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ON THE CONDITIONAL EXPECTATION 
IN A REGULAR ORDERED SPACE 

MARTA VRABELOVA 

The conditional expectation of functions defined on an arbitrary probability 
space with values in a regular ordered space is defined in the paper presented. 
We use the Bochner integral defined in [2]. The integration theory in ordered 
spaces is elaborated in papers [4], [8], too. The conditional expectation of 
functions with values in a Banach lattice and its applications can be found in [1], 
[5], [6], [7]. 

1. Notations and notions 

We suppose that (Q, <?, P) is a probability space. 
We say that X is a regular ordered space if X is a cr-complete vector lattice 

(that is X is a vector lattice such that every non-empty at most countable subset 
of X which is bouded from above has a supremum) and X has the diagonal 
property (that is for any xnkeX(n,k =1 ,2 , . . . ) , any xneX(n = 1,2, ...)andany 
x e X such that xn k -+ xn (k -• oo) for all n and xn -> x, there exists for every n an 
appropriate k = k(n) such that xnk(n) -> x). In the preceding we use the conver­
gence with respect to the ordering (xn -* x iff there exist an e X, an \ 0 and 
\xn — x\ = an for all n). 

I f / , / : .Q-*X , then 
(0 fn^f uniformly on Aetf iff there exist aneX, an\0 such that 

\fn(co) — f(co)\ = an for every coeA and every n; fn-+ f uniformly iff 
fn -» / uniformly on Q, 

(ii) fn - * / almost uniformly iff for any e > 0 there exists A e£f such that 
P(Q — A) < e a n d / - » / uniformly on A, 

(iii) / - * / uniformly almost everywhere iff there exists A e -5 ,̂ P(A) = 0 and 
fn -*/uniformly on Q — A. 

n 

A function/: /2-> Xis a simple function iff/ = £ atxAr where a,eX, A^Sf 
/ = i 

(/ = 1,2, ...,„), (j A. = a, A(nAj = 0 (i *j). 
i = 1 
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The integral of the simple function / is defined by J / d P = £ a,P(y4;). 
/ = 1 

1.1. Definition. A function f: £2-> X is called Bochner integrable iff there exist 
f„ simple such that / . —>/ almost uniformly and 

' VH/-/|dI,-0. 

Then\fdP= lim f/„dP. 
n —> oo 

If/ is Bochner integrable and ^e-S^, t h e n / ^ is Bochner integrable and we 
define 

| A / d P = J/zAdP . 

If/: _Q-> R(R is the set of the real numbers),/is measurable and integrable, 
aeX, then a/is Bochner integrable and 

Ja/dP = aj/dP. 

2. A random variable 

2.1. Definition. Denote S£(Sf) = {/: Q-+X\fn simple, fn ->/ uniformly) and 
L(Sf) = {f:Q^X\ 1f'eSe(Sf), / = / ' almost everywhere). A function 
f: Q^>X is called an X-random variable ifff eL(Sf). 

1.1. Theorem. If fne£e(Sf) (A =1,2, . . . ) and fn->f uniformly, then 
f*S£(Sf). 

Proof. Since fneS£(Sf ), there ex is t /* simple (n,k = 1,2,...) and ankeX 
(n,k = 1,2,...), ank \ 0 (k -> oo) such that for every roe 12 and any A: 

\fn,k(co)- fn(co)\<^an,k for « = 1,2,.... 

By the diagonal property for every n there exist k = k(n) such that ank(n) -* 0, 
which implies that there exist bneX, bn \ 0 such that a„ k{n) ^ b„. Now from the 
fact t h a t / - > / uniformly there exist cneX, cn\ 0 such that for every coe Q and 
any n 

\fnMni«>) - / (®) l ^ !/..*(.)(«) -/-(<»)l + l/.(») - / ( -»)! ^ 6- + C -

We see t h a t / ^ are simple and/,*(„)-+/uniformly. HencefeS£(Sf). 
2.3. Remark. From Theorem 2.2 and the definition of -L0$O it follows 

that if/eL(Sf) a n d / -*/uniformly almost everywhere, then feL(Sf) and it 
is easy to show that f,geS£(Sf) (L(Sf)) implies / + g, f v g, f A g, cf, 
\f\eS£(Sf)(L(Sf)). 
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3. A conditional expectation 

Let 5g cz Sf be a cr-algebra. The version of the conditional expectation 
E(f/%) of a random variable/in the real case is an <9g-measurable function for 
which 

i , / d p = L £ ( / / ^ ) d P 

holds for any A e %. If g, h are two versions of the conditional expectation of 
/ then g = h P/S% almost everywhere. Further, the operator E(./%) has the 
following properties: 

(1) \ffig are random variables and c is real, then 
E(f+ g/%) = E(f/%) + E(g/%)P/% a.e. and 
E(cf/%) = cE(f/%)P/%^ 

(2) iffig are random variables a n d / ^ g, then 
E(f/%) = E(g/%)P/%*x., 

(3) if / are random variables and f„ -+ 0, then 
-5O./5g)-0P/5Ja.e . 

