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ON POINTS OF LOWER AND UPPER 
QUASI—CONTINUITY OF MULTIVALUED MAPS 

JANINA EWERT 

A subset A of a topological space X is called [1, 2, 7]: 
— semi-open if A cz Int^l, 
— semi-closed if X\A is semi-open. 

If for some xeX and a semi-open set A cz X we have xe A, we say that A is 
a semi-neighbourhood of x. 

The union of all semi-open sets contained in A is called the semi-interior of 
A. We denote it by s-Int ,4. The intersection of all semi-closed sets containing A 
is called the semi-closure of A and is denoted by A. 

In the sequel we will use the following properties of semi-open and semi-
-closed sets. 

Lemma 1. 
(a) The intersection of an open set and a semi-open set is semi-open. 
(b) Int A cz s-Int A cz A cz A cz A . 
(c) I n t ^ c z ^ . 
(d) A point x belongs to A if and only ifUnA # Qfor every semi-neighbourhood 

Uofx. 
(e) A set A is semi-closed if and only if A= A. 
(f) 77*e boundary of a semi-open (semi-closed) set is nowhere dense. 
(g) s-Int _4\Int A is a nowhere dense set. 

Proof. Proofs of (a)—(f) are in papers [1, 2, 5, 7, 10]. Now we will show 
(g). Let xeB = s-Int A\Int A and let U be an open neighbourhood of x. Since 
U n s-Int A is a non-empty semi-open set, the set V = Int(C/n s-Int A) is non
empty. However V cz Int_4, so Vn B = 0 and B is nowhere dense. 

Let (F, d) be a metric space. For any y e 7, A cz F and £ > 0 we denote 

K(y,s) = {xeY:d(x,y)<e}, 
K(A,s) = v{K(y,s):y eA}. 

Moreover we use the symbol 2£(Y) to denote the class of all non-empty compact 
subsets of Y. 
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For any multivalued map F: X-* 2t(Y) and a set A c Y we will write 

F+(A) = {xeX: F(x)cA}9 

F~(A) = {xeX: F(x) n A # 0}. 

A multivalued map F: X-+ 2£(Y) is said to be: 
— upper quasi-continuous at a point x0eX if for each £> 0 there exists a 

semi-neighbourhood C/ of x0 such that F(x) cz K(F(x0), e) for xe (7, 
— lower quasi-continuous at x0 if for each e > 0 and y e F(x0) there exists a 

semi-neighbourhood [/ of x0 such that F(x) n K(y, £) # 0 for x e U. 
By EU(F) and £, (F) we denote the set of all points at which F is upper or lower 
quasi-continuous respectively. A map F is upper (lower) quasi-continuous if 
EU(F) = X (resp. EX(F) = X), [4, 5, 8, 11]. Moreover by CU(F) and CX(F) we 
denote the set of all points at which F is upper or lower semicontinuous, 
respectively. The symbol Q+ is used to denote the set of all positive rational 
numbers. 
Using some modification of the Fort method [6] we give the characterization of 
the set EX(F) (resp. EU(F)) for upper (lower) quasi-continuous maps. 

Theorem 1. Let X be a topological space and let (Y, d) be a metric one. If F: 
X -+ 2t(Y) is an upper quasi-continuous multivalued map\ then the set X\EX(F) is 
of the first category. 

Proof. Let N(Fx),e) = inf{n ^ 1 : there exist points y„ y2, ...y„ such that 
n 

F(x) c: [J K(yh e)}. By H(n, e) we denote the set of all points x e X which satisfy 
/•= i 

the following conditions (1) and (2): 

(1) N(F(x)9e)>n 

(2) for each 6^6(0,3s) and for each semi-neighbourhood U of x there exists 
x'eU such that F(x) $ K(F(x'\ ef). 

