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ON THE CONDITIONAL EXPECTATION
IN A REGULAR ORDERED SPACE

MARTA VRABELOVA

The conditional expectation of functions defined on an arbitrary probability
space with values in a regular ordered space is defined in the paper presented.
We use the Bochner integral defined in [2]. The integration theory in ordered
spaces is elaborated in papers [4], [8], too. The conditional expectation of
functions with values in a Banach lattice and its applications can be found in [1],

(51, (6], [7).

1. Notations and notions

We suppose that (2, &, P) is a probability space.

We say that X is a regular ordered space if X is a o-complete vector lattice
(that is X is a vector lattice such that every non-empty at most countable subset
of X which is bouded from above has a supremum) and X has the diagonal
property (thatis forany x, , e X (n,k = 1,2,...),any x,e X (n = 1,2, ...) and any
x € X such that x,, , — x, (k —» o) for all n and x, — x, there exists for every n an
appropriate k = k(n) such that x, ;,, — x). In the preceding we use the conver-
gence with respect to the ordering (x, — x iff there exist a,e X, a, ~ 0 and
|x, — x| < a, for all n).

If f,, f+ Q- X, then

(i) f,— f uniformly on Ae¥ iff there exist a,€X, a, 0 such that
|fo(@) — f(w)| £ a, for every we A and every n; f,— f uniformly iff
J»— f uniformly on €,

(i) f, = f almost uniformly iff for any ¢ > 0 there exists 4€.% such that
P(2 - A) < ¢ and f, - f uniformly on 4, :

(iii) f, - f uniformly almost everywhere iff there exists 4 € %, P(4) = 0 and

Ja= funiformly on 2 — 4.

A function f: 2 — Xis a simple function iff f = Y a,x,, where g€ X, 4,€ S

i=1

(=12...n),J4,=9 4,0 4,=0 (i #)).
i=1
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The integral of the simple function f'is defined by [/ dP = i a,P(A4)).
i=1

1.1. Definition. A4 function f: Q2 — X is called Bochner integrable iff there exist
/. simple such that f, — f almost uniformly and

"V fIfi—f1dP—0.

ijzn

Then [ fdP = lim | f, dP.

If fis Bochner integrable and 4 € ¥, then fx, is Bochner integrable and we
define

fafdP={fx,dP.

If f: 2— R (Ris the set of the real numbers), fis measurable and integrable,
ae X, then af is Bochner integrable and

{afdP=affdP.

2. A random variable

2.1. Definition. Denote £ (&) = {f: Q- X f, simple, f, > f uniformly} and
L(&)={fQ-X; Af'eL (L), f=f" almost everywhere}. A function
f: 2> X is called an X-random variable iff f € L(¥).

2.2. Theorem. If f,e¥L(¥) (n=1,2,...) and f,—>f uniformly, then
feZ ().

Proof. Since f,e £ (&), there exist f, , simple (n,k =1,2,...) and q, ,€ X
(n,k=1,2,...), a,;, » 0 (k- oo) such that for every we 2 and any k

[fuk(@) — f(@)] £ @, for n=1,2,....

By the diagonal property for every n there exist kK = k(n) such that a, ., — 0,
which implies that there exist b,€ X, b, s 0 such that a, ,, < b,. Now from the
fact that f, — f uniformly there exist c,€ X, ¢, N 0 such that for every we 2 and
any n

| S k(@) = F(@)] = | foxinf(@) — f(@)] + Lf(@) — f(@)] = by +

We see that f, ,, are simple and f, ,., — f uniformly. Hence fe £ (¥).

2.3. Remark. From Theorem 2.2 and the definition of L(&) it follows
that if f,€ L(¥) and f, — f uniformly almost everywhere, then fe L(& ) and it
is easy to show that f,ge ¥ (&) (L(¥)) implies f+g, fvg, fArg cf,
Ifle £ (Z) (L(ZL)).
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3. A conditional expectation

Let < & be a o-algebra. The version of the conditional €xpectation
E(f/%) of a random variable fin the real case is an & -measurable function for
which

fofdP = [LE(f|%) dP

holds for any A€ %. If g, h are two versions of the conditional expectation of
f, then g = h P|% almost everywhere. Further, the operator E(./%) has the
following properties:
(1) if f, g are random variables and c is real, then
E(f+ gI%) = E(f|%) + E(g/%) P|% a.e. and
E(cfI%) = cE(f|%) P|% a..,
(2) if f, g are random variables and f = g, then
E(f/%) z E@g/%) P|% a..,
(3) if £, are random variables and f, — 0, then
E(f,/%)—> 0P| a.e.
We shall define the conditional expectation for the functions from L(%)
now.

