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ON THE CONVERGENCE AND
ABSOLUTE CONTINUITY OF SIGNED STATES
ON A LOGIC

VLADIMIR PALKO

Let & be a o-algebra of subsets of a set X, u a measure and v a signed measure
on ¥. v is said to be absolutely continuous with respect to u (written v <. ) if for
every £ >0 there exists >0 such that u(A) <6 implies |v(A)| <gforall Ae¥.
Let u be a finite measure on & and v., n=1, 2, ..., a sequence of finite signed
measures on & such that v, <.u for all n and for every A € & there exists a finite

limit lim v,(A)=v(A). Then the well-known Vitali—Hahn—Saks theorem asserts

that v is a signed measure, v <.u as well and v, are uniformly continuous with
respect to u, i.e. for every £ >0 there exists § >0 such that u(A) <4 implies
|[vo(A)|<e, n=1,2, ..., for every Ae¥. The purpose of this paper is to
investigate, whether this theorem holds for finite signed states on a logic.
A counterexample is shown and a sufficient condition for the validity of this
theorem is given. Finally, the case of finite signed states on the logic £(H) of all
closed subspaces of a separable Hilbert space H is partially solved. A characteriza-
tion of absolute continuity of nonnegative finite signed states on #(H) is given.

1. Preliminaries

We state some necessary definitions and known assertions which we shall use.
Let (¥, =) be a partially ordered set with at least two elements, the largest
element 1 and the smallest 0. Let £ be equipped with an orthocomplementation
1: a—a*, a, a*t € £, which satisfies

(i) (a*)*=aforallae¥
(i) if a=b, then b*=qa*
(iii) ava*=1, ana*=0 for all ae &.
We say that a, b € £ are orthogonal (written a Lb) if a = b*. We shall assume that

if {a;}2, is a sequence of pairwise orthogonal elements of £, then \/ 4 exists in £.

i=1

Finally, we insist that in £ there holds the orthomodular identity: a =b implies
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b=uav(bAa*). The set ¥ satisfying all the conditions above will be called a logic.
We note that a logic need not be a lattice. Two elements a, b € ¥ are said to be
compatible if there exist pairwise orthogonal elements a,, bi, c € ¥ such that
a=a;vc, b=b,vc. A Boolean sub-g-algebra B of a logic ¥ ([6]) is a subset of ¥
which satisfies the following conditions:

(i) 0, 1eB
(ii) a, b € B implies that a, b are compatible, avbe B, arbe B
(iii) if a € B, then a* € B

(iv) if {a,}Z: is a sequence of pairwise orthogonal elements of &, then \7(1, € B.

i=1

Every Boolean sub-g-algebra is also a Boolean ¢g-algebra in the usual sense. Every
Boolean sub-o-algebra is contained in a maximal ([6]). A very important case of
logic is the logic #(H), whose elements are closed subspaces of a separable Hilbert
space H over real or complex scalars. The partial ordering in #(H) is given by the
usual set inclusion and for every M € ¥£(H) M* is the orthogonal complement of
M. A collection 2 of subsets of the set X is called a o-class if 2 satisfies:

(i) 9, Xe2
(i) A€e2 implies X—Ae2
(iii) if {A;}, is a sequence of mutually disjoint sets from 2, then DA, €9.

i=1

One can easily verify that 2 is a logic, where the partial ordering is also given by the
set inclusion and A+ is defined as X — A. A o-class 2 is not a lattice in general. Let
9, be the o-class of subsets of the set X, for every te A, A is an index set. Let
X =[] X. be the cartesian product of X, t€ A. A o-class 2 of subsets of X is called

te A

the o-class product of 9, (written 2= H 9,) if 2 is the smallest o-class containing

teA
sets I17'(E) forevery te A, E € ,. Denote &, = {I1;'(E), E € 2,}. It is evident that
if 9, is a o-algebra, then &, is a maximal Boolean sub-o-algebra of the logic 2. A
signed state on a logic £ is a map m from ¥ into Ru{o}u{—»} such that (i)
m(0)=0, (i) m (\m/a,-)=2m(a,) if a, i=1,2,..., are mutually orthogonal
i= i=1

elements of £. A nonnegative signed state m is called a state if m(1)=1. Let w be
a nonnegative signed state, m a signed state on &; then m is said to be absolutely
continuous with respect to w if for every £ > 0 there exists 6 >0 such that w(a) < é
implies |[m(a)|<e for every ae ¥. We say that m is dominated by w (written
m<w) if w(a)=0 implies m(a)=0 for all ae &.
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2. The Vitali—Hahn—Saks theorem for signed states on a logic

Dvureéenskij ([1]) has given a simple proof that a finite limit of a sequence of
finite signed states on a logic is also a signed state, but the following example shows
that further assertions of the Vitali—Hahn—Saks theorem are not valid without
some other assumptions.