Let x e X and m — N(F(x), e). Then there exist points y,, y2, ... ym e Y such that 
m 

F(x) cz [J K(yh e). By the upper quasi-continuity of F there exists a semi-neigh-
i = i 

m 

bourhood U of x such that F(x') <= [J K(y(, e) for x' e U. Hence 
/ = i 

m for any xeX there exists a semi-neighbourhood U 

of x such that N(F(x'),e) ^ N(F(x),e) for x'eU. 

If N(F(x), e) < n, then according to (3) there exists a semineighbourhood U of 
x such that N(Fx'), e) ^ N(F(x), s) < n for x' e U. Hence U n H(n, e) = 0 and it 
follows from Lemma 1 (d) that x$H(n£). Thus we have shown 

(4) ifxeH(nye\ then N(F(x\e)^n. 
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Let x s H(n, s), n — N(F(x), s) and let U be an open neighbourhood of x. Then 
n 

we can choose points y,, y2, ..., yne Y such that F(x) a [J K(yh s). The upper 
/ = i 

quasi-continuity of F at x implies that there exists a semi-neighbourhood W of 

x such that F(x') c ( J K(yh e) for x 'e W. it follows from Lemma 1 that UnW 
/ = i 

is a semi-neighbourhood of x. According to (2) there exists a point x^eUn W 
for which F(x) <£ AT(F(x,), 2s) holds. Let y e F(x)\\K(F(x})9 2e). Then y e AT(fy e) 
for some j ^ n and it is easy to verify that F(x}) n K(yp e) = 0. Hence 
F(xx) <= u {AXy,, £): i ^ n, 17^j}, which implies N(F(xx), e) ^ n — 1. Therefore 
— by virtue of (4) — we have U <^//(n, £). Thus 

(5) if 1V(F(x), s) = /i, then x e Fr //(n, s). 

For any xeH(n, s) we have (FN((x), s) = n + k for some k = 0, 1, Using 
analogous arguments as in the proof of (5) we can prove by the induction with 
respect to k that H(n, e) a FrH(x, s). Since the boundary of semi-closed set is 
nowhere dense (Lemma 1), the set H(n, s) is nowhere dense. Take e0eQ+, a point 

xo $ U U H(n>£)anc* y<>e F(xo)- As f° r some n ^ 1 we have 1V (F(x0), - ^ J = n 
eeQ+n=\ V 3 / 

and x 0 £i / ( w,-£0 ], there exists a semineighbourhood t/ of x0 and £ < ^ such 

that F(JC0) cz K(F(x% J) for JC' £ C/. It implies F(x') n if(y0, ^) # 0 for *' e t/, i.e. 
F is lower quasi-continuous at x0. Thus we have shown the inclusion 

00 

(6) AEi(F)<= U U "(».*)• 
eeQ+ n = 1 

Since //(/i, s) is nowhere dense the set X\El(F) is of the first category, which 
finishes the proof. 

Theorem 2. Let X be a topological space and let Y be a metric one. If Y is 
separable, then for each multivalued map F: X -+ 2£(Y)the sets EU(F)\CU(F) and 
El(F)\C](F) are of the first category. 

Proof. Let {yn: n^ 1} be a dense subset of Y. We use the symbol a to 
denote the set of all finite one-to-one sequences of natural numbers. Then 
* = ( K b "*,2> •••> "M*)) : k > V- L e t Lk = iynky y„,2, ..-> yHkJut)- Hx0eEu(F)\ 
\CU(F), then exists seQ+ such that x0elntF+(KFx0),2e)). Since F(x0) is 
compact we can choose Lk such that F(x0) c AT(Lfc, e) c A:(F(x0), 2S). Hence 
x0es-lntF+(KLk,£))\IntF+(KLk,e)). Lemma 1 implies that the set 
s-lntF+(K(Lk,e)\IntF+(K(Lk,s)) is nowhere dense. Therefore the conclusion 
follows from the inclusion 
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E„(E)\C„(E)c= ( J ( J [ s-IntE+(K(L„e))\IntE+(KL„e))]. 
k= I £€Q + 

The proof of the second part is analogous. It suffices to see 

EX(F)\CX(F) cz \J ( J [s-lntF-(K(yp8))\lntF-(K(yp8))]. 
j= 1 EEQ + 

Corollary 1 [4]. Let X be a topological space and let Y be a metric one. If Y 
is separable and F: X-* 2t (Y) is an upper quasi-continuous map, then X\ CU(F) 
and X\ C{(F) are of the first category sets. 

