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Math. Slovaca 37, 1987, No. 4, 375—389 

EXISTENCE AND UNIQUENESS OF SOLUTIONS OF 
QUASILINEAR HYPERBOLIC SYSTEMS OF PARTIAL 

DIFFERENTIAL-FUNCTIONAL EQUATIONS 

JAN TURO 

1. Introduction 

In the present paper we take into consideration the following Schauder 
canonic form of quasilinear hyperbolic systems of differential-functional equa
tions 

£ Atj(x9 y9 z(x9 y)9 (V(1)z)(x, y))[dz,(x9 y)/dx + 
j = i 

m 

+ Z Qik{x, y, z(x, y), (V(2)z)(x, y))Zz,(x, y)/dyk) = 
k=\ 

= f(x9 y9 z(x9 y)9 (V
(3)z)(x, y))9 (x9 y)eDa = Iax Rm

9 i = 1, ..., „, 

where Ia = [0, a], a ^ 0, y = [yu ..., ym]eRm
9 m^\9 z(x9 y) = [z,(x, y)9 ..., 

..., zn(x9 y)]9 and (Vik)z)(x9 y) = [(V<k)z)(x9 y)9 ..., (Vfk)z)(x9 y)]9 k = 1, 2, 3, are 
operatortors of the Volterra type. 

For matrices B = [b/y], C = [c0]9 i9 j = 1, . . . , « , we define B*C = d9 d = 
n 

= [d]9 ..., dn]
T where d{ = £ bi}cji9 i = 1, ..., n9 and Tmeans transposition of a 

vector or matrix. 
We can write such systems in the matrix form 

A(x9 y9 z(x9 y)9 (V
(1)z)(x, y))dz(x9 y)/dx + A(x9 y9 z(x9 y)9 (V(1)z)(x, y))* 

* [g(x9 y9 z(x9 y)9 (V
(2)z) (x9 y)) dz(x9 y)/dy]T = (1) 

= f(x9y9z(x9y)9 (V^z)(x9y)) 

where A = [A^9 i9j=\9...9n9 dz/dx = [dzjdx9 ..., dx9 ..., dzm/dx]T
9 Q = [gik]9 

i= 1, ..., n9 k= 1, ..., m9 dz/dy = [dzj/dy]9 i= 1, ..., m9 j = 1, ..., n9 and 
f=[fu-.;f]T. 

In this paper we consider the existence and uniqueness of a local generalized 
solution (in the sense "almost everywhere") of the Cauchy problem obtained by 
adding to systems (1) the following initial condition 
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z(09 y) = <p(y)9 yeRm (2) 

where (p = [cpX9 ..., q>„] is a given function. 
Quasilinear hyperbolic systems in the "second canonic" form which have 

been considered by L. Cesari [5], P. Bassanini [1—3], and M. Cin-
q u i n i - C i b r a r i o [7], are the special cases (A9 g a n d / d o not depend on the 
last variable) of systems (1). 

Systems of differential equations with a retarded argument [10—11], and a 
few kinds of integrodifferential systems (cf. for instance [4]) can be obtained 
from systems (1) by specializing the operators V(k) (see Section 4). 

System (1) is a generalization of the systems considered in [12] where the 
matrix function A does not depend on the last variable. 

Classical solutions (belonging to C1) of nonlinear and quasilinear hyperbolic 
systems with a retarded argument were discussed by Z. K a m o n t [8—9]. 

The method used in the present paper is based on the Banach fixed point 
theorem and it is close to that used in [5]. 

2. Bicharacteristics 

Let \y\m = max \yk\ and \z\n = max |z,|, denote the norms of v in Rm and z 
1 ^ k < m 1 < i*$ n 

in R"9 respectively. We denote by |(x, y)|m + 1 =max(|x|, \y\m) the norm of 
(x9 y) in Rm + ]. If D = [d0]9 i = 1, ..., n9j= 1, ..., m9 is a nxm matrix, then 

n 

Di = [di]9 ..., dim]. If D an nxn matrix, then \\D\\ = max y \du\. We shall use 

the symbol fi to denote the interval [-/2, £2]n a R", Q> 0. 
Let us denote by f the class of all continuous functions <p: Rm -> R", such 

that, for all y9 yeRm
9 we have 

\(p(y)\n ^ co9 \cp(y) - <p(y)\n ^ A\y - y\m, 

where co9 0 ^ co < Q9 and A ^ 0 are given constants. 
We denote by K the set of all continuous functions z: Da-* R"9 such that 

