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Math. Slovaca 36,1986, No. 2,151—162 

COVERING GRAPHS AND SUBDIRECT 
DECOMPOSITIONS OF PARTIALLY ORDERED 

SETS 

JAN JAKUBfK 

Covering graphs of partially ordered sets (and, in particular, of lattices) were 
investigated in several papers; cf., e.g., [1], [2], [3], [6], [7], [8], [9], [13]. 

The notion of an almost discrete partially ordered set was introduced in [5]; cf. 
also Section 1 below. 

Let !£ be an almost discrete partially ordered set and let C(J£) be the covering 
graph of ££. The relations between certain types of subdirect decompositions of 
C(5£) and subdirect decompositions of if will be studied in the present paper. 

1. Preliminaries 

The covering graph C(J£) of a partially ordered set J£ = (L ; S ) is defined to be 
the undirected graph whose vertices are the elements of L and whose edges are 
those pairs (a, b) of elements of L for which either a covers b or b covers a. 

A partially ordered set £ is said to be almost discrete if, whenever a, b eL and 
a<b, then there are elements a0, ax, a2, ..., aneL such that aQ = a, an = b and ax 

covers a,_i for i = 1, 2, .., n. 
All partially ordered sets dealt with in this paper are assumed to be almost 

discrete. 
Weak direct product decompositions of lattices and partially ordered sets were 

studied in [4] and [5]. Weak direct product decompositions of graphs were 
investigated in [11]. In [2], the relations between two-factor direct decompositions 
of a partially ordered set 5£ and the two-factor direct decompositions of C(Z£) were 
dealt with. 

The basic notions and denotations concerning direct and subdirect product 
decompositions of partially ordered sets and graphs will be recalled in Sections 2 
and 3 below. 

Let $£\ be a partially ordered set with four elements ax, a2, bx, b2 such that a, is 
covered by b, (i, j = 1,2) and that there are no other covering relations in S£x. (Cf, 
Fig. la.) In [5] it was noted that C(S£X) can be expressed as a nontrivial direct 
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product while ££\ is directly indecomposable. (Cf. also [2].) Hence there does not 
exist, in general, a one-to-one correspondence between the direct product decom
positions of a partially ordered set and the direct product decompositions of its 
covering graph. 

Fig. 1a Fig. 1b 

Each subdirect decomposition of ££ induces a subdirect decomposition of C(££). 
Let us have a subdirect decomposition 

cp: C(£e)-+(sub)nieI% (1) 

of the covering graph C(££). Then the condition that 

(a) cp induces a subdirect decomposition of ££ 

need not be valid in general. As a counter-example the partially ordered set ££x can 
be used again. 

A subset K of L is called saturated, if, whenever a, b e K and a covers b in the 
partially ordered set Jf=(K; ^ ) (with the inherited partial order), then a covers b 
in (£. 

It will be shown below that the following condition is necessary for (a) to be 
valid: 

(P) If K is a saturated subset of L such that J{ is isomorphic to ££u then there is 
i e I such that card cpj(K)= 1 for each j el\{i}. 

(Here, cp, denotes the natural map of L onto the set of all vertices of % 
corresponding to the subdirect decomposition cp: C(J£)—>(sub) nieI%.) 

For a certain type of subdirect decompositions cp of C(££) there will be found 
necessary and sufficient conditions for (a) to be valid. These subdirect decomposi
tions will be said to be of type (y) (for C(££) connected this type includes direct and 
weak direct decompositions.) 

Let xu x2, x3, x4 be distinct elements of a partially ordered set & such that 
(xu JC2), (JC2, x3), (JC3, x4) and (JC4, *i) are edges of C(SP). Then Q = (JCI, x2, JC3, JC4) is 
said to be an elementary quadruple in $P. The following two lemmas are easy to 
verify (cf, also [8], Lemma 1.1 and 1.2). 

1.1. Lemma. Let Q be an elementary quadruple in &. Then (Q; ^ ) is 
isomorphic either to ££x or to the partially ordered set in Fig. l.b. 
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1.2. Lemma. Let Q = (xu x2, x3, x4) be an elementary quadruple in 3> such that 
(O ; = ) is not isomorphic to i£x. Then we have either (i) xi is covered by x2 and x4 

is covered by x3, or (ii) xi covers x2 and x4 covers x3. 
If JC, y are vertices of a graph, then their distance d(x, y) is defined in the usual 

way (cf. e.g, [2]); if for any two vertices JC, y we have d(x, y)<oo, then the graph 
is called connected. 