We shall define the conditional expectation for the functions from L(Sf) 
now. 

n 

3.1. Definition. (/) Iff: Q-*X is simple, / = X a . £ v ^ e / I w dejme «*/*e 
/ = I 

version of a conditional expectation of f with respect to % by the formula 
n 

J0(f) = E(f/%) = X tf/PG4//£g), where P(A,/S%) is the conditional probability 
/ = I 

of the set At. 
(ii) IffeS£(Sf) andfi are simple such that / - > / uniformly, then we define 

J(f) = E(f/%) = lim E(fn/%). 
«-» oc 

(HI) IffzL(Sf) andf'eS£(9'),f=f' a.e., then we put 

J'if) = - W S ) = I(f')-

3.2. Remark. It is evident that if / is simple, / = £ a,^ and 

f= Z bjXB., then 

2 a.PІĄM) = £ ЪjPЩISQPЖ a.e. 
, = 1 7 - 1 

and that /„ fulfils the properties (1) and (2). If/, are simple and/ -»0 uniformly, 
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then there exists AES%, P(A) = 0 and there exist an e X, a„ \ 0 such that for any 
n and every coeQ— A we have (by (2)) 

|J0(f„)(<0)| = J0(\fn\)(co) = J0(an) = an. 

Then J0(fn) -> 0 uniformly P\% almost everywhere. 

3.3. Lemma. If f is simple, then J0(f)eL(%) and for all Aetf0 

$AfdP = $AJ0(f)dP. 

Proof. Letf=fjal%A. Then J0(f) = £ a^Aj^), where P(Al/^0) 
/ = i i = i 

(/= 1,2,...,rz) is an <9Q-measurable, almost everywhere bounded real-valued 
function. Then there exists a sequence (ghk)k (i = 1,2,...,«) of simple ^-meas­
urable real-valued functions such that gik-^ P(A{\%) (k -> oo) uniformly a.e. 
(/ = 1,2,...,rz). Hence 

A*= £*,Su (k=l,2, . . .) 

is simple and hk-+J0(f) uniformly a.e., which implies J0(f)eL(6%). 
\{ AeSf0, then 

[ 70(/) d/> = [ £ ^ ( A , . ^ ) dP = £ a; [ P(A,/«9S) dP = 
J A J A i = 1 / = 1 J A 

= £a,.JP(A,nA)= [/dP. 
i = 1 J A 

3.4. Lemma. Let fn be simple functions and let fn -> / uniformly. Then the 
following conditions hold: 

(0 VH f - f ldP-O (/.-oo) 
'-1 = n 

(that is f is Bochner integrable), 

(//) V J0(|f -fj\) -> 0 (rz -> oo) uniformly a.e. 
Ui ^ « 

Proof. There exist a„eX, an \ 0 such that for every coeQ and any rz we 
have \fn(co) — f(co)\ = an. Then for ij = n and for any CQEQVJQ get 

\f(co) -f(co)\ = \f(co) -f(co)\ + |/(A>) - #a>) | ^a , -F ay = 2a, and 2a, N 0. 

The proofs of (/) and (//) follow from the positivity of the integral and the 
property (2) of J0. 

3.5. Remark. It is easy to show that iffeL(^), then / i s Bochner integ­
ra t e . 
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3.6. Lemma. If fe <£(&>) andfn,gn are simple such that f„ ->/uniformly and 
gn^>f uniformly, then 

\im J0(fn)= \im J0(gn)P/% a.e.. 
n -* oo n -* oo 

Iff is simple, then J(f) = J0(f)P/% a.e.. 
Proof. If fn,gn are simple and fn -> / uniformly, g„-•/uniformly, then 

fn~ gn~*0 uniformly, that is there exist an e X, an \ 0 such that for every coeQ 
and any n we have \fn(co) — gn(co)\ = an. Then from the property (2) of J0 there 
exist Ae %, P(^) = 0 and 

\Ufn)(C0) - J0(gn)(CO)\ = \J0(fn ~ gn)(0>)\ ^ U\fn ~ gn\)(C») ^ GH 

for any n and every coeQ — A, which implies that 

lim J0(fn) = lim J0(gn)P/% a.e.. 
n —> oo n —• oo 

From the preceding J(f) = J0(f)P/% a.e. for/simple holds. 
We shall show the existence of J(f)P/% a.e.. 