Proposition. If a multivalued map F: X -> 2£(Y) satisfies at a point ye X the 
following condition: 

(+) for each s > 0 there exists a semi-neighbourhood 
U of x such that F(x) cz KF(x'),sfor x'eU\ 

then F is lower quasi-continuous at x. 
The simple proof is omitted. 

The lower quasi-continuity does not imply the property (*). 
Example 1. Let X= Y be the space of real numbers with the natural 

topology. The multivalued map given by the formula: 

f [1,2) f o r x < l 
F(x) = < [1,3] fo rx= 1 

([2,3] f o r x > l 

is lower quasi-continuous but it does not satisfy (*) at x = 1. 
A topological space X is called extremally disconnected if for every open set 

U cz X the closure U is open in X [3, p. 452]. 

Lemma 2. [9, p. 966]. A topological space X is extremally disconnected if and 
only if the intersection of two semi-open sets is semi-open. 

Theorem 3. A topological space X is extremally disconnected if and only if for 
each metric space Y and for each lower quasi-continuous map F: X-+ 2£(Y) the 
condition (*) holds at every point xeX. 

Proof. Susppose that X is extremally disconnected and F: X-+ 2£(Y) is a 

lower quasi-continuous map. We establish xe X and 8 > 0. Since F(x) is com

pact we can choose points yuy2,..., ymeF(x) such that F(x) cz Q K\yP-e\. 
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There exist semi-neighbourhoods t/y of x such that F(x') nKA yP-e\ ¥" 0 for 
m \ Z / 

x' e UjJ = 1, 2, ..., m. Then the set U = f] t/y is a semi-neighbourhood of x and 
j=i 

F(x) a K(F(x'),e) for x'eU. Thus (*) is satisfied. 
Conversely, suppose that X is not extremally disconnected. Then there exists an 
open set U <= X such that U is not open. Hence 0 ^ U ^ X. Let Y be the space 
of real numbers with the natural topology. We define the map F: X-* 2t(Y) by 

f [1,2] forxGX\t7 
F(x) = < [1,3] fo rxeFr t / 

U2,3] fo rxe ln t t / . 

This map is lower quasi-continuous but is has not the property (*) at every point 
xeFrU. 

Theorem 4. Let X be an extremally disconnected space and let Y be a metric 
one. IfF: X -* 2t(Y) is a lower quasi-continuous map, then X\EU(F) is of the first 
category. 

Proof. Let M(F(x)),s) = sup{m ^ 1: then there exist points y„ y2, ..., 
ymeF(x) such that d(y„ y,) > e for i,h^m,i ^j). By G(n, e) we denote the set 
of all points x e X at which the following conditions (7) and (8) are satisfied: 

(7) M(F(x),e)^n 

for each e! e (0,3s) and for each semi-neighbourhood 
1 j U of x there exists x'eU such that F(x') <£ #(F(x),ef). 

Let XG A", eeQ+ and m = M(F(x),s). We can choose points y„y2, ..., ymeF(x) 
and r > 0 such that d(y{,y,) > £ + 2r for i,j ̂ m, i # j . The map F is lower 
quasi-continuous at x, so there exist semi-neighbourhoods t/„ t/2, ..., Um of x 
such that F(x') n if (yf, r) i ^ 0 for x' G t/„ / ̂  m. Since Xis extremally disconnec-

m 

ted, it follows from Lemma 2 that t/ = p j t/, is a semineighbourhood of x. 
/ = 1 

Moreoverf(x') n #(y,, r) # 0 for x' eU, i^ m. Hence for y-eF(x') n K(yp r) we 
have d(yi9yj) ^ 2r + d(y,',y,0> which implies d(y-,y,0 > £ for / # j . 
Consequently M(F(x'), s) ^ m. Thus we have shown 

.QV for each xeX there exists a semi-neighbourhood 
W t/ of x such that M(F(x'), e) ̂  M(F(x), e) for X 'GC/ . 