2. Subdirect decompositions of graphs 

We begin by recalling the notion of the direct product of graphs. Then we 
introduce some definitions concerning subdirect products of graphs which will be 
applied in the sequel. 

Let cSi = (Vi, Hi) (i e I) be graphs; V or H< is the set of all vertices or the set of 
all edges of %, respectively. Let V be the cartesian product of the sets V ; the 
elements of V will be denoted as a = (a,),6i with a, e V for each / e I. Further let 
<S = ( V, H) be the graph such that H is the set of those pairs (a, b) of elements of 
V which fulfil the following condition: there exists jel such that (a,, bj)e H, and 
at = bi for each / e I\ {;}. Then ^ is said to be the direct product of the graphs % 
and we write <S = Tliel%; the graphs % are called direct factors of <£. 

If a e V, a = (fl,),ej, then we denote also a, = a(%) (the component of a in %). 
For X c V w e put X(%)= {x(%): x eX}. 

Let jc0 be a fixed element of V and let y eV, j e I. We denote by y7[*o] that 
element zeV, for which z\ = y> and Z\ — JC0, for each / e I\{j}. If no misunderstand
ing can arise, then we write yy istead of yylxo]-

Let X cz V such that X(%) = Vj is valid for each / e I. Next let H0 be the set of all 
pairs (JC,, JC2) of elements of X such that (JC,, JC2) e H. Then the graph %, = (X, H0) 
is said to be a subdirect product of the graphs % and we denote this fact by writing 

% = (sub)Uiel%. (V) 

Our considerations would be trivial if card V = 1. Hence let card V > 1. In this 
case we can suppose that card Vt>l for each /e I. Let us consider the following 
conditions for % : 

(Yi) There exists JCo = C*o.).6ieX such that, whenever jel and v e X , hen 
y-eX. 

(Yi) If P* q* r» s e X and ie /with (p, q)eH, (r, s)e H, p, = r,, qi = si,pi± q, and 
n^Si, then there are distinct elements JC,, JC2, ..., xn, y,, y2 y» (n § 1) in X such 
that y, = q,yn=s, xx=p,xn = r, (*,), = (*, + .),, (v.),f = (y. + i), for f = 1, 2 n- 1, 
(xt,yt)eH for t = 2, 3 n- 1 and (JC,, x,+ , ) e H , (v., y , + , ) eH for t= \, 2 
n-\. (Cf. Fig. 2.) 

The subdirect product decomposition (1) of the graph %> is said to be of type (Y) 
if the conditions (Yi) and (Y2) are satisfied. 

153 



A condition analogous to the condition (YO was introduced by F. Sik [12] for 
subdirect products of lattice ordered groups. 

By a graph isomorphism cp of a graph C§X = (VU H,) onto a graph ^ 2 = (V2, H2) 
we mean a bijection cp: Vi—>V2 such that (a,b)eH{ iff (cp(a), cp(b))eH2. 

Уn-1 

V 

Fig.2 

Уn 
»— ••• - < > < 

_ . . . I i 

Let (S' = (V\ H') be a graph and let cp be an isomorphism of 6' onto %, where 
r§0 is as above. Then 

cp: r$'->nieI% ( 1 " ) 

is said to be a subdirect product representation of the graph <$'. If c$0 is of type (Y), 
then qp is said to be of type (Y). 

% is called a weak direct product of graphs cSl if the following condition is 
satified: 

(y3) there is x0e X such that, for each x e V, x belongs to X if and only if the set 
[iel: JCO. =£*,•} is finite. 

