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SOME COMMENTS ON A RESULT OF HANS 
ON STRONG CONVERGENCE OF SEQUENCES OF 

RANDOM ELEMENTS IN SEPARABLE BANACH SPACES 

A. BOZORGNIA—M. BHASKARA RAO 

1. Introduction 

Let (Q9 s/, P) be a complete probability space and X„9 n > 1 a sequence of 
random elements defined on Staking values in a separable Banach space B. The 
starting point of this paper is a result of Hans on convergence almost every
where of the sequence X„, n > 1. Before we state this result, we need the 
following set. 

A = {WGO; {Xn(w)9 n > 1} is relatively 
strongly compact in B}. 

One can show that A es$ and that A is a tail set. See Hans [4, p. 88]. 
Theorem 1 (Hans [4, Theorem 19, p. 89]. Let Tbe a total subset of B*9 the dual 

of B. Then Xn9 n > 1 converges a.e. [P] if and only if the following hold. 

Hans conditions, (a) P(A) = 1 
(P) f(Xn)9 n > 1 converges a.e. [P] for every 

fin T 

This paper has three objectives to achieve. The first objective is to examine 
Hans conditions (a) and (P) in relationship to the following condition. 

(y) Xn9 n > 1 converges in probability. 

Using Theorem 1, Hans characterized almost sure convergence of sequences 
of random elements taking values in some special Banach spaces c0, lx etc. Some 
of these characterizations are not right. The second objective is to provide the 
relevant counter examples. Section 2 of this paper focuses on these two objec
tives. 

The third objective is to establish a result in the spirit of the Hans Theorem 
above for convergence in probability and this is covered in Section 3. 
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2. Han§ conditions, convergence in probability, and convergence 
in some special Banach spaces 

Suppose X„9 n > 1 converges in probability. Then every subsequence of X„9 

n > 1 admits a further subsequence which converges almost surely [P]. (See 
Lemma 1 below.) Then it might be tempting to conclude that the Hans condition 
(a) and convergence in probability are equivalent. We give examples to show 
that these two concepts are different. 

The following is an example to show that the validity of Hans condition (a) 
does not imply convergence in probability. 

Example 1. Let Q= {0, 1}*, s/ its Borel cr-field and P the product mea
sure A, x ^ x ..., where each A,({0}) = 1/2 = A,({1}) and /Vis the set of all natural 
numbers. Let B = R9 the real line. Let for each n > 1, 

X„(xu xl9 ...) = x„ 

for every (xl9 xl9 ...)e.Q. X„9 n > 1 is"a sequence of independent 0-1 valued 
random variables. It is obvious thaL4 = {coeQ\ {X„(co)9 n > 1} is relatively 
strongly compact in B} = Q and consequently P(A) = 1. But X„9n> 1 does not 
converge in probability. 

Suppose X„9n>\ converges in probability. Does this imply that P(A) = 1? 
The answer is no. The answer is still no even when the Hans condition (P) holds 
for the sequence Xn9 n > 1 additionally. The relevant counter example is given 
below. 

Example 2. Beck and Warren [2, p. 922] exhibited a sequence Y„9 n > 1 
of random elements taking values in c0 with the following properties, (i) Y„9 

n > 1 is uniformly bounded in norm, (ii) Y„9 n > 1 is identically distributed, (iii) 
E^, = 0 for every n>\. (iv) Y„9 n > 1 is weakly orthogonal, \.z.9f(Yn)9 n > 1 is 
a sequence of pairwise uncorrelated random variables for every fin B*. (v) Xn = 
= (YJ + Y2 + ... + Y„)jn9 n>\ does not converge almost surely [P]. 

This sequence X„9 n > 1 is the sequence of interest. By Theorem 5.1.2 of 
Chung [3, p. 103], it follows thatf(X„), n > 1 converges a.e. [P] for everyfin B*. 
Thus the Hans condition (P) holds for X„9n> 1. By Theorem 2.3 of Wang and 
Bhaskara Rao [5, p. 128], it follows that X„9n>\ converges in probability. But 
the Hans condition (a) evidently is not valid by (v) above. 

Hans [4] gave several applications of Theorem 1 to lp spaces, c0 (the space of 
sequences of real numbers converging to zero), c (the space of all convergent 
sequences of real numbers), Z/[0, 1] spaces and C[0, 1]. See Theorems 25 to 37 
of Hans [4]. Now we look at some of these applications. 

First, consider the Banach spaces lp
9 1 <p < co, c and c0. Consider the 

functional 
j„(x]9 xl9 ..., xn9 xn + j , . . . ) = xn9 n > 1. 
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Each of these functionals can be defined on every one of the spaces mentioned 
above and they constitute a total subset of the corresponding dual spaces. 

The following is Theorem 25 of Hans [4, p. 92]. "Let (Q, j * 9 P) be a 
probability space and X0, X,, ... a sequence of random elements with values in ll. 
Then Xn, n > 1 converges to X0 almost surely [P] if and only if the following two 
conditions (a) and (b) hold. 
(a) For every e > 0 there exists a positive integer ke (dependent on e only) such 

that for every n = 1, 2, ... 

PICOED; X \f(Xn(a))\<s}=l. 

(b) f(Xn), n > 1 converges to f(X0) almost surely [P]for every / = 1, 2, ..." 
The conclusion of this theorem as it stands is false. We have checked the 

sufficiency part of this theorem to be correct. The necessity part of this theorem 
is false. We give the following counter example to substantiate our claim. 

Example 3. Let 8n = (*,, JC2, ...) be defined by x{ = 1 for i = n, and = 0 
for i T* n, n > 1. Let Q = {n>,, w2, ...} be countable and P({wk}) > 0 for every 
k > 1. For each n > 1, define 

Vn(w) = S( for 1 < i < /i, 
= n£„+I for / > n + 1. 