3.7. Lemma. Iff are simple andfn -*f uniformly, then lim J0(fn) exists almost 
n —*• oo 

everywhere. 
Proof. It is sufficient to show that 

00 00 00 00 

A V Jo(f<)(co) = V A WW 
n = 1 i = n n = 1 j = n 

for almost every coeQ. 
By Lemma 3.4 and Remark 3.2 we have 

\Jo(Mco) - J0(fj)(co)\ = JM -fWco) = a„ 

for /,j = « and almost every coeQ, where a„eX, a„\0. Now 
Jo(fi)(<o) = Jo(fj)(<o) + a„ for /,_/ = « and almost every coeQ. Then 

V/o(f)0»)^A-Io(f)(G,) + «« 
i=n j=n 

for any « and almost every coeQ and hence 
00 00 

A V Jo(f)(<o) = V A - W ^ ) 
n = \ i = n n = \j = n 

for almost every coeQ. 

3.8. Lemma. The operator J fulfils the properties (I), (2) and if fne<£ (Zf), 
fn -» 0 uniformly, then J(fn) -> 0 uniformly a.e.. 
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Proof. If fn,gn are simple, / . - » / uniformly, gn->g uniformly and c is 
real, then fn + g„-*f+ g uniformly and cf„ -• cf uniformly. Then by the 
property (1) of J0 there exists A e 5g, P(^) = 0 such that for every coe Q - A we 
have 

Af+ *)(©) = lim J0(fn + &)(a>) = lim /oOiX®) + 
/ ? - * oo H -> oo 

+ lim J0[gn)(co) = J(J)(co) + J(g)(a>). 
n-> oo 

Similarly we can show it for cf and hence J fulfils (1). 
K fn>gn a r e s imple,/->/uniformly, g„-*g uniformly a n d / ^ g , then 

K = f^gn^f *g =/uniformly, hn ̂  gn. Now (by the property (2) of J0) 

J(f) = lim J0(hn) = lim J0(gn) = J(g) a.e. 
n-+ oo / ? - • oo 

and J fulfils (2). 
If fneS£(Sf), f„->0 uniformly, then there exist a„eX, an \ 0 such that 

\fn(co)\ ̂  a„ for every COE Q and any «. Then there exists A e Sf0, P(A) = 0 such 
that for every coe Q — A 

\J(fn)(co)\ = J(\fn\)(co) = an 

for any n. Hence J(fn) -> 0 uniformly a.e.. 
3.9. Lemma. If feS£(Sf\ then J(f)eL(Sf0) and for all Ae% \AfdP = 

= I i W ap­

pro of. J(f) = lim J0(fn), where fn are simple, f„ -> / uniformly, 
/ ! - • 00 

J0(fn)eL(S/?
0) (Lemma 3.3). Hence there exist a„eX, an \ 0 and 

|/(f0) — fn(co)\ ^ a„ for every coe £2 and any /L Then there exists A e Sf0, P(A) = 0 
such that for every coe {2 — A 

\J(f)(co) - J0(fn)(co)\ = \J(f-fn)(co)\ = J(\f-fn\)(co) = an 

for any n and hence we have J0(fn) -> / ( / ) uniformly a.e.. By Remarks2.3 and 
3.5 we get J0(fn), J(f) are Bochner integrable. LetAeS%. Then by Lemma 3.3 
and by the continuity of the integral we get 

[fdP = lim f fn dP = lim f J0(f„) dP = [ J(f) dP. 
J A " - ° ° J A " - ° ° J A J A 

3.10. Lemma. LetfeL(Sf\ h,ge<£(Sf) zx\&f^ g a.e.,f= h a.e., then 

J'(f) = J(g) = J(h) PM a.e.. 

Proof. There exists AeSf, P(A) = 0 such that gXA' = hxA' and there exist 
fn simple such t h a t / -+gX* = hxA uniformly. Then 
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J(h) = J(hXA, + hXA) = J(hXA.) + J{h%A) = lim 7„(fn) + J(hXA) P/% a.e., 
«-»oo 

Jig) = JiSXA-+ gXA)\\m J0(f„) + J(gXA) P\% a.e.. 
n -* oo 

We shall show that if /. e $f and P(/l) = 0, h e J27 (^ ), then J(hX/t) = 0 P/̂ g a.e.. 
n 

Let A be simple, A = X °.£v Then 

•t(fo«) = Jo(hXA) = £ a ^ . n Al%) = 0 P/^ a.e.. 
i = i 

If A e JS? (^), then /(A*,,) = lim J0(h„XA), where A„ are simple, h„ -> A uniformly 
rt-> 00 

and hence J(h%A) = ° -P/«SS a.e.. From the preceding we get J(h) = J(g) P/% 
a.e.. 

3.11. Theorem. The operator J' fulfils the property (1), (2) and (3) for the 
uniform convergence almost everywhere. If feL(^), then J'(f)eL(S%) and 
[tfdP = y(f) dPfor every Ae^. 

Proof. The proof is wvident. 
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УСЛОВНОЕ МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ В РЕГУЛЯРНОМ ПРОСТРАНСТВЕ 

Маг1а УгаЬе1оуа 

Резюме 

В статье определено условное математическое ожидание случайной величины со 
значениями в регулярном пространстве, которая является равномерным пределом пос­
ледовательности простых случайных величин. 
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