Example 2.1. Let 2; be a nontrivial o-class of subsets of X;, i=1, 2, .... Let us
choose from every set X; two points p!, p7 in such way that there exists a sct
Ai € 2;, which separates p!, p?, i.e. p! € A, p? € X; — A,. It is possible owing to the
nontriviality of 2;. Let 2 be the o-class product of 2;, i =1, 2, .... Define now the
states w, m, m,, n=1,2,... on 2 as follows:

w@)=m.@)=m@)=0, o(X)=m.(X)=m(X)=1, n=1,2, ...
If E€ 2, @+ E+ X, then there exists a unique positive integer i and set A € 9; so

that E=TI1;7'(A). Then we define

w(E)=Zaf, where a,»’=—1;, a,-2=1—l.
pPi€A

2i 2i
1
Y= -
m(E) pZA 5
m,(E)=m(E) if nZi
m,(E)=w(E) if n<i, n=1,2, ...
It may be verified without difficulty that m, <.w, n=1, 2, ... and lim m,(E)=

m(E) for every E € 2, but m, are not uniformly continuous with respect to w and
m is not absolutely continuous with respect to w.

Remark 2.1. It is evident that such counterexample may be constructed also for

the product 2 =[] 2., where A is not countable.

teA
Remark 2.2. From the counterexample above it immediately follows that the
absolute continuity of finite signed states does not coincide with the notion of
dominancy in general.
The following type of the Vitali—Hahn—Saks theorem on a logic £ is true.

Theorem 2.1. Let ¥ be a logic containing only a finite number of maximal
Boolean sub-o-algebras. Let w be a nonnegative finite signed state, m, a sequence
of finite signed states on ¥ such that m, <.w,n=1, 2, ..., and for every a € ¥ there

exists a finite limit lim m,(a)=m(a). Then m, are uniformly continuous with
respect to @ and m is a signed state, m <. .

269



Proof: By assumption there exist maximal Boolean sub-g-algebras %, of 7/,
k

i=1,2,..., k such that #=J B:.. The Loomiss theorem ([4]) of the representa-
1=1

tion of Boolean o-algebras asserts that every Boolean o-algebra B is
a o-homomorphic image of a g-algebra & of subsets of a set X. Using this theorem
one gets sets X;, o-algebras &, of subsets of X; and maps h,: &, — %B,, which are
surjective o-homomorphisms, i =1, 2, ..., k. Now we define on ¥, real functions
W, Vaiy, Vi, n=1,2, ..., i=1,2,..., k, in the following way: v.(A)=m(h(A)),
Vu(A)=m,(hi(A)), w(A)=w(h(A)), n=1,2,..., AeS, i=1,2,..., k. Evi-
dently y, is a finite measure on %, v,; is a sequence of finite signed measures on %,

Voi <ty lim v, (A)=v,(A) for every Ae ¥, i=1,2, ..., k. Using the classical

Vitali—Hahn—Saks theorem we get immediately that v, are uniformly continuous
with respect to u, v, is a signed measure, v, <.;, i=1,2,. ., k. If £>0is given,
then there exists §, >0 so that A € &, u,(A) <, implies |v.(A)|<e,n=1,2, ...
Denote d =min{é, ..., & }. Let w(a)<d. A positive integer j and a set A€ ¥,
exist so that a=h,(A). Then w(a)=w(h(A))=u(A)<S=4,. Thus |m.(a)|=
v.i(A)|<e, n=1,2,.... We have shown that m, are uniformly continuous with
respect to w. If |m,(a)| <e, then also |m(a)|<¢. Hence m <.w. The theorem is
proved.

3. Convergence and absolute continuity of signed states on ¥(H)

Throughout this section H denotes a separable Hilbert space over complex or
real scalars. All the following theorems will be proved for the complex case. Their
proofs for the real case are the same or simpler. The deep theorem of Gleason
([3]) asserts that every finite nonnegative signed state m on ¥(H), where
dimH=3, is of the form m(M)=trTPM, M e #(H), where T is a hermitean
positive operator of the trace class and P™ is the projector corresponding to M. A
hermitean operator T on H is an operator of the trace class if there exists an

orthonormal basis {@} such that > |(Te, @) <. Then the sum trT=

Z(Tqy,, @) is called a trace of T and it is independent of the used basis ([5]).

Dvurecenskij ([2]) generalized Gleason’s theorem and proved that every finite
signed state on #(H) is of the form m(M)=tr TP, where T is a hermitean (not
necessarily positive) operator of the trace class. We prove now that if H is finite
dimensional, dim H# 2, then the Vitali—Hahn—Saks theorem is valid on #(H).