2.1. Lemma. If r§0 is connected, then (y3) => (Y2). 
Proof. Suppose that %) is connected and that (V) is a weak direct decomposi

tion of %h Let p, q, r and ;v be elements of X which fulfil the assumptions of (Y2). 
In the case of p = r we have q = s and hence (Y2) holds. Let p±r\ then q =£ s. There 
are elements au a2, ..., am e X with ax = p,am = r such that (ak, ak + ])e H for k = 1, 
2, ..., m - 1. Let k e (2, 3, ..., m - 1}. Since (Y3) is valid, there exists bkeX such 
that (bk)i = pi and (ok)i = (flO/ f° r e a C n 7 e / \ {i}. Thus for each ke{l, 2, ..., 
m - 1} we have either bfc = bk+] or (bfc, fcfc+1)e H. Hence there are elements c,, c2, 
..., cn in X (n^m) such that cx=p, cn = r, (ct)t=pt for f = l , 2, ..., n and 
(cf, cf+1)e H for k = 1, 2, ..., n - 1. Again, because (Y) holds, there are elements a1,, 
d2, ..., dn \n X such that for each t e {1, 2, ..., n} we have (d,)« = g, and (dt)j = (ct), 
for each j e I\{i}. Now it suffices to put xt = c, and y, = d, for t = 1, 2, ..., n. 

Clearly (Y3) --> (Yi)- Hence if r^0 is connected, then each weak direct product of 
^0 is of type (Y). Similarly, if ^ 0 is connected, then each direct product of r30 is of 
type (Y). Weak direct products of graphs were investigated by Mil ler [11]. 

If (1') is a subdirect product decomposition of type (Y), then it need not be 
a weak direct product decomposition of ^ 0 (cf. examples below). 
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3. Subdirect products of partially ordered sets 

Let -S?= (L ; ^ ) be a partially ordered set. If a, b e L and a is covered by b (i.e., 
if the interval [a, b] of 5£is prime), then we write a a<b or b>a. Each nonempty 
subset of L is partially ordered by the inherited partial order. 5£ is said to be 
connected if for each pair x, y eL there are elements xu JC2, ..., xn e L (i =" 1) such 
that Xi = a, xn = b and for each i e {1, 2, ..., n — 1} either JC, covers JC,+I or JC, is 
covered by xi+i. Hence the partially ordered set 5£ is connected iff the graph C(£) 
is connected. 

The direct product of partially ordered sets is defined in the usual way (cf. e.g., 

[6]). 
Let I be a nonempty set of indices and for each i e I let % = (L,; ^ ) be 

a partially ordered set. Let <£=(L; ^ ) be the direct product of the system {i£},€ / ; 
5£ is denoted by n i € j i£ . For elements and subsets of L we use denotations 
analogous to those in Section 2. 

Let Lo = L, Z£0 = (L0; ^). Assume that L0(5£i) = Li is valid for each iel. Then 
<£0 is said to be a subdirect product of the partially ordered sets i£- and we write 

3o = (sub)Il i 6 , i£ . (2) 

The following lemma is easy to verify. 
3.1. Lemma. Let <£and 5£0 be as above (i.e., 5£0 fulfils (2)). Assume that L0 is 

a saturated subset of L. Let a = (at)iel and b = (6,) iej be elements of L0. Then a is 
covered by b in 5£0 iff there is j e I such that a] < bf and at = bt bor each i e I\ {j}. 

As a corollary we obtain: 
3.2. Lemma. Let $£ and 5£0 be as in 3.L Then 

C(^o) = ( s u b ) n i € l C ( ^ ) . (2') 

The subdirect product decomposition (2') of the graph C(%) is said to be 
induced by the subdirect product decomposition (2). 

More generally, let 5£' = ( L \ ^ ) be a partially ordered set and let 

q>:y'->UielS£i=<£ (3) 

be an isomorphism of i£' into <£ such that 

(p(^ ') = ( s u b ) n i € ^ ) ; (3.1) 

then q> is said to be a subdirect product representation of <£'. The subdirect product 
representation <p of <£' is said to induce a subdirect product representation of the 
graph C(<£') if 

q>: C ( ^ ) - > n i € , C ( ^ ) (3') 

is a subdirect product representation of the graph C(£'). 
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From 3.2 we infer: 
3.3. Lemma. Lef <p be as in (3). Assume that q> is a subdirect product 

representation of £' such that q)(L') is a saturated subset of L. Then q> induces 
a subdirect product representation of the graph C(!£'). 

Let us remark that if (p(L') fails to be saturated in L, then the assertion of 3.3 
need not hold. 