\z(x9y)\n^Q9(x9y)eDa. 
For every ^ e / let us consider the set K9 of all functions zeK satisfying the 

following conditions: 
(i) z(09y) = <p(y)9yeRm

9 

(ii) there are constants P, Q ^ 0, such that, for all (x9 y)9 (x9 y)eDa9 we have 

\z(x9 y) - z(x9 y)\n ^ P\x -x\ + Q\y - y\m, 
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where the constants P and Q will be defined by (4). Here, K^ is the closed 
(convex) subset of the Banach space (^(Da) n &JJ)a))

n with norm 

| |z | a = sup \z(x, y)\n. 
(x,y)eDa 

We shall denote by K, the set of all functions z: Da^Rn satisfying the 
following conditions: 

(i) z( •, y): Ia -> Rn is measurable for every y e Rm; 
(ii) z(x9 •): Rm -> Rn is continuous for a.e. xela; 

(iii) \z(x9y)\n^Q9(x9y)eDa. 
Assumpt ion H,. Suppose that 
1° V^:K^K9 V/k):K<p-+Kl9k = 2939j=\9...9l; 
2° there are constantsp}k\ q}k), k = 1, 2, 3,j = 1,..., /, such that, for all z e K^ 

we have 

K VjiX)z) (•)] < P}\z(-)] + q?\ l( V/k)z) (x, -)] ^ p}k)lz(x, -)] + q}k), 

k = 2,3, j= 1, ..., /, a.e. xel% 

where 

I * ) ] - sup M*.jO-*(*fll, [ z ( x , . ) l = sup I ' < * . J O - * ( * , J O L 
(*, >•), (x, y)zDa \(X, y) - (x, y)\m + , * y ^ R * \y - y\m 

xela(), and a0 is a given positive constant; 
3° there are constants M}k) ^ 0, k = 1, 2, 3, j = 1, ..., /, such that, for all 

z, zeKy, yeRm
9 and a.e. xel%, we have 

|(*f >z)(x, >>) - (^z")(x, ,)!„ ^ M}k)\\z - z\\x, k=\,2, 3, j = 1, ..., /, 

where \\z\\x = sup \z(x, y)\n, Dx = Ix x Rm. 

Remark 1. It follows from 3° of H, that V/k), k= 1, 2, 3, j = 1, ..., /, 
satisfy the following Volterra condition: if z, zeK^ and z(t9 y) = z(t, y) for teIx9 

yeRm
9 then (V/k)z)(x, y) = (Jfc)i)(x, y), k = 1, 2, 3, j = 1, ..., /. 

Assumpt ion H2. Suppose that 
1° the matrix function g(> , y, z, U) = [gik(-, >>, z, [/)]: 7flo -» I*""7, / = 1, ..., «, 

k = 1, ..., m9 is measurable for every (y9 z, U)eD = RmxOxHl
9 where £/ = 

= [u,, ..., uj; 
2° £>(•*> •): D -• IT"1 is continuous for a.e. xel%; 
3° there is a function /: 40~>i?+ = [0, +oo), /eJSf^O, tf0L

 a n d a constant 
b > 0, such that, for all (y9 z, U), (y, z, U)eD, i = 1, ..., n, a.e. xeIaQ, we have 

|ft(*, y, z, £/)L ^ />, 
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|G-(X, y, z, C/) - £>,(x, 17, Z, C7)L ^ 1(X) My - yL + \Z - Z\n + Z \Uj - UU , 

where U = [u1? ..., uj. 
We shall use K0 to denote the set of all continuous vector functions A: Aa = 

= Iaxlax Rm -> Rm satisfying the following conditions 

A(x, x,y) = 0, (x,y)eDa9 

\KZ,x,y)-h(lx,y)\m^b\S-& 

|A(£ x, y) - A(£ x, >%„ ^ s\y - y\m9 

for all (£, x, >>), (<f, x, j ) , (& x> y)G4n and some constant s, 0 < s < 1. 
Let us consider the set K0 defined by 

K0 = {g • g(6 *, y) = y + A(£ x, y), (£, x, y) G 4 , A G K0}. 

Consequently, for all (£ x, y\ (£ x, y)e4fl, and geK0, we have 

\g& x, y) - g& x, y)\m ^ (1 + s) \y - y\m. 

