Jozef Antoni On the *A*-continuity of real function. II.

Mathematica Slovaca, Vol. 36 (1986), No. 3, 283--288

Persistent URL: http://dml.cz/dmlcz/136427

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ON THE A-CONTINUITY OF REAL FUNCTION II

JOZEF ANTONI

In the present paper two problems concerning the A-continuity to a regular matrix summability method are partially solved.

Let $A = (a_{mn})$ denote a regular summability method given by a matrix (a_{mn}) . We

say that a real function f is A-continuous at the point x_0 if $f(x_n) \xrightarrow{A} f(x_0)$ whenever

 $x_n \xrightarrow{A} x_0.$

R. C. Buck [2] showed that if f is a (C, 1)-continuous at least at one point of R, then f is a linear function. In paper [1] the existence of a regular matrix summability method A for which there exists a nonlinear function A-continuous at least at one point is given.

Professor Šalát puts the following problem:

1. To characterize regular summability methods A for which there exists a nonlinear function which is A-continuous at least at one poit.

2. To characterize C_{fA} , the set of all points of A-continuity of the function f. method is given for which only linear functions are A-continuous at least at one point.

Definition 1. A regular matrix summability method has the property (G) if there exists sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$, of zeros and ones which are A-covergent to numbers a, b respectively $a \in (0, 1), b \neq 0, b \neq 1, \left(\frac{a}{1-a}\right)^p \neq \left(\frac{b}{1-b}\right)^q$ for all non-zero integers p, q.

Lemma 1. Let T be a regular matrix summability method which sums at least one sequence of zeros and ones to a number $a, a \neq 0, a \neq 1$. Let f be a T-continuos at least at one point. Then f is a continuous function.

Proof. Let f be a T-continuos at a point z_0 . Let us suppose that f is discontinuos at a point x. Thus there exists a sequence $u_n \to 0$ such that $\lim f(x + u_n) = y \neq f(x)$ (also be $y + \infty$, or $-\infty$). Let $\{\alpha_n\}_{n=1}^{\infty}$ denote a sequence of zeros and ones for which T-lim $\alpha_n = a$. The sequence $\{x_n\}_{n=1}^{\infty}$

$$x_n = \alpha_n(x+t_n) + (1-\alpha_n) \left(\frac{z_0 - ax}{1-a}\right)$$

is T-summable to z_0 for every sequence $\{t_n\}_{n=1}^{\infty}$, $t_n \to 0$. Especially for $x'_n = \alpha_n(x+u_n) + (1-\alpha_n)\left(\frac{z_0-ax}{1-a}\right)$ we have T-lim $f(x'_n) = ay + (1-a)f\left(\frac{z_0-ax}{1-a}\right)$. However, for

$$x_n'' = \alpha_n x + (1 - \alpha_n) \left(\frac{z_0 - ax}{1 - a}\right) \text{ we obtain that}$$

T-lim $f(x_n'') = af(x) + (1 - a)f\left(\frac{z_0 - ax}{1 - a}\right)$.

Since f is T-continuous at the point z_0 both above limits have the same value $(f(z_0))$. From this we can conclude that f(x) = y. This fact, however, is in contradiction with the assumption and the proof is finished.

Theorem 1. Let A be a regular summability method with property (G). Let f be a A-continuous at least at one point. Then f is a linear function.

Proof. Without restriction on generality we can suppose that f is A-continuous at the point 0 and f(0)=0. The sequence $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ where $x_n = \alpha_n + (1 - \alpha_n)y$, $y_n = \beta_n u + (1 - \alpha_n)v$, $(\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1})$ are sequences of the definition 1) are A-convergent to 0 if x, y, u, v satisfy equations

$$ax + (1 - a) y = 0$$

 $bu + (1 - b) v = 0.$

The A-continuity of the function f at the point 0 and f(0) = 0 implies that for each x, u the following equations are valid

$$f\left(-\frac{a}{1-a}x\right) = -\frac{a}{1-a}f(x),$$
$$f\left(-\frac{b}{1-b}u\right) = -\frac{b}{1-b}f(u).$$

The last two equations can be rewriten in the form:

$$f(-k_1x) = -k_1f(x), \quad f(-k_2x) = -k_2f(x)$$

where $k_1 = \frac{a}{1-a}$, $k_2 = \frac{b}{1-b}$. By indukction we can verify the following equality $f(k_1^{2i}k_2^{2j}x) = k_1^{2i}f(x)$ for all x and i, j = 0, 1, 2, The numbers k_1^2 , k_2^2 are positive. Let $(R^+, .)$ denote the topological multiplicative group of nonnegative numbers. It is well known that a subgroup gr (c, d) generated by c, $d(c, d \in R^+)$ is dense if and only if the equality $c^p = d^q$ holds only for p = q = 0, p, q are integers. (See [3]