If for x G X we have M(F(x), e)> n then by (9) there exists a semi-neighbour-
hood U of x such that M(F(x'), e)> n for x' G t/. Thus t/ n G(n, £) = 0 and by 
virtue of Lemma 1, x$G(n,e). Thus we obtain 

(10) ifxeG(n,s), then M(F(x),e)^n. 
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Now we will show that G(n, e) is nowhere dense. Let x0e G(n, £), m = M(F(x0), s) 
and let U be an open neighbourhood of x0. We can take points yh y2, ..., yme 

eF(x0) and re(o,-£J such that d(y,y7) > e + 2r for ij ^ m, / # j . The lower 

quasi-continuity of F at x0, Theorem 3 and (8) imply the existence of a point 
xxeUsuch that F(x0) a K(F(x{),r) and F(x}) <£ ^(^(xo),2s). So we can choose 
z„ z„ ..., zOTe.F(x,) such that d(zhy^ < r for / ^ m, and a point zm+ leF(x])\ 
\ K(F(x0), 2e). Then d(zh Zj) > e for ij = 1, 2, ..., m + 1, i # j, and consequently 
.A/(F(x,),e) ^ w + 1. From the last inequality and (10) it follows that 
U <= G(n, s). Thus we have G(«, s) ez G(n, e) \ Int G(n, £) cz Fr G(n, £). Since the 
boundary of each semi-closed set is nowhere dense (Lemma 1), the set G(n, s) is 

00 

nowhere dense. Let x$ ( J ( J G(n,e). For an established £e(?+ we have 
n = 1 ee£> + 

MI ^(x), - s j = n. Then (8) is not satisfied. Hence there exists a semi-neighbour-

hood U of x such that F(x') cz K(F(x)9s) for x'e t/, i.e. the map F is upper 
quasi-continuous at x. So we have 

0 0 *\EU(F)<= 0 U ^(«'£)' 
« = 1 €SQ + 

and the proof is completed. 
Results obtained in Theorem 1 and 4 can be extended to the case when Y is 

a uniform space (all notions concerning uniform spaces are used as in [3]). The 
proofs are similar to the previousones; it suffices to consider a suitable family 
of pseudometrics instead of a metric d on X. So we have: 

Theorem A. Let X be a topological space and let (Y, U) be a uniform one. If F: 
X-*2£(Y) is an upper quasi-continuous multivalued map, then X\E](F) = 
u {Ap:peP}, where Ap are of the first category sets and cardP =w(2l), 
and w(U) is the weight of the uniformity 91. 

Theorem B. Let x be an extremally disconnected space and let (Y, U) be a 
uniform one. If F: X'-• 2£(Y) is a lower quasi-continuous map, then X\EU(F) = 
= u {Dp: peP}, where Dp are of the first category sets and cardP = w(U). 
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ТОЧКИ КВАЗИ-НЕПРЕРЫВНОСТИ СВЕРХУ И СНИЗУ 
МНОГОЗНАЧНЫХ ОТОБРАЖЕНИЙ 

а̂п^па Е\*!ег1 

Резюме 

Пусть Р будет квази-непрерывное сверху (снизу) многозначное отображение определён
ное на топологическом (экстремально несвязным) пространстве из компактными значения
ми в равномерном пространстве (у, II). Тогда множество всех точек, в которых /•'не яавляется 
квази — непрерывным снизу (сверху) есть объединение некоторого семейства множеств 
первой категории. Мощность этого семейства равна весу равномерной структуры и. Более 
того если пространство у есть сепарабельно, то такой же самый вид имеет множество точек 
разрыва отображения Г. 
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