Note that K0 is a closed (convex) subset of the Banach space (^(Aa) n 
n ££*(Aa))

m with norm 

IIAL = sup |A(£x,y)L. 
($.x,\)eAa 

For further properties of A and g we refer to [5—6]. 
Let us define the following constants 

P = i (PJ1)P + q(j% G(*> = X (Pre + ? A 
1 = i 1 = i 

P=l+P + p, Qik)=l + Q + Qik)9 A: = 1 , 2 , 3. 

Lemma 1. If Assumptions Hx and H2 are satisfied and a, 0 < a ^ a0, is suf
ficiently small such that La(\ + s)Q(2) ^ s, then for every fixed zeK99 and for 
each i, i = 1, ..., n, the transformation TJ: K0 -• K0 defined by 

(TJh)(ţ,x,y) = - вi(t, g(t, x, y), z(t, g(t, x, y)), (Va)z)(t, g(t, x, y))) ât, 

(£, JC, y)eAa, i = 1, ..., n, Aas a unique fixed point A,[z]EKo. Furthermore, for all 
z, zeKy, we have 

\\g,[z] - gt[z\L = \MS\L < La[l + M^) exp(Lfl0(2)) Ik - zL, 
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where g\z\ (£ x9 y) = h\z\ (£ x, >>) + y. It means that z -• ht[z] (z -> g,[z]) « a 
continuous map of K^ into K0 (Kp-> K0), / = 1, ..., «. 

Proof. Note that, for every heKQ9 and /, / = 1, ..., n9 the function Tjh is 
obviously continuous, and that 

(Tjh)(x9x9y) = Q9 (x9y)eDa9 

\(Tjh)(t;9 x9 y) - (Tjh)(l x9 y)\m ^ b\£, - <f|, 

\(m(^x,y)-(Tjh)^,x,ý)\m^ Í ll(OI Q(2)\g(t, x, y) - g(t, x, y)\m dt ^ 

^La(\ +s)Q(2)\y-y\m^s\y-y\m9 i= 1, ..., n. 

Hence we conclude that Tjh belongs to K0. 
In order to prove that TJ is a contraction we introduce norm 

II o = sup exp ľ Қt) d/П Ш, x, У)l (3) 

with A > Q{2). 
Now, we have 

\\Tjh- rz'/7||0 ^ sup exp -Я Í /(/) dt í /(/)expU í l(s)ds\ \dt\ 

•QmWh-KWo^^W-Wo, »=1, ...,«• 
A 

Hence and by the Banach fixed point theorem it follows that, for every zeK^ 
and /, i = 1, ...9n9 the transformation Tj has a unique fixed point /2,[z]EK0. 

Let us prove that z -• h\z] is a continuous map. Indeed, for any two z, zeK9 

and corresponding hf, Ei9 or fixed points /z, = Tjhi9 /7, = Tjfii9 and for £ ^ x, we 
have 

|A,(£ x, y) - £,(£ x, y)|w < J l(t) Q(2)\hi(t, x9 y) - nt(t9 x9 y)\m dt + 

4- La(\ + M(2)) \\z - z\\a9 i=l9...9n. 

Hence and by Gronwall's inequality we have 

\htf, x9 y) - Ufa x9 y)\m ^ La(\ + M<2>) exp(Lfl2(2)) \\z - z\\a. 

By the definition of norm \\h\\a we get 

\\ht - /7,-L ^ La(\ + M<2>) exp(LaQ(2)) \\z - z\\a9 i = 1, ..., n. 

If £ < x9 by introducing a new variable r]9 where £ = 2x — rj9 we obtain the 
same estimate as above. This ends the proof. 
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Remark 2. By introducing norm (3) in K0 we can improve the estimate 
of the slab width a (by which the existence and the uniqueness are proved) 
(cf. [5, 1, 10]). 

Remark 3. Note that, for each /, / = 1, ..., n9 the function h([z] of the 
variables (£, x9 y) is absolutly continuous in x for every (£, y). Indeed, for h,e K0 

and any two (£, x9 y)9 (£, x9 y) e Aa9 for £ ^ x9 we have 

|A,-(6 *> y) - M 6 x9 y)\m ^ b\x - x\ + J /(0 G(2)lh/(t, x9 y) - A,.(r, x, y)\m dt, 

i = 1, ..., n. Hence and by GronwalFs inequality we have 

|A,(£ x9 y) - /*,(£ x9 y)\m ^ b exp(LaQ{2))\x -- x\. 

For £ < x9 similarly as in the proof of Lemma 1, we get by change of the variable 
the same estimate. 