Theorem 3.1. Let H be finite dimensional, dim H# 2. Let w be a non-negative
finite signed state, {m,}-1 a sequence of finite signed states such that m, <.w,

270



n=1,2, ..., and for every M € ¥(H) there exists a finite limit lim m,(M)= m(M).

Then m, are uniformly continuous with respect to w and m is a signed state, m <. .
Proof: Since the case dimH =1 is trivial, suppose dimH=p=3. Let s be
a finite signed state on £(H); then there exists a hermitean operator T such that

P

s(M)= > (TPg,, ¢,), where {@,}5-, is an orthonormal basis in H. Suppose that
q=1

@, are eigenvectors of T and vy, the corresponding eigenvalues; then s is of the

form s(M)= qu(PM(pq, @,). Let {e}?-: be any fixed orthonormal basis of H;

P
then all @, are linear combinations of e, ..., e,, i.e. (pq=EA?ei, qg=1,..,p

i=1

Applying that expression one gets

s(M) = Ey,, (PMZA"e., ZA"e,)

Ep: Ep: i YQA’”-;'(PM&‘, ¢), Me ¥(H).

i=1 j=1 q=1

Denote a; = Zy., 947 then

q=1

p P
S(M)-_—'E Za,-,(PMe,-, e,-), ;= (_1,',', i, ]= 1, o pP.

i=] j=1

Thus all signed states m, may be expressed as follows:

m,(M)= Z Eﬂu(PMe" €), ﬂ";=ﬁ_l’:

=1 j=1

The limit function m is also a signed state, thus m is also of the form
P P - _
m(M)=Z Elﬁij(P e, ¢), Bi=P-

Let M, be the one-dimensional subspace of H generated by the vector ex.
Evidently m,(Mi) =i, n=1,2, ..., and m(M,)= Bw. Hence

'l'i_l.ll ﬁzk=ﬁkks k=17---9 P~ (1)

Suppose M,, to be the subspace generated by the vector e + e,. Then

m, (qu) = ﬂzq(Pquex’ eq) + ﬁ:k(Pqueq, ek) + ﬂzk(PMk"ek, ek) + ﬁ;q(Pqueq’ eq)
(2
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and

m(qu)= ﬁkq(PMk"ek’ eq)+ ﬁqk(PMk"eqv ek)"'Bkk(PMk"ek’ e)+ ﬂqq(PMk"eq» €q).
(3)
We can easily verify that PMwe, = PMwe, =3(ex +¢,). The last and (1), (2), (3)
imply
’I‘m ﬁ:q+ﬁ:k=ﬂkq+ﬁqk- (4)

Similarly, using the one-dimensional subspace Ni, generated by the vector iex + ¢,
(i is the imaginar unit) one gets

']Il_fg Bia— Bax= Prq — Pax- (5)
As an immediate consequence of (4) and (5) one obtains

’l‘i_l;‘lﬁzq=ﬁkq’ k9q=1,'--9 p-.

Let us prove now the uniform continuity of m, with respect to w. If £ >0 is given,

then there exists a positive integer r such that

. om € .
ﬁii—l-}']|<ﬁ for n>r, i,j=
1,2, ..., p, and there exist 8, such that w(M) <3, implies Imn(M)|<§, n=

1, ..., r.Denote d =min {4y, ..., 8,}. Suppose o(M)<d.If n=r, |m.(M)| <§<8,
and if n>r, then

|ma (M) S (M) + | (M) = m (M) <5+ 3 S187- By <.

=1 ;-1

Thus |m.(M)| <& for all n, hence also |m(M)|= . The uniform continuity of m,
and the absolute continuity of m with respect to w are proved.

Remark 3.1. If dim H =2, then the Vitali—Hahn—Saks theorem is not valid. It
follows from Remark 2.1. and from the fact that in this case ¥(H) is isomorphic

with the o-class product

%B., where B, is the potence set of any two-element
te(0,1)

set.
A question arises as to what the situation is if H is not finite dimensional. We
shall prove only that if m, are non-negative, m, <. w, then also m <, . The proof

is based on a characterization of absolute continuity of non-negative signed states.
The following theorem gives such a characterization.
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Theorem 3.2. Let w, m be non-negative finite signed states on ¥(H), dim H# 2,
o(M)=3L(P"p, ¢.) and m(M)= 3 &(P"y;, y;), where {@}, {y;} and {4},
i J

{&} are orthonormal systems (not necessarily complete) of eigenvectors and
sequences of (positive) eigenvalues of operators corresponding to w and m,
respectively. The following statements are equivalent:

(i) m<.w

(i) m<w

(iii) For every jv; is an element of the subspace Ml generated by the vectors { ;)

Proof: We shall assume that the number of ¢: and v is infinite. Of course, the
proof in the case of finite number of @; or y; is more simple. We can also assume
that the sequence {A;}Z, is decreasing.