Conversely, let us start by having a subdirect product decomposition of the graph 
C(2'): 

xp:C(£')->YLiel% = ($, where «. = (V.,H,) . (4) 

Then xp is said to induce a subdirect product representation of X' if there are 
partially ordered sets i£ = (V,; ^ , ) such that 

(i) C ( ^ ) = G, for each i e I, and (4') 

(ii) xp:T-^Ul€l% = ^£ (4') 

is a subdirect product representation of ££''. 
In the following lemma we use the denotations introduced above. 
3.4. Lemma. Let (4) be valid. Assume that xp induces a subdirect product 

representation (4') of r£'. Then xp(r£') is a saturated subset of L = UieI£,. 
Proof. Let x, y e L' , x < y. Hence (JC, y) is an edge in C(T) and in view of (4), 

(xp(x), xp(y)) is an edge in <£. Thus there is jel such that (xp(x)(j), xp(y)(j)) is an 
edge in % and for each iel\{j} we have xp(x)(i) = xp(y)(i). 

From (4') (ii) and from the relation x <y we infer that xp(x)<xp(y) holds in CJE. 
Thus xp(x)(k) ^ xp(y)(k) for each kel. Hence xp(x)(j) < xp(y)(j). In view of (4'i), 
ty(x)(j)<M>(y)(j) 1s valid in %. We obtain that xp(x)<xp(y) is fulfilled in S£. 
Therefore xp(L') is saturated in L. 

Again, let q> be as in (3) and suppose that cp is a subdirect product representation 
of r£'. Let jel be fixed. We denote by Lf the set of all elements a* = (at)ie A{y} 

belonging to the direct product n i 6 A(/}L, and having the property that there exists 
xeL'such that (q)(x))i = Ui for each iel\{j}. Under the above denotations put 
<P(i)(x) = ((<P(x))h a )• Then 

V ( i ) : # ' - > # ; x # * (5) 

is a subdirect product representation of 5£'. If (p(L') is a saturated subset of L, then 
for each jel, <p0)(L') is a saturated subset of Li x L*. 

Similarly, let us have a subdirect product representation of the graph C(T) 
(cf. (4)). Then for each / e I we define ^* = (V*, H*) analogously to the case of 
S£t and we obtain that 

xl>(i):C(X')^%X<§* (6) 
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is a subdirect product representation of the graph C(T). The representation xp is 
of type (y) iff all ^(DO'el) are of type (y). 

4. The conditions (P) and (Pi) — necessity 

The considerations performed at the end of Section 3 suggest to investigate first 
two-factor subdirect decompositions. 

4.1. Lemma. Lef 3PX and 3f>2 be partially ordered sets, S£ = (sub) (3PX x 3P2). Let 
Q be a saturated subset of L such that SI = (Q ; ^ ) is isomorphic to S£x. Then either 
Q(3PX) or Q(3P2) is a one-element set. 

Proof. We may suppose that Q = {a, b, c, d), where a<c, a <d, b <c, b <d, 
a is incomparable with b and c is incomparable with d. We denote a(3Px) = ax, 
a(3P2) = a2, and similarly for other elements of Q. Assume that Q(3P2) fails to be 
a one-element set. We have to verify that card Q(3PX)= 1. 

There exist elements x, y e Q such that x(SP2)±y(3P2) and (x, y) is an edge in 
C(S£). Without loss of generality we may suppose that x = a and y = c. Hence 
a2 + c2. Since a<c, we infer that 

cx = ax and a2<c2. (4.1) 

Suppose that dx + ax. Then, because of a<d, we must have 

ax<dx and a2 = d2. (4.2) 

Next, from b < c it follows that there are two possibilities: 

either 

bx = ax and b2<c2< (4.2a) 

or 

bx<ax and b2 = c2. (4.2/3) 

In the case (4.2a) we would have (ax, b2) = b<d = (dx, a2), and in view of (4.2) 
(because of ax± dx) the relation b2 = a2 would be valid, implying b =(ax, a2) = a, 
which is a contradiction. 

In the case (4.2(3), (bx, c2) = b <c = (ax, c2), thus bx<ax. At the same time, 
(bx,c2) = b<d = (dx,a2). If bx = dx, then c2<a2, contradicting (4.1). Hence bx< 
dx, and so c2 = a2, which is impossible in view of (4.1). 

Therefore dx = ax must be valid. Thus a2<d2. 
Now suppose that bx =£ ax. Then from b < c and b <d we infer that we must have 

c2 = b2 = d2, thus c = d, which is a contradiction. Therefore Q(3PX) is a one-element 
set. 