3. Lemmas and the main result 

Assumpt ion H3. Suppose that 
1° A = [Ay]: Ia xD —> I?"2, i9j = 1, ..., n9 is continuous; 
2° detA(x9 y9z9 U) ^ x > 0 in IflQ x D9 for some constant x\ 
3° there are constants II > 0, C ^ 0, such that, for all (x9 y9 z, c7), (x9 y9 

z, U)ela x I), we have 

M(x ,y , z , t /) | |^II , 

\\A(x9y9z9 U)-A(x9y9z9 U)\\ ^ 

^c\\x - x\ + \y - y\m + \z - z\n + £ | W y - u y | l ; 

SincedetA(x9y9 z9 U)^ x> 0'm Ia xI), the relations of H3 yield analogous 
relations for the inverse matrix A~]. Thus, there are constants IF and C', such 
that, for all (x9 y9 z, U)9 (x9 y9 z, U) e IflQ x D9 we have 

\\A~\x9y9z9 U)\\^H'9 

\\A~\x9y9z9 U)-A~\x9y9z9 U)\\ ^ 

^ C \\x -x\ + \y- y\m + \z- z\n + £ \Uj - u,|„J. 

Assumpt ion H4. Suppose that 
1° / ( • > y> z> U): I%-^ R" is measurable for every (y9 z, U)eD; 
2° f(x9 •): D -+ R" is continuous for a.e. xeIao; 
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3° there is a constant N > 0 and a function /,: / -»/?+ , L, e .£?, [0, a0] such 
that, for all (y, z, U), (y, z, 0) e D, a.e. in Ia, we have 

\/{x, y, z, U)\„ ^ N, 

\f(x, y, z, U) -fix, y, z, U)\„ ^ /, (x) [ b - y\m + \z- - I + I I", - ",lnj: 

4° the vector function (p: Rm -> R" belongs to f. 
For every fixed zeKv and corresponding gi = gi[z]eK0, i = 1, ..., n we con

sider now the transformation F defined by 

(Fz)(x, y) = p(y) + A~\x, y, z(x, y), (Vwz)(x, y))-

[A\x, y) + A\x, y) + A\x, y)] 

where Ak = [ 4 , ..., A„]T, k=l,2,3, 

A\x, y) = J f(r, g(t, x, j ) , At, g(t, x, y)), (V^z)(t, g(t, x, y))) dt, 

A\x, y) = A(0, g(0, x, y), z(0, g(0, x, y)), (V^z)(0, g(0, x, y)))* 

* [<p(g(0, x, y)) - (p(g(x, x, y))], 

A\x, y) = \ - [A(t, g(t, x, y), z(t, g(t, x, y)), (V(,)z) (t, g(t, x, y)))] * 
Jo dt 

* [z(t, g(t, x, y)) - (p(g(x, x, y))] dt, 
and 

/ ( / , g(t, x, y), z(t, g(t, x, y)), (V0)z)(t, g(t, x, y))) = 

= UAU gx(t, x, y), z(t, g](t, x, y)), (V<3)z)(/, gl(t, x, y))), ... 

...,f„(t, g„(t, x, y), z(t, g„(t, x, y)), (V™z)(t, g„(t, x, y)))]T, 

A(t, g(t, x, y), z(t, g(t, x, y)), (Vmz)(t, g(t, x, y))) = 

= [Av(t, gi(t, x, y), z(t, gi(t, x, y)), (Vwz)(t, gt(t, x, y)))], i,j=l,...,n, 

(p(g(0, x, y)) = [tp,(gj{0, x, y))], z(t, g(t, x, y)) = [zt(t, gj(t, x, y))], 

i,j= I, ..., n. 

Lemma 2. Let Assumptions Hx—H4 hold. Then for sufficiently small a, 0 < 
< a <. a0, the transformation F maps K9 into itself. 

Proof. Let us denote by 

z(t, gi(t, x, y)) - <p(gt(x, x, y)) = 

= [Z,(J\ gi(t, x, y)) - (p,(t, gi(x, x, y)), ..., z„(t, gt(t, x, y)) - <pm(g,(x, x, y))]T . 

the vector of the ith column of the matrix z(t, g(t, x, y)) — <p(g(x, x, y)). 
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By applying the Chain Rule Differentiation Lemma (4.ii) of [6] we have 
(cf. [5]) 

Í" át 
A(t, g(t, x, y), z(t, g(t, x, y)), (V(l)z)(ř, g(t, x, y))) 