284

p. 27-36.) Thus we easily obtain that f(kx) = kf(x) for all x and $k \in \text{gr}(k_1^2, k_2^2)$. Since the summability method A has the property (G) the subgroup $\text{gr}(k_1^2, k_2^2)$ is a dense subset of \mathbb{R}^+ . According to the lemma 1 f is continuos function. Thus f(x) = f(1)x for $x \ge 0$ and f(-x) = f(-1)x for x < 0, which means that f is composed of two linear parts, i. e. f(x) = cx for $x \ge 0$ and f(x) = c'x for x < 0, where c, c' are constants. The assumption a (0, 1) of property (G) gives that $k_1 > 0$. Computing the value of f at the point $-k_1$ in two different ways we obtain $f(-k_1) = c'(-k_1)$ and $f(-k_1) = -k_1f(1) = -k_1c$ according to (1). Thus we can conclude that c = c' and f is a linear function. An example of summability method without property (G) for which there exists non-linear function A-continuous at least at one point, is given in Example 1.

Example 1. A linear transformation given by matrix $B = (b_{mn})$, where $b_{2k+1,4k+1} = b_{2k+1,4k+4} = \frac{1}{2}$, $b_{2k,4k+3} = b_{2k,4k+4} = \frac{1}{2}$, k = 0, 1, 2, ... and $b_{mn} = 0$ otherwise, is a regular summability method. A sequence $\{x_n\}_{n=1}^{\infty}$ is transformed by matrix B to the sequence $\{t_n\}_{n=1}^{\infty}$, where $t_{2k+1} = \frac{1}{2}(x_{4k+1} + x_{4k+4})$ and $t_{2k} = \frac{1}{2}(x_{4k+3} + x_{4k+4})$, k = 0, 1, 2, ... Each B-summable sequence $\{z_n\}_{n=1}^{\infty}$ of zeros and ones has a B-limit equal to one value of the set $\{0, \frac{1}{2}, 1\}$ as it can be easily verified. Since the terms on places of the form 4k + 2 do not have any influence on the B-limit, we have that there exist infinitely many sequences of zeros and ones, which have the B-limit to take for a function f an arbitrary nonlinear odd function which is uniformly continuous and f(0) = 0. Such a function is continuous at the point 0 and is not a linear function.

Another condition is given in the following theorem.

Theorem 2. Let there exists for a regular summability method $A = (a_{nm})$ sequences $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}, \{\gamma_n\}_{n=1}^{\infty}$ of zeros and ones such that A-lim $\alpha_n = a$, A-lim $\beta_n = b$, A-lim $\gamma_n = c$, $abc \neq 0$, $a \neq 1 \neq b$, $c \neq 1$ and $\alpha_n + \beta_n + \gamma_n = 1$ for every *n*. Then *f* is a linear function whenever *f* is A-continuous at least at one point. Proof. Let *f* be A-continuous at a point x_0 . Then the sequence $\{t_n\}_{n=1}^{\infty}$.

 $t_n = \alpha_n x + \beta_n y + \gamma_n z$, has A-lim $t_n = x_0$ whenever x, y, z satisfies the equality

$$ax + by + cz = x_0 \tag{1}$$

Since $f(t_n) = \alpha_n f(x) + \beta_n f(y) + \gamma_n f(z)$ we have that A-lim $f(t_n) = af(x) + bf(y) + cf(z)$. The A-continuity of f at poit x_0 gives the equality

$$af(x) + bf(y) + cf(z) = f(x_0)$$
 (2)

285

By (1) and (2) we can conclude that the function f satisfies the following functional equality

$$f\left(-\frac{a}{c}x-\frac{b}{c}y+\frac{1}{c}x_{0}\right)=-\frac{a}{c}f(x)-\frac{b}{c}f(y)+\frac{1}{c}f(x_{0}),$$

for all x, y. According to lemma 1 f is a continuous function. Thus the well-known results about functional equalities of this type give that f is a linear function (see e. g. [5] pages 68-70).

2. The set of all points at which a given function is A-continuous strongly depends on the summability method A. Let e. g. $A = (a_{mn})$, where $a_{mn} = a_{m, n+1} = \frac{1}{2}$, m = 1, 2, 3, ... and $a_{mn} = 0$ otherwise. Then the set C_{fA} acquires one of the

following posibilities:

- a) the set of all real numbers
- b) the empty set
- c) only a one point set
- d) a countable set of isolated points.

We outline a verification of this statment.

