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CRITERION FOR UNIFORM DISTRIBUTION OF 
SEQUENCES AND A CLASS OF RIEMANN 

INTEGRABLE FUNCTIONS 

TIBOR SALAT 

1. Introduction 

In the paper [2] a criterion for the uniform distribution of sequences is in
troduced. We shall show that a condition of this criterion formulated by using 
the Lebesgue measure can be replaced by an analogous condition formulated by 
using the Jordan measure. Further it will be shown here that the set of all 
Riemann integrable functions which can be used in the mentioned criterion 
contains all Riemann integrable functions with the exception of a "little" set in 
a topological sense. 

2. A remark about the Horbowicz criterion 

The following criterion for the uniform distribution of sequences of real 
numbers is proved in [2]: 

Let/be a complex Riemann integrable function on <0,1>. Let 

(1) M(Z(f)) = 0 

where 

Z(y) = {xG<0,l>:f(x) = 0}= f-'(0) 

and jj. denotes the Lebesgue measure. Then a sequence {xn}n

c

= x of numbers of the 
interval <0,1 > is uniformly distrubuted if and only if for each interval 
<a, b) cz <0,1) we have 

i N Г 
1ІГП - I f(Xn)X<a.b)(X

П) = f(*)<ІX 
V-°o Лt„= I Ja 

N^oo jy n = 1 

(X(a.b) stands for the charateristic function of the interval <a, b)). 
§. Porubsky posed the question whether the condition (1) can be replaced by 

the condition 
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(10 /n(Z(/)) = 0 

where m denotes the Jordan measure. 
Let us remark that each Riemann integrable function f: <0, 1> —• R is also 

Lebesgue integrable and hence the set Z(f) is Lebesgue measurable [1, p. 270]. 
In what follows K(0,1) denotes the set of all real Riemann integrable fun

ctions on <0,1>. We restrict ourselves only to real functions, the results can be 
easily extended for complex functions. 

The closure of a set M c <0,1> will be denoted by M. 

Theorem 1.1. Let JeR(0,1). Then we have 

/i(Z(/)) = »(Z(J)). 

Corollary 1.1. The condition (1) is equivalent to the condition (V) (for Riemann 
integrable functions J). 

P r o o f of C o r o l l a r y 1.1 Clearly (V) implies (1). If (1) holds, then acc
ording to the theorem 1.1 we have //(Z(/)) = 0. However, Z(f) is a compact set 
and therefore m(Z(J)) = 0. From this we get m(Z(J)) = 0. 

P r o o f of T h e o r e m 1.1. Since each of the sets Z(/), Z(J) is Lebesgue 
measurable and Z(f) c: Z(f), it suffices to show that the inequality 

(2) v(Z(J)) > M(Z(f>) 

does not hold. 
Let (2) hold. Choose an arbitrary x0eZ(J)\Z(J) = W. Thenf(x0) # 0 and in 

every neighbourhood of x0 there are points x with / (x ) = 0. This implies t h a t / 
is discontinuous at xQ. Since according to (2) we have JA(W) > 0, the set of all 
discontinuity points of the function / has a positive Lebesgue measure. 
Therefore [1, p . 270] the function/is not Riemann integrable — a contradiction. 
This ends the proof. 

2. The class of functions satisfying (1) 

The question arises how "large" the class I/(0,1) of all functions Je R (0,1) 
is satisfying the condition (1). These functions can be used in the criterion of J. 
Horbowicz. The answer to this question is given in Theorem 2.1. 

In what follows we shall consider I?(0,1) as a linear normed space with the 
sup-norm: 

llIll = sup i/roi. 

This space is evidently a Banach space since the convergence in this space 
coincides with the uniform convergence which preserves the Riemann integrabi-
lity. 
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Theorem 2.1. The set R(0, \)\H(0,1) is a nowhere dense set in R(0,1). 
We shall use the following auxiliary result. 