< aC(P + ЬQ(Ì)), 

át ÍC 

— z(t, gi(t, x, y)) 
át 

^P+Qb, 

\z(t9 gt(t9 x9 y)) - (p(gt(x9 x9 y))\n ^ a(P + Qb)9 (t9 x9 y)eAa9 i = 1, ..., n9 

and hence 
\A\x9 y)\n ^ Na9 

\A\x9 y)\n ^ M(0, g(0, x, y), z(0, g(0, x9 y)), (V(1)z)(0, g(0, x9 y)))\\ -

• max \(p(gt(09 x9 y)) - <p(y)\„ ^ HAba9 
1 < i < n 

\Л\x, y)\n < | o át 
A(t, g(t, x, y), z(t, g(t, x, y)), (V(l)z)(/, g(t, x, y))) át-

Thus 

• max \z(t, gi(t, x, y)) - <p(gi(x, x, y))\„ ^ C(P + bQ(l))(P + Qb)a2 

\(Fz) (x, y)\n < a + h'Sa ^ (o + (Í2 - a>) = Í2, 

provided a is assumed sufficiently small in order that H'Sa ^ Q — co, where 
s = At + HAb + C(P + bQ(()) (P + Qb) a. 

For any two points (x, y), (x, y)eDa, we see that the difference (Fz)(x, y) — 
— (Fz) (x, y) can be written as the sum of the terms 

(Fz) (x, y) - (Fz) (x, y) = cp(y) - <p(y) + S0 + 8, + S2 + 8„ 

where 

80 = [A~\x, y, z(x, y), (V(l)z)(x, y)) - A~\x, y, z(x, y), (V(,)z)(x, y))]-

•[A\x, y) + A\x, y) + A\x, y)], 

8k = A~\x, y, z(x, y), (V<"z)(x, y))[Ak(x, y) - Ak(x, y)], k=l,2,3, 

and estimate below one by one: 

|<50|„ < aC'PS\x -x\ + aC'Q(l)S\y - y\m, 

\8,\n ^ H'[LuQ0)b exp(LaQ(2)) + N]\x - x\ + H'L]aQ0)(l + s)\y -y\m, 

\82\n < H'Ab[CQ0)ba + H] exp (LaQ(2)) \x - x\ + 
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+ H'A[CQ0)(\ +s)ba + H(2 + s)} \y - y\m, 

|53|„ <. H'Ca{2Qmb(P + Qb) exp(La£(2)) + 

+ (P + bQ(X))[P + Qb(\ + exp(Lae(2))]}|x - x| + 

+ H'Ca[2Qw(\ +s)(P + Qb) + (P + bQm)(A + Q(\ + s))}\y - y\m• 

Combining the previous estimates we have 

\(Fz)(x, y) - (Fz)(x, y)\n < [H'N + HH'Ab exp(La<2(2)) + 

+ axLXa + a2a] \x - x\ + [A + HH'A(2 + s) + ax LXa + a2a] \y - y\m, 

where 
(*i = H'Q(i)b exp(LaQi2)), 

a2 = C'S + H'Cb exp(LaQ(2))[Q0)bA + 2Q(X)(P + Qb)} + 

H'C(P + bQ(X))[P + Qb(\ + exp(La<2(2)))], 

dx = H'Q0)(\ + s), 

a2 = C'QmS + H'CQ(X)(\ + s)(Ab + 2(P + Qb) + 

+ H'C(P + bQ(X))(A + Q(\+s)). 

Let us choose constants P and Q such that 

P > H'N + HH'Ab exp (LaQ(2)), Q > A(\ + HH'(2 + s)). (4) 

Suppose that a is sufficiently small so that 

axLXa + a2a^P- (H'N + HH'Ab e\p (LaQ(2))), 

axLXa +a2a^Q- A(\ + HH'(2 + s)). 

Then, for all (x, y), (x, y) e Da, we have 

\(Fz) (x, y) - (Fz) (x, y\ <- P\x - x\ + Q\y - y\m. 

This completes the proof. 

Lemma 3. If Assumptions Hx—HA are satisfied, then for sufficiently small a, 
0 < a < a0, the transformation F: Kv -*• K9 is a contraction. 

