hahn—Saks theorem for signed states on a logic 

D v u r e c e n s k i j ([1]) has given a simple proof that a finite limit of a sequence of 
finite signed states on a logic is also a signed state, but the following example shows 
that further assertions of the Vitali—Hahn—Saks theorem are not valid without 
some other assumptions. 

E x a m p l e 2.L Let S, be a nontrivial a-class of subsets of X,, / = \, 2, .... Let us 
choose from every set X( two points pi, pf in such way that there exists a set 
A, G <£,, which separates p\, pj, i.e. p\ e A,, pfeXf — A,. It is possible owing to the 
nontriviality of <£,. Let SI be the a-class product of J2,-, i = 1, 2, .... Define now the 
states a), m, mn, n = 1, 2, ... on SI as follows: 

co(0)=mn(0)=m(0) = O, co(X) = mn(X) = m(X)= 1, /i = l , 2 , .... 

If E e iz\ 0=£ ET-= X, then there exists a unique positive integer / and set A e S), so 
that E = nT\A). Then we define 

<o(E)= 2 a{, where a}=—, a}=\- — 
pTeA £1 £l p?eA 

1 
2 

m„(E) = m(E) if л ^ í 
/?.„(£) = ш(Б) if A I < Í , я = l , 2 , .... 

m(E)= У : 
P/TA 

It may be verified without difficulty that mn <Ea), n = 1, 2, ... and lim mn(E} = 
n—*oo 

m(E) for every E e <£, but m„ are not uniformly continuous with respect to co and 
m is not absolutely continuous with respect to co. 

R e m a r k 2 .LI t i s evident that such counterexample may be constructed also for 

the product SI = \\ %, where A is not countable. 
teA 

R e m a r k 2.2. From the counterexample above it immediately follows that the 
absolute continuity of finite signed states does not coincide with the notion of 
dominancy in general. 

The following type of the Vitali—Hahn—Saks theorem on a logic !£ is true. 

Theorem 2.1. Lef SB be a logic containing only a finite number of maximal 
Boolean sub-o-algebras. Let o be a nonnegative finite signed state, mn a sequence 
of finite signed states on SB such that mn<Eo),n = \,2, ..., and for every as SB there 

exists a finite limit lim mn(a) = m(a). Then mn are uniformly continuous with 

respect to co and m is a signed state, m <te(o. 
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Proof : By assumption there exist maximal Boolean sub-a-algebras 38, of / , 
k 

i = 1, 2, ..., k such that 5f= ( J ^ i - The Loomiss theorem ([4]) of the representa-

tion of Boolean a-algebras asserts that every Boolean a-algebra 33 is 
a a-homomorphic image of a a-algebra ff of subsets of a set X. Using this theorem 
one gets sets X,, a-algebras # of subsets of X,- and maps ht: 5̂ , —> 38,, which are 
surjective a-homomorphisms, / = 1, 2, ..., k. Now we define on ift real functions 
\ii, vni, Vt, n = l,2, ..., i = \,2, ..., k, in the following way: v,(A) = m(ht(A)), 
vm(A) = mn(hi(A)), fil(A) = a)(ht(A))9 n = l,2, ..., A e t f , / = 1 , 2 , ..., k. Evi­
dently jU, is a finite measure on # , vm is a sequence of finite signed measures on ff,, 

Vni<e[ii, Hm vm(A) = v,(A) for every Aefft, i = \,2, ..., k. Using the classical 

Vitali—Hahn—Saks theorem we get immediately that vni are uniformly continuous 
with respect to [xt, v, is a signed measure, v, <eiu(, / = 1, 2, . ., k. If e > 0 is given, 
then there exists a, > 0 so that A eS^, ru f(A)<a I implies |v„,(A)| <e, n = 1, 2, .... 
Denote a = m i n { a i , ..., dk}. Let a ) (a )<a . A positive integer / and a set Aeff, 
exist so that a = /L(A). Then to(a) = a)(h}(A)) = n](A)<dfkd). Thus |m„(a)| = 
|v„y(A)| <e, n = l,2, .... We have shown that m,. are uniformly continuous with 
respect to co. If \mn(a)\<e, then also | m ( a ) | ^ e . Hence m<E(D. The theorem is 
proved. 

3. Convergence and absolute continuity of signed states on f(H) 

Throughout this section H denotes a separable Hilbert space over complex or 
real scalars. All the following theorems will be proved for the complex case. Their 
proofs for the real case are the same or simpler. The deep theorem of G l e a s o n 
([3]) asserts that every finite nonnegative signed state m on If(H), where 
d imHi^3 , is of the form m(M) = trTPM , M e ^f(H), where T is a hermitean 
positive operator of the trace class and PM is the projector corresponding to M . A 
hermitean operator T on H is an operator of the trace class if there exists an 

orthonormal basis {(#} such that ^\(Tq}t, <p,)| <o° . Then the sum t rT = 

2 ( T ( # , qp,) is called a trace of T and it is independent of the used basis ([5]). 