4.2. Corollary. Let (3) and (3.1) be valid such that cp(L') is a saturated subset 
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of L. Let Q be a saturated subset of V such that SI = ( Q ; g ) is isomorphic to 5£x. 
Then there exists j e I such that card ((p(0))(iP.) = 1 for each i e I\ {;}. 

Proof. The set q)(Q) is a saturated subset of L. There exists jel such that 
card (q)(Q))(^£i)i= 1. Now it suffices to apply Lemma 4.1 for the subdirect 
decomposition (5). 

4.3. Proposition. Let iP' be a partially ordered set and let \p be a subdirect 
product representation of the graph C(5£') described in (4). Suppose that \p 
induces a subdirect product representation of «SP\ Then the condition (P) is 
fulfilled. 

Proof. Let K be as in (p). Let £x (i e I) be as in (4'). According to 3.4, \p(V) is 
a saturated subset of n,6 /L,. Since K is a saturated subset of L \ the set \p(K) is 
saturated in ni6iL,-. Thus in view of 4.2, the condition (P) holds. 

Let us consider the following condition for the subdirect product decomposition 

0'): 
(Pi) The condition (YO holds and whenever u and v are distinct elements of X 

such that the relation u7 .= v~ is valid in iP for each i e I, then there are jel and 
zeX which have the following property: the relations z7 > u7 and z~ = v~ hold in 
-S?. 

The subdirect product representation (1") is said to fulfil (Pi) if (p(G') = G0 fulfils 
the condition (Pi). 

In view of the denotations introduced above it suffices to consider the case when 
\p is an identity on if'; this assumption (which simplifies the notations) will be 
applied in 4.4 and also in 5.1, 5.2, 5.3, 5.5. below. 

4.4. Lemma. Lef the assumption of 4.3 be fulfilled. Moreover, assume that in 
\p(C($')) the condition (YO holds. Then the condition (Pi) is valid. 

Proof. Because \p induces a subdirect product representation of if', for each 
JC, y e L' and for each i e I we have 

Xi^yiox-^y-. 

Let u, veL' such that u±v and u7 = u7 is valid for each iel. Hence Ui^vt 

holds for each i e I, thus u<v. There exists z e L' such that u < z = v. Then there 
is ; 6 / such that 

Uj <Zj and u, = z, for each i e I\{j}; 

moreover, Zi = t\ for each 1 e I. Therefore 

u~}<z~i and z7 = t>7 for each i e l . 

Hence (Pi) holds. 
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5. The conditions (P) and (Pi) — sufficiency 

Let T be a partially ordered set. In this section it will be shown that if (4) is 
a subdirect product representation of C(if') such that 

(i) the subdirect representation \p is of type (Y), 
(ii) the conditions (P) and (pi) are fulfilled, 

then \p induces a subdirect product representation of the partially ordered set if'. 
5.1. Lemma. Assume that the conditions (P) and (y) are fulfilled. Let p, q, r, 

5 eV and i el. Suppose that (p, q)eH, (r, s)eH, Pi = n, a, = s,, p .^g , , r^Siand 
p <q. Then r<s. 

Proof. Let JC,, JC2, ..., xn, yu y2, ..., yn be as in (Y2) (with X replaced by V). If 
n = \, then p = r, q=s. Let n>\. Thus Q = (xi, x2, y2, yx) is an elementary 
quadruple in if' and O is a saturated subset of L ' . 

We have to verify that St=(Q; ^) fails to be isomorphic to if^ By way of 
contradiction, suppose that Si is isomorphic to ifi. Since the condition (P) is 
fulfilled and because of card Q((Si)>\, we have card Q(<§i) = 1 for each j e J \ { i } . 
Therefore the natural map of Q into V, is an injection, which is a contradiction 
(since (xx)i = (x2)i). Hence in view of 1.1 and 1.2, the relation x 2 < y2 is valid. Now 
it suffices to apply the induction on n. 

5.1.1. Corollary. Assume that (p) and (y) are fultilled. Let p,qeL', iel. 
Suppose that (p, q)eH and p~i + q~i. Then the relations p<q and p~<q~ are 
equivalent. 

Let i e I and let JC, y be distinct elements of V,. We put JC < y if there are distinct 
elements JC0, JCI, ..., jcn in V, such that (i) JC0 = JC, jc„=y, and (ii) for each 
je {0, 1, ..., n -1} there exist elements u,veL' such that u<v and u~ = xh 

V'i=Xi + i . 