Proof. We first prove the following estimate 

||Fz - Fz\\a < [1 + 2HH' + H'C(P + bQ(X))a] \\<p - co||a + 8\\z - z\\a (5) 

where 

8 = [C'(l + M(1)) S + HAb + H'C(\ + M(1)) P + 2H'C(P + Qb) + 

+ C(P + 6(2(1))] a + H'LXa + {H'(Q(i) + M(3)) + H'[C(Q(X) + Mm)ba + 

+ 2H] A + 2H'C(P + Qb) (Q(X) + M(,)) a + C(P + bQ(X)) Qa} • 
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.La(l+M (2 ))exp(L.Q (2 )), 

and \\(p\\a= sup|<Ky)l„. 
ysRm 

Let cp, (p be any two elements of f, z, f any two elements K^ and K^, 
respectively, and let g = g[z], g = g[z] be the corresponding elements in K0. Then 
we can derive 

(Fz)(x, y) - (Fz)(x, y) = cp(y) - <p(y) + s0 + s, + e2 + s3, 

where 

e, = [A~\x, y, z(x, y), (V(1)z)(x, y)) - A~\x, y, z(x, y), (V(1)f)(x, y))]« 

•[A\x, y) + A\x, y) + A\x, y)], 

sk = A~\x, y, z(x, y), (V(1)f)(x, y))[Ak(x, y) - tf(x, y)], k=l,2,3, 

and 

\e0\n^aC'(\+M^)S\\z-z\\a, 

\sx\n ^ H'L]a[(Q(3) + M(3))(l + M(2))La exp(LflQ(2)) + 1] ||z - z\\a, 

\s2\n < 2HH'\\cp- <p\\a + H'{[C(Q(]) + M^)ba + 27/]. 
•/1(1 + M^)La exp(Lfl(2(2)) + CAba] \\z - z\\a, 

\e3\n ^ HfCa(P + bQ(l)) \\<p- 0\\a + H'{C(\ + M(1))Pa + 

+ 2C[(Q(]) + M(,)) (1 + M(2))La exp(LaQ(2)) + 1] (P + Qb)a + 

+ aC(P + bQ(]))(\ + M(2))La exp(LaQ(2))) ||z - z\\a. 

Here z3*, k = 1, 2, 3, can be obtained from 4*, k = 1, 2, 3, by replacing cp, z 
and g with ^, f and g, respectively. 

Thus, combining the estimates above, we get estimate (5). 
Now we shall take a sufficiently small so that S^k < 1. Then from (5), for 

fixed (pef and for every pair z, zeK^, corresponding g, geK$, we find 

\\Fz-Fz\\a^k\\z-z\\a, 

where k < 1. Thus, the transformation F is a contraction. 

Theorem. 7/* Assumptions Hx—H4 are satisfied then for a sufficiently small, 
0 < a ^ a0, there is a vector function z: Dfl -• JR", Z G K^, which satisfies (1) a.e. Z'M 
Da and (2) everywhere in Rm. Furthemore, z is unique in the class K^ and depends 
continuously on (p. 

Proof. From Lemmas 2 and 3 and by the Banach fixed point theorem it 

384 



follows that there exists a unique fixed point zeK^, Fz = z, such that the 
following integral equations hold: 

&(& x,y)=y- (Tjg^iZ, x, y), (£ x, y)eAa, i = 1, ..., n, 

z(x, y) = (Fz) (x, y), (x, y)eDa. 

We can show similarly as in [5] (see also [11]) that the fixed point z = z[(p] is 
the (unique in the class K9) solution of the Cauchy problem (1), (2). 

It remains to prove that z[q>] depends continuously on q>. Indeed, if cp, (pej 
and z = z[(p], z = z[(p], then from (5) we have 

\\z ~ -?L = M(P] - z[m *S (1 - S)~l[l + 2///F + H'C{P + bQ(]))a] \\cp- cp\\a. 

The Theorem is thereby proved. 
4. Examples . We list below a few particular cases of systems (1) which 

can be derived from (1) be specializing the operators V(k), k = 1, 2, 3. 
(i) Let 

(V/k)z)(x,y) = (zoa}k))(x,y) (6) 

where (zo^>) (x, y) = [(zoa\k))(x, y), ..., (zoa\k)) (x, y)], {zocf) (x, y) = 
= z(a}k)(x, y))9 a}k)(x, y) = [a}k\x, y), a^(x, y)], a}k)(x, y) = [a}k)(x, y), ..., 
..., aj$(x, y)], k = 1, 2, 3, j = 1, ..., /. Then problem (1), (2) reduces to the 
Cauchy problem for quasiliniear hyperbolic systems of partial differential equa
tions with a retarded argument (cf. [11]) 

£ Atj(x, y, z(x, y), (zoa^)(x, y)) I 6z,(x, y)/dx + 
/ = ! L 

+ £ Qidx, y, z(x, y), (zoai2))(x, y))dzj(x, y)/dyk = 
k = \ J 

= fi(x, y, z(x, y), (zoa0))(x, y)), i = I, ..., n, (x, y)eDa, 

z(0, y) = cp(y), yeRm. 