D v u r e c e n s k i j ([2]) generalized Gleason's theorem and proved that every finite 
signed state on *f(H) is of the form m(M) = trTPM , where T is a hermitean (not 
necessarily positive) operator of the trace class. We prove now that if H is finite 
dimensional, dim H± 2, then the Vitali—Hahn—Saks theorem is valid on j£(H) . 

Theorem 3.1. Lef H be finite dimensional, dimH=j-=2. Lef co be a non-negative 
finite signed state, {mn}n=i a sequence of finite signed states such that mn <Eo), 
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n = 1, 2, ..., and for every M e £(H) there exists a finite limit lim mn (M) = m(M). 

Then mn are uniformly continuous with respect to co and m is a signed state, m <̂ f co. 
Proof: Since the case d i m H = l is trivial, suppose dimH = p^3. Let s be 

a finite signed state on 5£(H); then there exists a hermitean operator T such that 
p 

s(M)= y2j(TPMcpq, cpq), where {(pq}
p

q=\ is an orthonormal basis in H. Suppose that 
q = \ 

cpq are eigenvectors of T and y„ the corresponding eigenvalues; then s is of the 
p 

form s(M)=^Yq(PM(pq> <Pq)- L e t {e.}f=i be any fixed orthonormal basis of H; 
q = \ 

P 

then all cpq are linear combinations of ex, ..., ep, i.e. cpq = ^X?ei, q = \, ..., p. 
i=\ 

Applying that expression one gets 

s(M)=iyq(p
M±Xlei,±X'!e\ = 

q=\ \ 1=1 j=\ / 

= 2 E i YM?(PMe„ et), M e X(H). 
« = 1 / = 1 4 = 1 

P 

Denote a«; = 2 v ^ W ' t r i e n 

4=1 

p p 

5(M) = 2 2a ' i(p M^> 3). «/y = «7/, i,7 = l, . . ,P . 
1 = 1 y = l 

Thus all signed states mn may be expressed as follows: 

mn(M) = J j ftP&P^, e,)9 (S?j= $i. 

The limit function m is also a signed state, thus m is also of the form 

m(M) = t tfii(PMei, e}), ft = ft. 

Let Mk be the one-dimensional subspace of H generated by the vector ek. 
Evidently mn(Mk) = pkky w = l, 2, ..., and m(Mk) = fikk. Hence 

lim j3?k = j3k*, k = l, . . . , /?. (1) 

Suppose Mfc<7 to be the subspace generated by the vector ek + eq. Then 

mn(Mkq) = pn
kq(P

M*ek, eq) + pn
qk(P

MK>eq, ek) +pn
kk(P

M->ek, ek) +Pn
qq(P

M*eq, eq) 
(2) 
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and 

m(Mkq) = pkq(P
Mk«ek, eq) + (3qk(P

M«eq, ek) +(lkk(P
M">ek, ek)+(iqq(P

M'«eq, <?,). 
(3) 

We can easily verify that PM'«ek = PM*eq = i(ek + eq). The last and (1), (2), (3) 
imply 

lira 0k +/Si. = 0*, +ft*- (4) 
n—»«> 

Similarly, using the one-dimensional subspace Nkq generated by the vector iek + eq 

(i is the imaginar unit) one gets 

\impn
kq-(3

n
qk=pkq-l3qk. (5) 

As an immediate consequence of (4) and (5) one obtains 

l i m (ln
kq = (5kq, k,q = l9 . . . , p . 

n—•«» 

Let us prove now the uniform continuity of m„ with respect to co. If e > 0 is given, 

then there exists a positive integer r such that |j3!,— /3j| <^~~^ r o r « > r , *\1 = 

1,2, . . . , p , and there exist <5„ such that co(M)<6„ implies |m . . (M) |<- , n = 

p 

1, ..., r. Denote 6=min{6u ..., <3r}. Suppose co(M)<<5. If n^r , |m„(M)| <-<e, 

and if ti > r, then 

|m.t(M)|^|mr(M)| + |mn(M)-m r(M)|<| + 2 i l ^ - ^ l < ^ 
- - 1 = 1 ; - l 

Thus |m„(M) |<e for all n, hence also | m ( M ) | ^ £ . The uniform continuity of mn 

and the absolute continuity of m with respect to co are proved. 
R e m a r k 3.1. If d imH = 2, then the Vitali—Hahn—Saks theorem is not valid. It 

follows from Remark 2.1. and from the fact that in this case ^f(H) is isomorphic 

with the a-class product T\ %, where 98r is the potence set of any two-element 
reTo. 1> 

set. 
A question arises as to what the situation is if H is not finite dimensional. We 

shall prove only that if m„ are non-negative, m„ <^Eco, then also m <eco. The proof 
is based on a characterization of absolute continuity of non-negative signed states. 
The following theorem gives such a characterization. 
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Theorem 3 .2 . Let a>, m be non-negative finite signed states on £(H), dim H^= 2, 

(o(M) = ^h(PM(Pi, <p.) andm(M) = 2 § ( r > / , V/X wiiere {(?,}, {^} and {A,}, 

{£,} are orthonormal systems (not necessarily complete) of eigenvectors and 
sequences of (positive) eigenvalues of operators corresponding to co and m, 
respectively. The following statements are equivalent: 

(i) m<eti> 
(ii) m<03 

(Hi) For every j ^pj is an element of the subspace Mi generated by the vectors {<p,} 

Proof: We shall assume that the number of <p, and ^pi is infinite. Of course, the 
proof in the case of finite number of <p, or ^pj is more simple. We can also assume 
that the sequence {A,}r=i is decreasing. 