In view of 5.1 and 5.1.1 we obtain: 
5.1.2. Corollary. Assume that (P) and (y) are fulfilled. Let a, b eV and i e I. 

Then the relations fl.^b, and a~%b~ are equivalent. 
5.2. Lemma. Assume that (P) and (y) are fulfilled. Let a, beL' and iel. If 

a=\b, then a, ^ b{. 
Proof. The case a = b is obvious; let a<b. There are elements c0, cu ..., 

cneV such that c0 = a, cn = b and c,<c,+i is valid for i = l, 2, ..., n-\. We 
proceed by induction on n. 

Let n = \. Then a <b, hence (a, b) is an edge in C(if ' ) . Thus we have either (i) 
a, = bi, or (ii) a^bi and a] = bj for each jel\{i}. Let (ii) be valid. Then from 5.1 
we obtain a~<b~, whence a ,<6 , . 

Next suppose that n>\. Then (c 0 ) ,^ (c i ) I ; moreover, from the induction 
assumption we infer that (ci)i^(cn)i9 completing the proof. 

5.3. Lemma. Assume that (P), (Pi) and (y) are fulfilled. Ifa,beLf and if at ^ b{ 

is valid for each i e I, then a^b. 
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Proof. By way of contradiction, assume that the assertion of the lemma does 
not hold in general. Then there are distinct elements u and v in L' such that u<K v 
and ui=\vi for each / el. In view of 5.L2 we have u~^v~ for each iel. Hence the 
assumptions of (Pi) are satisfied; let j and z be as in (p,). 

Since the partially ordered set if' is almost discrete we can also assume that the 
following minimality condition is fulfilled: 

if c, d eL' such that c{Hkdi is valid for each ie I\{j} and either u~ <c~<d~=\ 
v~ or u~^c~<d~<v~, then c<d. 

Then 5A yields that u<z is valid. Moreover, from the above minimality 
condition we obtain (by taking c = z, d = v) that z = v holds. Therefore a<b. 

From 5.2, 5.3, 4.3 and 4.4 we obtain immediately: 
5.4. Theorem. Let if' be a partially ordered set. Let ty be a subdirect product 

representation of the graph C(Sf') described in (4). Suppose that ty is of type (y). 
rThen the following conditions are equivalent: 

(i) The conditions (P) and (Pi) hold. 
(ii) ^p induces a subdirect product representation of 58'. 
5.5. Lemma. Assume that if' is connected. Further suppose that (P) and (y3) 

are fulfilled. Then (p,) 1701ds. 
Proof. The method applied here is similar to that used in the proof of 2.1. Let u 

and v be elements of X fulfilling the assumptions of (Pi). Since u+ v, there exists 
jel such that u~<v~. According to the definition of u~ and D • we have 
(u~)i = (v~j), for each / e I\{j}. Hence there are elements au a2, ..., am in X such 
that ax = u~, am = v~ and ak <ak+l for k = 1, 2, ..., m — 1. In view of (Y3) for each 
ke {V 2, ..., m} there exists bk eXsuch that (bk)j = (ak)j and (bk)> = u~){ for each 
ie I\{j}. Hence b, = w,-, bm = vj and for each ke {1, 2, ..., m - 1} we have either 
bk = bk+A or (bk, bk+x)e H. Moreover, if (bk, bk+l)e H, then in view of 5.1 and 2.1 
we infer that bk<bk+l is valid (we take now j instead of /). 

Hence, after changing the indices if needed, we obtain elements c,, c2, ..., cn 

(n =\m) in X such that Ci = u~h cn = v~, ck <ck+1 for k = 1, 2, ..., n — I, (ck)i = (u7), 
for each iel\{j} and each ke{l, 2, ..., n}. According to (Y3) there exists z~X 
such that Zi = (c2), for each / e I\{j} and z, = (c2)h Then zj = c2 and hence z has the 
desired properties; therefore (Pi) is valid. 

From 5.4, 5.5 and 4.3 we obtain: 
5.6. Corollary. Let T be a connected partially ordered set. Let ^p (described in 

(4)) be a weak direct product (or direct product) representation of C(Z£'). Then ^p 
induces a weak direct product (or direct product) representation of 5£' iff the 
condition (p) holds. 