Let us suppose that 
1° a}l):IaoxRm-+IaQxRm,j= 1, ...,/, are continuous, <$>(*, y) ^ x (x, y)e 

eI%xRm,j= 1, ..., /, and there constants c}l) ^ 0, such that, for all (x, y), 
(x, y) e I% xRm,we have 

K\x, y) - a}\x, y)\m+l ^ c}l)\(x, y) - (x, y)\m + l; 

2° a}%-9 y): I%-> I%xRm, j = 1, . . . , / , k = 2, 3, are measurable for every 
yeRm, a}k)(x, y) ^ x, (x, y)eIlJ()xRm, k = 2, 3, j= 1, ..., /, and there are 
constants c}k) ^ 0, such that, for all y, yeRm, a.e. xeIaQ, we have 
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\a}k\x, y) - a}k)(x, y)\m +, ^ c}k)\y - y\m, / = 2, 3, f = 1, ..., /. 

Then Assumption Hx is satisfied for the operators V/k) defined by (6) with 
p}]) = c}]\ q}]) = 0, p}k) = c}k\ q}k) = 0, k = 2, 3, and Mf = 1, i = 1, 2, 3, 
j=u...,/. 

(ii) As a particular case of (1), (2) we get the initial problem for systems of 
partial integrodifferential equations if we put 

f)f(-v,y) 

(V{k)z) (x, y) = Kf\s, t, x, y) z(s, t) ds dt (7) 
Jp)k\x, V) 

where K}k), k = 1, 2, 3 , j= 1, ...,/, are n xn matrices. 
Let us assume that 
1° P}]), y}]): 7flQ x F - > I% x Rm are continuous, /3}0

])(x, y) ^ x, j$>(x, y) < x, 
(x, y)eIaQxRm, and there are constants d}]), 3}]) ̂  0, such that, for all (x, y), 
(x, y)ela xRm, we have 

e+\ \Pf\x, y) - Pf\x, y)\m + ] ̂  d}\x, y) - (x, y)\\ 
\rf\x, y) - rfXx, y)\m+] *s 3}\x, y) - (*, y)\Hm + \ j - i, -.., l; 

2° Pf\-, y), rfK- J) • I«0 -»• h0 x Rm are measurable, Pf\x, y) ^ x, y$\x, y) ^ 
^ x, (x, y)eIaoxRm,k-2,3,j=\,...,l, and there are constants d}k), 3}k) ^ 0, 
such that, for all y, yeRm, a.e. xel%, we have 

\Pf\x, y) - Pf\x, y)\m +, ^ d}k)\y - y\T + \ 

\rf\x, y) - 7f\x, y)\m +, ^ 3f>\y - y\Hm + l, k = 2, 3, j = 1, ..., /; 

3° there are constants e}k) > 0, such that, for every (x, y) e Jao x Rm, we have 

m 

El \$\x, y) - pf\x, y)\ < ef\ k=\,2, 3, j = 1, ..., /; 
1 = 0 

4° the matrix functions Kf\-, x, y): J%xRm-+R"\ Kf\-, y): J%xRmx 
x Iao -> R"\ are measurable for every (x, y) e I% x Rm, k = 2, 3, j = 1, ..., /, and 
there are constants c}k) > 0, rf\ rf >• 0, such that, for all (x, y), Of, y) e I% x Rm, 
(s, t, x) e I% xRmx Iao, we have 

\\Kf\s, t, x, y)\\ < cf\ k~\,2, 3, j = 1, ..., l, 

\\Kf\s, t, x, y) - Kf\s, t, x, y)\\ ^ rf\x, y) - (x, y)k + >, 

\\K}\s, t, x, y) - Kf(s, t, x, y)\\ < rf\y ~ y\m, i = 2, 3, j = 1, ..., /. 

386 



Then Assumption H, is satisfied for the operators Vf defined by (7) with 
pf = 0, qf = Q{efrf + cf[(df)m+x + (df)m+% and Mf = efcf9 k = 
= 1, 2, 3,j = 1, ..., /, provided efcf <\,k=\,2, 3,j = 1, ..., /. 