3.1. Definition. (i) If f: 2— X is simple, f = ) a; X4, then we define the
i=1
version of a conditional expectation of f with respect to % by the formula

Jo(f) = E(f|%) = Y. a,P(A4,/%), where P(A,/%) is the conditional probability
1

of the set A,. .
(i) If fe £ (&) and f, are simple such that f, — f uniformly, then we define

JU) = E(f1%) = lim E(/,/%).

Gi)) If fe L(L) and e L (F), f = a.e., then we put
J'(f) = E(f]1%) = J(f)-

3.2. Remark. It is evident that if f is simple, f= ) ayx, and
i=1

j=

3 aP(4)%) = 3. b,PBI%)PI% ae.

and that J, fulfils the properties (1) and (2). If £, are simple and f, — 0 uniformly,
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then there exists 4 € %, P(A) = 0 and there exist a,€ X, a, s 0 such that for any
n and every we 2 — A we have (by (2))

(@) = Jo(lfil)(@) = Jy(a,) = a,-
Then Jy(f,) — 0 uniformly P/% almost everywhere.

3.3. Lemma. If fis simple, then J(f)e L(¥%) and for all Ae Y
LfdP = LJ()(f) dp.

n

Proof. Let f= ) ay,. Then J(f)= Y aP(A,/%), where P(4,/%)

i=1 i=1
(i=1,2,...,n) is an ¥ -measurable, almost everywhere bounded real-valued
function. Then there exists a sequence (g, ), (i = 1,2, ..., n) of simple % -meas-
urable real-valued functions such that g, , — P(4,/%) (k — c0) uniformly a.e.
(i=1,2,...,n). Hence

n

hk= Zal.gf.k (k= 1’25)

i=1

is simple and 4, — Jy(f) uniformly a.e., which implies Jy(f) € L(%).
If Ae%, then

f J(f) dP = f Y aP(4,/%)dP = Y a,f P(A4,/%) dP =

Ai=1 i=1

n

=Y a,P(4,n A) = j fdP.

i=1

3.4. Lemma. Let f, be simple functions and let f, — f uniformly. Then the
following conditions hold:

(@) \/ [Ifi =/ 4P =0 (n>c0)

(that is f is Bochner integrable),
(if) \ Jllfi=f) =0 (n— o) uniformly a.e.

ijZn

Proof. There exist a,e X, a, ~ 0 such that for every we (2 and any n we
have |f,(®) — f(w)| < a,. Then for i,j = n and for any we 2 we get
lfiw) — fo)| = | f(w) — f(o)| + | f(0) — filo)l =a;+ a; < 2a, and 2a, 0.
The proofs of (i) and (i) follow from the positivity of the integral and the
property (2) of J,.

3.5. Remark. It is easy to show that if fe L(&), then f is Bochner integ-
rable.
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3.6. Lemma. If fe ¥ (&) and f,,g, are simple such that f, — f uniformly and
g, — f uniformly, then

lim Jy(f,) = lim Jy(g,) P/S a.e..
If f is simple, then J(f) = Jo(f) P/% a.e..
Proof. If f,,g, are simple and f, — f uniformly, g, — f uniformly, then
f, — &, — 0 uniformly, that is there exist a,€ X, a, ™ 0 such that for every we 2

and any n we have |f,(®) — g,(®)| =< a,. Then from the property (2) of J, there
exist Ae 4, P(A) =0 and

o(f)(@) — Jo(g) @) = [Jo(f, — g) (@) = Jo(If, — &.D(@) = a,
for any n and every we 22 — A, which implies that

lim Jy(f,) = lim Jy(g,) P/ a.e..

From the preceding J(f) = Jy(f) P/<% a.e. for f simple holds.
We shall show the existence of J(f) P/ a.e..

3.7. Lemma. Iff, are simple andf, — funiformly, then lim J(f,) exists almost

everywhere.
Proof. It is sufficient to show that

AV 3@ =/ A Je)

for almost every we Q.
By Lemma 3.4 and Remark 3.2 we have

Vo(f)(@) — Jo(f) @)l = Jo(lfi — fiD)(@) = a,

for i,j=zn and almost every wef, where a,eX, a,0. Now
Jo(f)(@) = Jo(f)(w) + a, for i,j = n and almost every we 2. Then

V J(f)e) = />\ Jo(/) @) + a,

for any n and almost every we €2 and hence
/\ V J(f)o) < \/l /\ Jo(f)(@)
n=1izn n=1jzn

for almost every we .

