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PRIMITIVE IDEMPOTENTS IN CONVERGENCE 
SEMIGROUPS 

JAN SIPOS 

In [2], Koch raised the question whether the primitive idempotents of a 
compact semigroup with zero form a closed set. This question has been ans
wered affirmatively for a wide class of semigroups (even in a semitopological 
case) by Chow [l]. His theorem states: 

Theorem 1. If S is a semitopological semigroup with zero in which the set E of 
idempotents ofS is commutative and closed, then the set P of primitive idempotents 
is closed. 

We show, by giving an example, that for convergence semigroups Koch's 
question cannot be answered affirmatively in general. (Unfortunately the con
vergence structure of this semigroup cannot be topologized.) For this, we shall 
need the notion of a convergence space and the notion of a convergence semi
group. 

A convergence space F is a set F with a distinguished class of sequences {an} 
(an G F) which are called convergent. We assume that to each convergent sequence 
there corresponds a unique element a of F, called the limit of the sequence and 
denoted by a = lim„ an (or simply an -> a) such that lim„ an = a if an = a for n = 
= 1,2,.. . . We assume also that if an -> a then an -> a, where {an} is a subse

quence of {an}. 
We do not assume that this convergence is determined by a topology. How

ever, it is clear that a topological space is also a convergence space. 
The sequential closure vA of a set A c F is the set of all limits of all conver-

gment sequences {an} taking their values in A (i.e. aneA). If vA = A we say that 
A is sequentially closed. 

A convergence semigroup S is a semigroup provided with a convergence 
structure in which multiplication is continuous, i.e., if an -> a and bn -> b, then 
anbn -> ab (the elements a„, b„, a and b being in S). 

A convergence semigroup S is called sequentially compact iff every sequence 
{an} of elements from S contains a convergent subsequence. 

We can express our result as follows: 
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Theorem 2. There exists a sequentially compact semigroup S with zero, in which 
the set P of primitive idempotents ofS is not closed. 

We present now our exxample: 
3. Example Let S be a semigroup generated by the set {0,e,fe,,e2,...} 

defined by the following equations: ee = e,ff= ef = fe =f e.€; = e, for i = 1,2, 
..., x0 = Ox = 0 for xe{e,f 0, e1? e2, . . .} . Then the set of idempotents of S is 

E= {0, e,f e„ e2, . . . } . 

The set P of the primitive idempotents of S is 

P = {0,fe],e2, . . . } . 

(Recall that 0 is considered as a primitive idempotent.) 
Define now a convergence structure on {e,f eb e2, . . . } . We put en -> e if{nk} 

is a subsequence of {1, 2, 3, ...} and put lim„c„ = c if cn = c for "almost all" n, 
c being in {e,f e,, e2, . . . } . Note that this convergence is a topological one, since 
in fact it is the one point compactification of the discrete topological space {f, 
ex, e2, ...} with the point e. 

Now if an = aXn.a2rx akt„9 a = ax.a2 ak(a{,aineE - {0}) and aUnj-+ 
-> a, for i = 1, 2, ..., k then we put \\mnan = a. 

For aeS — {0} let h(a) be the length of the shortest word in the free semi
group generated by {e,f eb e2, ...} factorizing to a, for instance 

Kefeff) = h(fej) = 3 . 

In addition we put h(0) = oo. We say that an -> 0 if \\mnh(an) = oo . 
It is easy to see that the set S with the convergence defined above becomes a 

convergence space. 
3.1. Let us show at first that S is sequentially compact with respect to this 

convergence structure. 
Let {an} be a sequence of elements of S. 
a) If h(an) -+ oo then clearly an -> 0. 
b) Let h(an)++ oo then there exists a subsequence {a„k} of {an} with h(an) = 

= m (where m is a fixed integer). Put bk = a„k then bk = bx k. b2 k bmk where 
bije{e,f e,, e2, . . .} , / = 1, 2, ..., m , j = 1, 2, .... Assume first that m = 2. Let 
bi,* -* ^i a n d ^2,̂  ~* b2» ^en {bk} is a convergent subsequence of {an}. In general 
one can proceed by induction, hence S is a sequentially compact convergence 
space. 

3.2. Let us turn our attention to the continuity of the multiplication in 5. Let 
an-+ a and bn -> b, if a = 0 then, since h(an) -+ oo involves h(anbn) -• oo, we get 
a A -+ 0 = a. b. 
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If an -» a and bn-*b with a ^ 0 ^ b then anbw -• ab follows immediatelly from 
the definition of the convergence in S. 

3.3. It is clear that eevP = u{0,f, e,, e2, ...}. Hence P is not closed. 
Note that our convergence is not a topological one, i.e., there exists a set 

A a S with v(vA) ̂ vA. In fact it is sufficient to take 

A -={e,(eey)'; i,j= 1,2,...}, 
then eev(vA) — vA . 
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ПРИМИТИВНЫЕ ИДЕМПОТЕНТЫ В ПОЛУГРУППАХ СХОДИМОСТИ 

^ап §1ро§ 

Резюме 

В статье показано, что примитивные идемпотенты компактной полугруппы сходимости 
в общем случае не образуют замкнутое множество. 

265 


		webmaster@dml.cz
	2012-08-01T03:46:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




