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WEAK COMPACTNESS AND SUMMABILITY 

WOJCIECH CHOJNACKI 

Let T = (cwm)w,weN be a method of summability. In agreement with the ter
minology employed in [2], we will say that T is almost regular* if the following 
conditions are satisfied: 

00 

(i) lim £ Cnm = c; 
n->oo m=l 

(ii) lim cnm = cm for every raeN; 
n-*cc 

00 

(iii) c * £ c„. 
n = I 

Here, of course, c and cn(neN) are finite, and the series are supposed to be 
convergent. 

We will say that a subset of a Banach space has property o if for every 
sequence in the subset there is an almost regular* summability method T such 
that the T-means of the sequence converge weakly. 

In [2] D. W a t e r m a n established a theorem which can be formulated as 
saying that the unit ball of a Banach space having property o is weakly compact. 
We shall prove the following generalization of this result. 

Theorem. If a bounded subset of a Banach space has property 4, then it is weakly 
relatively compact. 

Proof. Suppose that a bounded subset A of a Banach space E has 
property o. Should not the weak closure of A be weakly compact, then, by a 
result of Kadec and Pelczynski [1], there is a basic sequence (x„)neN in A for 
which the origin is not a weak cluster point. By passing to a subsequence if 
necessary, we can assume that there exists x* in E*9 the dual space of E, such 
that 

£ |x*<X)-l|< + oo. 
n=\ 

Of course, D = inf{||xj| :«eN} > 0. Let C be a positive number such that, for 
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every choice of «, w e N with n < m and scalars A; (1 ^ i ^ m), we have 

II n II II m II 
£ A,x,| < C £ A,*,- . 
1=1 II i = l 

Then 

1 ^ 
/=! 

£ A,(x*(x,) - 1) + I A,.**(x,.) 

^ D1 max {HA,jcf.|| : 1 ^ i ^ m} £ |x*(x,) - 1| 
»=i 

II m 

+ ll**ll I.*,*. 

( oo \ || m 

2C7T1 5 > * ( x , ) - l | + ||x*|| ZA,.x,. • 
1=1 / lli=l 

This inequality jointly with the Hahn-Banach theorem shows that there is z* 
in E* such that 

- * ( *„ )=! (1) 

for all rzeN. 
According to our hypothesis, there is an almost regular* summability method 

T = (cnm)n^weN and a point x in the closed linear span of {xn: neN} such that the 
F-means of (x„)„eN converge weakly to x. Let (x*)„eN be a sequence in E * such 
that 

*?(*«) = 
1 if n = m 
0 if n 7-= m ' 

In view of (ii), for each /ieN, the F-means of (x*(xm))meN converge to c„. Hence 

and further, in view of (1), 

00 

x = £ c„*„ 

**(*)= £ cn. 
n=\ 

On the other hand, by virtue of (i) and (1), the F-means of (z*(xn))nGN converge 
to c. This and the above equality imply 

£ cn = c, 

which contradicts (iii). 
The proof is complete. 
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СЛАБАЯ КОМПАКТНОСТЬ И СУММИРУЕМОСТЬ 

\Vо̂ с̂ есп С г ^ п а с к 1 

Резюме 

В работе показывается, что ограниченное подмножество банахового пространства слабо 
относительно компактно, если для любой последовательности элементов этого подмножест
ва существует почти регулярный* метод суммируемости Т такой, что Т-суммы этой пос
ледовательности слабо сходятся. 
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