Let f be A-continuous at a poit a. Without loss of generality we can suppose that a = 0 and f(0) = 0 (in another case we take a function g(x) = f(x + a) - f(a) which satisfies the above assumptions and $C_f = C_g + a$, $C_{f,A} = C_{gA} + a$, $C_g + a$ is a shift of the set C_g). A-continuity a the point a implies that f necessarily satisfies the following equations

$$f(-x) + f(x+2a) = 2f(a)$$

f(-x+a) + f(x+a) = 2f(a) (3)

for all $x \in \mathbb{R}$. Especially for a = 0 we obtain f(-x) = -f(x). This condition allows us to give an example of a function for which $C_{fA} = 0$ (e. g. $f(x) = x^2$). An example of a function for which $C_{fA} = 0$ is the function defined by

$$f(x) = \begin{cases} 1 & \text{for } x \ge 1 \\ x & \text{for } x \in (-1, 1) \\ -1 & \text{for } x \le -1 \end{cases}$$

(for more detail see [1]).

We prove that C_{fA} is a finite set if and only if C_{fA} contains exactly one point. If 0 and a are points of A-continuity of a function f, then using (3) we obtain that f(na) = nf(a) for $n = 0, \pm 1, \pm 2, ...$ and all points *na* are also points of A-continuity of the function f. An example of such a function is the function sinus.

Let C_{fA} have a finite limit point. Without loss of generality we can suppose that this limit point is 0 and f(0) = 0. Then f is an odd function and for all $a \in C_{fA}$ $f(na) = nf(a) \ n = 0, \pm 1, \pm 2, \dots$. Since there exists a sequence $a_n \rightarrow 0, a_n \in C_{fA}$ then

 C_{iA} is a dense set in R. Since according to lemma 1 f is continuous on R and $f(na_i) = nf(a_i)$ $(i = 1, 2, 3, ..., n = 0, \pm 1, \pm 2, ...)$, f is a linear function.

The fact that every linear function is A-continuous on R is evident.

The following theorem tells us more about the possibilities for C_{A} .

Theorem 3. Let B be a G_{δ} set. Then there exist a regular summability method T stronger than the convergence and real function f for which $C_{T} = B$.

Proof. It is well known that to any G_{δ} set B there exists a function f for which $C_f = B$. Let $\{n_1 < n_2 < ...\}$ be an infinite set of positive integers whose complementary set (in N) is also an infinite set.

Let us define T in the following way: $T = (a_{mn})$, where $a_{mn_m} = 1$ and $a_{mn} = 0$ for $n \neq n_m$, m = 1, 2, 3, The regularity of such a method is evident. For regular method A such that $\{f(x_n)\}_{n=1}^{\infty}$ is A-summable whenever $\{x_n\}_{n=1}^{\infty}$ converges the lemma of [4] gives that f is continuous. It is sufficient to prove that $C_{TT} \supset C_{T}$.

The convergence field of T consists of all sequences $\{y_n\}_{n=1}^{\infty}$ for which the subsequence $\{y_{nk}\}_{k=1}^{\infty}$ is convergent. Let $x_0 \in C_f$. Let $x_n \xrightarrow{T} x_0$. Then $x_{nk} \rightarrow x_0$. Since f is continuous at x_0 , the sequence $f(x_{nk}) \rightarrow f(x_0)$. However, this fact means that $f(x_n) \xrightarrow{T} f(x_0)$ and so we have that $x_0 \in C_{fT}$. Thus $C_{fT} = C_f = B$ and the proof is complete.

REFERENCES

- ANTONI, J., ŠALÁT, T.: On the A-continuity of real functions. Acta Math. Univ. Comenian. 39, 1980, 159-164.
- [2] Problem 4216 1946, 470 Amer. Math. Monthly. Propesed H. Robins. Solution by R. c. Buck, Amer. Math. Monthly 55, 1948, 36.
- [3] MORRIS, S. A.: Pontriagin duality and the structure of localy compact Abelian groups, (in Russian, Mir, Moscow 1980).
- [4] POSNER, E. C.: Summability-preserving functions. Proc. Amer. Math. Soc. 12, 1961, 73-76.
- [5] ACZEL, J.: Vorlesungen über Functiolnalgleichungen und ihre Anwendungen, VEB Deutscher Verlag der Wissenschaften, Berlin 1661.

Received June 14, 1984

Matematický ústav SAV Obrancov mieru 49 814 73 Bratislava

О А-НЕПРЕРЫВНОСТИ ВЕЩЕСТВЕННЫХ ФУНКЦИЙ

Jozef Antoni

Резюме

Пусть A — регуларная матрица. Функция $f: R \to R$ называется А-непрерывной в точке x_0 , если из A-lim $x_n = x_0$ вытекает A-lim $f(x_n) = f(x_0)$. В работе даны достаточные условия для того, чтобы из А-непрерывности функции вытекала линейность функции. Тоже доказано, что дла любого множества В типа G_b существует матрица A и функция f такие, что множество всех точек А-непрерывности функции f равно B.

ŧ.

.