The proof of (i) => (ii) is trivial. 
(H) z$> (Hi) Let Ni be the orthogonal complement of Mi. Evidently co(Nl) = 0, 

thus m(Nl) = f,$(PN*ipjJ i/;;.) = 0. Hence (P N ^/ , ^;)= | |P N l ^| | 2 = 0, 1 = 1,2, .... 
>--

Thus ^^)j is orthogonal to Ni and hence ^ e M i , / = 1, 2, .... 
(iii)^>(i) Choose any positive integer k, denote mk(M) = (PM^pk, ^pk), 

Me!£(H). We shall prove mk<eo). {<p,},°°=i is a complete orthonormal system in 
CO ' oo 

M,, hence ^^>k = y(^^fk, <#)<#. D e n o t e tyik= V (V>*> <Pi)<Pi- T h e n - i m IIV^ 11 = 0- If 

e > 0 is given, then i- exists such that ||*/>,,*|| < - y . Denote K = max{ | (^ , <pi)|, ..., 

K2 K e2 

\(tyk><Ph)\}> and Ki = / 5 — = + 2 / , -j=. Choose 6=—-. If co(M)<d, then 
VAi, V A,-, 4Ki 

e2 

Ai| |PM<pi| |2<T i ?-- , i = l , 2 , .... T h e last imp l ies 

e2 

and hence 

| p M ( P i | | 2 < 4 к ] V i - 1 «'' 

" " ^ i ^ k - '-'•2 '•• 
We estimate now mk(M) using known properties of the scalar product, the Schwarz 
inequality and the fact that the projector P M is linear and hermitean. 

mk(M) = \PM (y,^k, (pi)q)i + q«k\, %^k, <p,)<p, + ^piik\ 

^ 2 $\(n»> «*)l Klffc, «)l l |P>.H+2i | (^, 9 ) | | ( ^ „ PM<P.)I + 
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+ | | P > . , k | | 2 < i 2 X 2 - - 7= + 2i IK ---= + - = £ . 

Thus mk<E(o for every positive integer k. Then also X? ! ' 7 1 !^ 0 0 r o r e v e i 7 n> W 
J = I 

e > 0 is given, there exist <5>0 and a positive integer nx such that ^ %, <- and 
> = m + l --

o)(M)<6 implies ^ ( P ^ V , , ^ ) < | - Hence 
i=i 2 

»I(M)=2&(-,M^,V,)+ i s(p>„v,)<|+|=e-
1 = 1 J-=ni + l - - -^ 

The absolute continuity of m with respect to cO is shown. 
Now it is easy to prove the following theorem. 

Theorem 3.3. Let co be a non-negative finite signed state, {mn }T=i a sequence of 
non-negative finite signed states on 5£(H), d i m H ^ 2 , mn<^Eco for every n. Let 

there for every Me ^£(H) exists a finite limit lim mn(M) = m(M). Thenm<Eco. 
n—»°° 

Proof : It is sufficient to prove m<tEco. If co(M) = 0, then mn(M) = 0 and so 

m(M) = lim mn(M) = 0. Thus m <to). 
n—*<*> 

R e m a r k 3.2. Evidently the above theorem is also valid if mn are non-positive. 
R e m a r k 3.3. Theorem 3.2. does not hold in general if m is not non-negative. In 

the following example m is neither non-negative nor non-positive and the 
implication (ii) =-> (Hi) is not valid. 

E x a m p l e 3.1. Denote H = R\ <p = ( - l , 1,0), ^ = (1 ,0 ,0 ) , T/;2 = ( 0 , 1, 0), 
co(M) = (PMcp, <p), m(M) = (P^\, ^p\) - ( P > 2 , ipi), M e «S?(H). Evidently 
m<t(o, but i/;i, ip2 are not elements of the one-dimensional subspace generated 
by (p. 
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О СХОДИМОСТИ И АБСОЛЮТНОЙ НЕПРЕРЫВНОСТИ ОБОБЩЕННЫХ 

СОСТОЯНИЙ НА ЛОГИКЕ 

У1ашгтг Ра1ко 

Р е з ю м е 

В этой работе мы изучаем абсолютную непрерывность предела сходимой последовательности 

обобщенных состояний на логике и равномерную абсолютную непрерывность членов этой 

последовательности. М ы показываем, что для обобщенных состояний на логике не верна 

теорема Витали, Хана и Сакса, и даём достаточное условие для верности этой теоремы. Дальше 

изучается абсолютная непрерывность обобщенных состояний на логике ЩН), которая состоит 
из замкнутых подпространств сепарабельного пространства Гильберта. Дана характеризация 

абсолютной непрерывности конечных неотрицательных обобщенных состояний на этой логике. 
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