(iii) Let(Vfz)(x9y) = J Kf(y - t)z(x9t) dt9k= l ,2 ,3 , j= 1, . . . ,IThen 

systems (1) are systems of integrodifferential equations of which the particular 
case (l=\9A(x9 y9 z, u) = A(x9 y9 z), Q(X9 y9 z, u) = Q(X9 y9 z) and/(x, y, z, u) = 
— f(x> y, z) + w) were considered by P. Bassanini , M. C. Sa lva to r i [4]. 

(iv) We denote by Am the set of all elements // = (^9 juX9 ..., / /J , such that 
^ = 0 or //, = 1 for i = 0, 1, ..., m9 and 1 ̂  \fi\ = fi0 + ... -f //w. It is easy to see 
that the number of elements of Am is equal to 2m +1 — 1. Let N^ = {/: //, = 1}. For 
(s9 t)eDa we define //-(s, /) = (j^s, jixtX9 ..., nmtm) (we shall often write n(s, t)). 
Let l - / / = ( l - / / o , 1 - / / , , ..., l - / i j and ( l - / / ) ( s , t) = ((\ - ^)s9 

(1 - fix)t]9 ..., (1 - fijtj. Suppose that 

Hdsdt = l d s d t i > ' " d t i * if ° G ^ ' f" -'f*eJV/-' 
ld l f o d l / i . . .d^ if 0eNM9 i09ix, ...9ikeN^9 k=\9 ...,m9 

andj8$, y$:Da^R"9 where 

A i = (A/W •••' A /̂fc)' y ^ ) = (I'oW •••' y )̂/*)» 

0 ^ to < ii ••• < h < "*, io> ii, •••> 4^/V^, k = 1, ..., m9 s=\9 2, 3. 

We define the operators Vjs) in the following way 

,r$>(*>y) 

(V^z) (x9 y) = zQi(s9 t) + (\-») (x9 y))M ds dt. 
J/#)W) 

Here j/udsdt is the |//|-dimensional integral with respect to the variables.?, 
ti9 ..., /,- if 0eN^9 iX9 ..., ikeNM9 and it is the integral with respect to f,o, ..., /.. 
ifOGN^. 

Now we consider the Cauchy problem (1), (2) for integrodifferential systems 
With K(,)Z = ( ^ . . . i l ^ ^ > l i „ . i l ) Z , ^O,! , . . . , ! )^ . . . , V(t.,uo)z> ^ 0 , 1 1 * - , 
...» *(i,..., 1,0,o)z? •••' Ki,o, ...,o)2)' -? = -> 2 , 3 . 

We introduce the following assumptions: 
1° p$, y§:IaoxRm->R9neAm9zrecontinuous, flg>0(x9y) ^ x, j$ 0 (* ,y ) ^ 

^ x , (x, y)eIaxRm, and ^ ( . , y), }$(. , y): Ia^R, s = 2,3, neAm9 are 
measurable, p$)0(x, y) ^ x, /$<>(*, y) ^ x, s = 2, 3, (x, j)G/flox1?m; 

2° there are constants d$, <3j$ ^ 0, such that, for all (x, >>), (x, y)e/^ x Um, 
we have 
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\fi>j{x9 y) - C j (^ y)\ *s W * , y) - (* #IJW i» 

IC•(*> JO - v&W* y)\ ^ 3§ l(*> JO - (* #'*+-' 

|/$,(x, j,) - ft]j{x9 y)| ^ dgj |y - y\T, 

Mi*, y) - 7{%{x9 y)| ^ a$\y - y l ^ 1 , 8 = 2, 3, j = 1, ..., m; 

3° there are constants e$ > 0, such that, for every (x, y)e/tf0 x Iv"\ we have 

n Ml** y) - /tl-(*>y)\^e%9 s = 1,2,3. 
jeN^ 

Then Assumption Ĥ  is satisfied for the operators V£s) defined by (8) with 
Pls) = e$» q? = « [ ( 0 M + (4£DML a n d ^ ) = ^>, ' = ! > 2, 3, (here / = 
= 2m + 1 - 1). 
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СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ РЕШЕНИЙ КВАЗИЛИНЕЙНЫХ 
ГИПЕРБОЛИЧЕСКИХ СИСТЕМ ДИФФЕРЕНЦИАЛЬНО-ФУНКЦИОНАЛЬНЫХ 

УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ 

1ап Тиго 

Резюме 

В работе доказывается теорема о существовании, единственности и непрерывной зависи
мости обобщенных решений (в смысле всюд «почти всюду») от начальных данных задачи 
Коши для квазилинейных гиперболических систем дифференциально-фукциональных урав
нений с частными производными первого порядка. 
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