The proof of (i) = (ii) is trivial.

(ii) = (iii) Let N, be the orthogonal complement of M,. Evidently w(N)=0,

thus m(N1)=_§)l§,»(P"lw,-, y;)=0. Hence (PMy;, v;)=|PMy]*=0, j=1,2, ...

Thus v; is orthogonal to .N. and hence y;eM,, j=1,2, ...
(iii) > (i) Choose any positive integer k, denote nu(M)=(P "y, y),
Me ¥(H). We shall prove my <.w. {@:}i=: is a complete orthonormal system in

M,, hence ¥, = 2(%, @) @.. Denote Yy = 2 (¥, @)@;. Then lim lwall =0. 1f

j=i+1

£>0 is given, then i, exists such that ||y ]| <%’:- Denote K = max {|(¢x, @1)|, ...,
2

[(¥x, @:)[}, and K’=“\/_+2"\/I§T,' Choose 5=4§<;' If o(M)<$, then

Ml PMe|* < i=1,2,.... The last implies

Kz’
2

_&
4Kir,’

i=1, ceey il

|1PMei]|? <
and hence
i= 1, 2, ceey i].

PMgi|| < £ ,
1Pl <5

We estimate now mu (M) using known properties of the scalar product, the Schwarz
inequality and the fact that the projector P™ is linear and hermitean.

m (M) = (PM (;Ell(ll’k, o)+ %k>, ;ZII(W'«, ®)pi+ %k)

<3 31 @) (e @] 1P+ 23w, @) (v, PH00] +
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£ +2i1KL—+£=E.
K, VA, 2K, VA, 2

+ ||PMy,|* <iiK? 5

Thus my <.w for every positive integer k. Then also ZE,m, <.w for every n. If
=1

. . e - €
€£>0 is given, there exist 6 >0 and a positive integer n, such that 2 3 <§ and

j=ni+1

o(M) <6 implies D& (PMy,, 11’;)<§- Hence
i=1

- d £, €
m(M)=35(P"y;, w)+ 3 E(PMy, w)<5+5=¢.
The absolute continuity of m with respect to w is shown.
Now it is easy to prove the following theorem.

Theorem 3.3. Let w be a non-negative finite signed state, {m, }.-1 a sequence of
non-negative finite signed states on ¥(H), dim H#2, m, <.w for every n. Let

there for every M € £(H) exists a finite limit lim m,(M)= m(M). Then m <. w.
Proof: It is sufficient to prove m<.w. If w(M)=0, then m,(M)=0 and so
m(M)=1lim m,(M)=0. Thus m < w.

Remark 3.2. Evidently the above theorem is also valid if 7, are non-positive.

Remark 3.3. Theorem 3.2. does not hold in general if m is not non-negative. In
the following example m is neither non-negative nor non-positive and the
implication (ii) = (iii) is not valid.

Example 3.1. Denote H=R? ¢=(-1,1,0), v.=(1,0,0), v.=(0, 1, 0),
w(M)=(PMp, @), m(M)=(PMy,, y1)—(PMy2, ), Me ¥(H). Evidently
m<w, but Y, Y, are not elements of the one-dimensional subspace generated
by ¢.
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O CXOIOUMOCTU U ABCOIIIOTHOW HENPEPBLIBHOCTH OBOBIIEHHBIX
COCTOSSHUM HA JIOTUKE

Vladimir Palko

Pe3iome
.

B 3Toit pa6oTe MbI H3ydyaeM abGCoNIOTHYIO HENPEPBIBHOCTH Npeesna CXOQUMON MOCae0BaTETbHOCTH
06GOO6LIEHHbIX COCTOSIHMI Ha JIOTMKE M PaBHOMEpHYIO abGCONIOTHYIO HeNpPEepPbIBHOCTb YJIEHOB 3TOM
nocnefoBaTeNbHOCTH. MBI MOKa3biBaeM, 4TO IS OGOOGILEHHBIX COCTOSHMA Ha JIOTMKe He BepHa
TeopeMa Buranu, Xana u Cakca, 1 faéM n0CTaTOYHOE YCJIOBHE ISl BEPHOCTH 3TOH TeopeMbl. [lanblue
n3yyaeTcs abGComOTHas HelmpepbIBHOCTh 0GOGIEHHBIX cOCTOsSHUI Ha Joruke £L(H), koTopasi cocTouT
M3 3aMKHYTBIX MOANPOCTPAaHCTB cemapabenbHOro mpocrpaHcrBa I'mnbGepra. Jlana xapakTepu3anus
a6coO0THOH HenpepbLIBHOCTH KOHEYHBIX HEOTPULIATENbHBIX 0606LIEHHBIX COCTOSTHUH Ha 3TOMH JIOTHKE.
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