Lemma 2.1. The set H(0,1) is dense in R(0,1). 
Proof. Let 

K(f,8) = {geR(0,\):\[f-g\\<S} 

be an arbitrary ball in R(0,1) (feR(0, \), 8 > 0). It suffices to prove that 

(3) K(f,8)nH(09l)*Q. 

Consider the fact that the sets/-1(8'), 0 ^ S < S are mutually disjoint and 
Lebesgue measurable. Therefore it is impossible for each of these sets to have a 
positive measure. Hence there is a 5,, 0 ^ 5, < 8, such that 

M(f-\Sl)) = 0. 

Put g(x) =f(x) — 8] for xe <0,1>. Then evidently we have geK(f, 5) and 

g(x) = 0of(x) = S]. 

Hence n(Z(g)) = 0, geH(0,1) and so (3) holds. 
Proof of Theorem 2.1. Let K(f, 77) (feR(0,1), 77 > 0) be an arbitrary 

ball in R(0,1). It suffices to prove [3, p. 116, Theorem 8] that there exists a ball 
G cz K(f, 77) such that 

(4) Gn(R(0,\)\H(0,\)) = (!). 

According to Lemma 2.1 we can choose a function geK(f,rj)r\H(0,\). 
Further an 77, > 0 can be chosen in such a way that 

(5) K(g, 77,) cz K(f, 77). 

Define the function h in the following way: 

h(x) = g(x) + !h if g(x) = 0, 
2 

h(x)=g(x)-^ if g(x)<0. 

Clearly, h is a bounded function and 

(6) V \Kx)\>^. 
-V£<0,1> 2 

Denote by C((p) the set of all continuity points of the function (p. Then we 
have 
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(7) C(g)n«0,l>\Z(g))cC(A). 

Indeed, let .v0eCfe)n«0, \>\Z(g)). Then g(x0) # 0. Let, e.g., g(.v0) > 0. If 
x„ -> x, then on the basis of continuity of g at x0 there exists an n0 such that for 
n > n0 we have g(x„) > 0. Thus 

//(.x„) = g(x„) + -J- for /i > «0. 
2 

Since #(.YJ -»g(x0), we get 

h(x,^g(x0) + ^ = h(x0). 

Hence h is continuous at x0. 
We can similarly show also in the case of g(x0) < 0 that the function h is 

continuous at x0. Hence (7) holds. 
Since ji(Z(g)) = 0 and fi(C(g)) = 1, according to (7) we get n(C(h)) = 1. 

Therefore //eK(0, 1), 

(8) I I A - g l l ^ y 

and heH(0,\) (see (6)). 
Using (8) it is easy to see that 

(9) K(/t,^c=K(g, /;,). 

According to (5), (9) we get K(h, —J c K(f 77). Further for each weKUu — 

and each XG<0, 1> we obtain (see (6)): 

|IV(JC)| = \h(x)\ - \w(x) - h(x)\ =^-\\w~h\\>^-^ = 0. 
2 2 2 

Hence vv<£K(0, l)\//(0,1). Thus (4) holds if we put G = Ah, — Y This ends the 

proof. 
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ОДИН ПРИЗНАК ДЛЯ РАВНОМЕРНОГО РАССПРЕДЕЛЕНИЯ 
ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ОПРЕДЕЛЕННЫЙ КЛАСС ФУНКЦИЙ 

ИНТЕГРИРУЕМЫХ В СМЫСЛЕ РИМАНА 

ТгЪог 8а1а1 

Резюме 

Пусть К(0,1) обозначает пространство всех функций, интегрируемых в смысле Римана на 

интервале <0,1> с метрикой */(/*, #) = вир [Д*) — %(х)\. В работе показано, что множество 
0 ^ * ^ 1 

всех/е1?(0,1), которые можно использовать в признаке для равномерного расспределения 
последовательностей чз [2], имеет форму 1?(0,1)\М, где М нигде не плотное множество в 
Я(0,1). 
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