(If xp is a direct product representation of if' where if' is connected and if 
card G{>\ for each iel, then I must be finite; cf. [5].) 

Now let Sf' be a semilattice. Then no saturated subset of if' with the inherited 
partial order is isomorphic to if,. Thus 5.6 yields: 
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5.7. Corollary. Let S£' be a semilattice. Let ^pbea weak direct product (or direct 
product) representation of C(S£'). Then ty induces a weak direct product (or direct 
product) representation of S£'. 

Corollary 5.7 generalizes a result of [2] (cf. [2], Thm. 4) concerning two-factor 
direct decompositions of C(S£'), where S£' is a lattice; in the proof of Thm. 4 in [2] 
a theorem of Kol ib ia r [10] on direct products of quasiordered sets was applied. 

6. Examples 

Let S£' be a partially ordered set. 
6.1. Let <S,, (S2 be graphs and let ^p be an isomorphism of C(S£') onto ^i x <S2. 
If S£' is not connected, then (P) need not imply that ^p induces a direct product 

representation of S£'. In fact, let L' = {a, b, c, d}; L' is partially ordered such that 
a < b, d<c, and no other covering relations are defined on L'. Let ^i = (Vu Hx) 
and % = (V2, H2) be graphs such that Vx = {u, v}, Hx = {(u, v)} and V2= {x, y}, 
H2 = 0. Consider the mapping ty: L'—• Vi x V2 defined by ^p(a) = (u,x), ip(b) = 
(v,x), ip(c) = (u,y), \p(d) = (v,y). Then the condition (P) holds, xp is an 
isomorphism of C(S£') onto «8i x <g2 and ty does not induce a direct product 
representation of S£'. 

6.2. Let i/; be a subdirect product representation of C(S£') of type (Y). Then \p 
need not be a direct representation (a weak direct representation) of C(S£'). 
E x a m p 1 e: let N be the set of all positive integers with the natural linear order; put 
N, = N2 = N, P = Ni x N2. Let m e N, m > 1 and let Q be the set of all elements 
q = (x, y)eP such that some of the following conditions is fulfilled: (i) x = 1; (ii) 
y = 1; (iii) JC + y ^ m. The set Q is partially ordered by the inherited partial order. 
Let \p be the identity on Q. Then ^p: C(Q)-> C(NX) x C(N2) is a subdirect product 
representation of C(Q); I/J is of type (Y) and ^p is not a direct (weak direct) product 
representation of C(Q). 

6.3. Let ij; be a subdirect product representation of C(S£') fulfilling (Y0 and 
(Y2). Then ^p need not fulfil (Pi). E x a m p l e : Let P be as in 6.2. Let Oi be the set of 
all elements q = (x, y) of P such that one of the following conditions holds: (i) 
JC = 1; (ii) y = 1; (iii) x = y = 2; (iv) JC = y = 3. We define a partial order .§ 1 on Oi 
as follows: for distinct elements (JCI, yi), (JC2, y2) we put (JC1? yt) < 1 (JC2, y2) if either 
a) JCI = JC2 = 1 and y 1 < y2 or b) y 1 = y2 = 1 and jc2 < JC2. Let ip be the identity on Oi. 
Then y. C(Qi)-> C(Ni) x C(Nt) fulfils the conditions (YO and (Y2), but it does not 
fulfil the condition (Pi). 

6.4. Let t/; be a subdirect product representation of C(S£') fulfilling (YO and 
(Pi). Then ^p need not fulfil (Y2). E x a m p l e : Let S£' be as in 6.1 with the distinction 
that we put c<d instead of d <c. Then (YO and (pi) hold, but (Y2) does not hold. 

Let us also remark that if ^p fulfils (Y)> then S£' need not be connected. 
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ПОКРЫВАЮЩИЕ ГРАФЫ И ПОЛУПРЯМЫЕ РАЗЛОЖЕНИЯ ЧАСТИЧНО 

УПОРЯДОЧЕННЫХ МНОЖЕСТВ 

1ап 1 а к и Ь | к 

Р е з ю м е 

В статье исследуются условия для того, чтобы полупрямое разложение покрывающего графа 
С ( ^ ) почти дискретного частично упорядоченного множества % индуцировало полупрямое 
разложение У. 
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