3.8. Lemma. The operator J fulfils the properties (1), (2) and if f,€ £ (¥),
[, = 0 uniformly, then J(f,) — 0 uniformly a.e..
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Proof. If f,,&, are simple, f, - f uniformly, g, » g uniformly and ¢ is
real, then f,+ &, —f+ g uniformly and c¢f, - c¢f uniformly. Then by the
property (1) of J, there exists 4 € &%, P(4) = 0 such that for every we 2 — A we

have
I+ 8)@) = lim Jy(f, + g)(@) = lim Jy(f)(@) +

+ lim Jo(g,)(@) = J(f)(®) + J(g)(@).

Similarly we can show it for cf and hence J fulfils (1).
If f,,g, are simple, f, - f uniformly, g, — g uniformly and f<g, then
h,= f, A 8.—=f A g = funiformly, &, < g,. Now (by the property (2) of J,)

J(f) = lim Jo(h,) = lim Jy(g,) = J(g) a.e.

and J fulfils (2).
If £,e £(¥), f,— 0 uniformly, then there exist a,e X, a, \ 0 such that
|f(@)| = a, for every we 2 and any n. Then there exists A€ %, P(4) = 0 such

that for every we 2 — 4
(@)l = J(f) (@) £ a,

for any n. Hence J(f,) — 0 uniformly a.e..
3.9. Lemma. If fe £ (%), then J(f)e L(%) and for all Ae% |, fdP=

= [, J(f) dP.
Proof. J(f)= lim Jy(f,), where f, are simple, f,—f uniformly,

Jo(,)eL(%) (Lemma 3.3). Hence there exist a,eX, a,~0 and
|f(@) — f,(®)| £ a,for every we 2and any n. Then there exists A€ %, P(A) =0
such that for every we Q — 4

V(@) = Jo(f) @) = V(f = L)) £ J(f = fi)@) = a,

for any n and hence we have Jy(f,) = J(f) uniformly a.e.. By Remarks 2.3 and
3.5 we get Jo(f,), J(f) are Bochner integrable. Let 4 € %. Then by Lemma 3.3
and by the continuity of the integral we get

ffdp = lim | £, dP = lim f Jo(f,) dP = f J(f) dP.

3.10. Lemma. Let fe L(¥), h,ge L (¥ ) and f=g a.e., f= h a.e., then

J(fH)=J@ =Jh Pl% ae.

Proof. There exists A€, P(A) = 0 such that gx. = hx, and there exist
£, simple such that f, > gx., = hy, uniformly. Then

164



J() = by + hyo) = Jhy) + J(hg) = lim Jo(f,) + J(hza) PI% - ae,

J(@) = J(&xs + gx)lim Jo(f,) + J(gxs) P|% ae.
We shall show thatif A€ ¥ and P(4) = 0, he £ (¥), then J(hx,) = 0 P/ a.e..
Let A be simple, 4 = Z a;%4. Then

i=1
n

J(hxy) = Jolhx,) = Y a,P(AinA[%)=0 P/ ae.

i=1

Ifhe £ (&), then J(hy,) = lim Jy(h,x,), where h, are simple, h, — h uniformly

and hence J(hy,) = 0 P/ a.e.. From the preceding we get J(h) = J(g) P/%
a.e..

3.11. Theorem. The operator J' fulfils the property (1), (2) and (3) for the
uniform convergence almost everywhere. If fe L(¥), then J'(f)€ L(%) and
(i fdP = [,J'(f) AP for every Ae %.

Proof. The proof is wvident.
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YCJIIOBHOE MATEMATHNYECKOE OXWOJAHHUE B PEI'YJIIPHOM IMTPOCTPAHCTBE
Marta Vrabelova
Pesrome
B craTtbhe ompeneseHO YCJIOBHOE MAaTeMATHYECKOE OXHIAHWE CIIyyalHHOW BEeJMYHHBI CO

3HAYCHUAMU B DPETYJAPHOM IIPOCTPAHCTBE, KOTOpas SABJISETCA PABHOMEPHBIM MpPEAC/IOM MOC-
JIEAOBATEJIBHOCTH MPOCTBIX Cﬂy‘laﬁHle BCJIMYUH.
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