Also define ^(vv,) = Si9 i> 1. It is easy to check that lim Vn(w) = ^(w) for every 
n->oo 

ft>G/2. Further, it can be checked that (a) does not hold for this sequence. 
Hans has a similar theorem for lp spaces for 1 < p < oo. See Theorem 31 

[4, p. 93]. One can give an example to show that the necessary part of this 
theorem is not true. 

The following theorem is stated by Hans [4, Theorem 27 and 28, p. 92]. 
"Let (i7, s/, P) be a probability space and Vn, n > 0 a sequence of random elements 
taking values either in c or c0. Then IV, n > 1 converges to V0 almost surely if and 
only if the following two conditions (a) and (b) hold. 
(a) For every e > 0 there exists a positive integer k£ (dependent on s only) such 

that for every i > ke and n = 1, 2, ..., 

P{coeQ'Af(Vn((o))\<8}=\. 

(b) f(Vn), n > 1 converges tof(V0) almost surely [P],for every i = 1, 2, 3, ..." 
We claim that the necessary part of this theorem is false. The example given 

above also serves here. 

3. Convergence in probability 

In this section, we characterize convergence in probability in the same spirit 
as Theorem 1 above. We also give some applications of this result in some 
special Banach spaces. 
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Lemma 1. Let Vn, n > 0 be a sequence of random elements defined on a 
probability space (-Q, sf, P) taking values in a separable Banach space B. Then Vn, 
n > 1 converges to V0 in probability if and only if every subsequence of Vn,n> 1 
admits a further subsequence Vn , k > 1 converging to V0 almost surely [P]. 

Proof. This result is well known for the case when B is the real line and 
the same proof goes through for the general case. See Chung [3, Theorem 4.2.3, 
p. 73]. 

Theorem 2. Let Xn, n > 0 be a sequence of random elements defined on a 
complete probability space (Q, s/9 P) taking values in a separable Banach space B. 
Suppose the following two conditions are satisfied: 
(i) f(Xn), n > 1 converges tof(X0) in probability for each fin A, where A is some 

total subset of B*. 
(ii) Every subsequence of Xn9 n > 1 admits a further subsequence Xn , k > 1 such 

that P{coeQ; {Xn (co); k> 1} is relatively strongly compact} = 1. 
Then Xn, n > 1 converges to X0 in probability. Further, conditions (i) and (ii) are 
also necessary for convergence in probability. 

Proof. Sufficiency. In view of Lemma 1, it suffices to show that given 
any subsequence of Xn, n > 1, it admits a further subsequence which converges 
to X0 almost surely. 

Since B is separable, we can find a countable subset C of A which is total. See 
Banach [1, Theorem 4, p. 124]. Let C = {f,f2, . . .}. For the given subsequence 
of Xn, n > 1 choose a further subsequence Xn , k > 1 such that 

P{coeQ; {Xn (co); k > 1} is relatively strongly compact} = 1. 

Sincef (X„k)9 k > 1 converges to f (X0) in probability, we can find a subsequence 
f(XnJ, r > 1 converges tof(X0) almost everywhere. By a similar argument, we 
can find a subsequence X„ r, r > 1 of Xn , r > 1 such that f2(XnJ, r > 1 con
verges tof2(X0) almost everywhere. Continuing this process for eachf, we get 
a double array 

f(^n),f(^i2). f(X„i3), ... 
fi(X„2^9 fi(x„i2), f2(x„23), ... 

axnj, axnj, uxnj, 

where each row sequence is a subsequence of the row sequence just ahead of it. 
It has the following properties: 

(i) X„ , k > 1 is a subsequence of X„k, k > 1 and hence a subsequence of the 
given subsequence with which we originally started. 

(ii) fp(X„ ), k > 1 converges tofp(X0) almost surely for each p > 1. 
(Hi) P{coeQ; {X„kk(o)), k > 1} is relatively strongly compact} = 1, 
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since the set involved with in the flower brackets contains {coe Q; {Xn (co), k>\} 
is relatively strongly compact}. 

By Theorem 1, X„ , k > 1 converges to X0 almost surely [P]. 
Necess i ty . Necessity of the conditions (i) and (ii) follows from Lemma 1 

and from the necessity part of Theorem 1. 
We now apply Theorem 2 to some special spaces. 
Theorem 3. Let IV, n > 0 be a sequence of random elements defined on a 

complete probability space (Q, stf, P), taking values in lp, 1 <p < oo. Then Vn, 
n > 1 converges to V0 in probability if the following two conditions are satisfied. 
(a) Every subsequence of Vn, n> 1 admits a further subsequence Vn , k > 1 such 

that for every e > 0 there exists a positive integer kE satisfying 

P\OУЄO; £ \Жt{a>))\'<Å 1 for each k>\. 

(b) fi(V„)9 n > 1 converges tof(V0) in probability for every i > 1. 
Proof. We want to apply Theorem 2 to prove this result. We will show 

that (a) and (b) together imply (i) and (ii) of Theorem 2. Suppose (a) and (b) 
hold, (b), obviously, implies (i) if we take A = {f„, n > 1}. Now, we will show 
that (a) + (b) implies (ii). Let VnJk>\ be any arbitrary subsequence of V„, 
n > 1. Since f(Vnk), k > 1 converges in probability tof(J^) for each i > 1, by 
Cantor's diagonal technique we can find a subsequence Vp, p > 1 of Vv k > 1 
such that/(iV), p > 1 converges t o f ( ^ ) almost surely [P] for each / > 1. 

There exists a set Desrf such that P(D) = 1 and for each coeD,f(Vp(co)), 
p > 1 converges to f(V0(co)). Assume, without loss of generality, that for the 
subsequence Vp, p > 1, (a) is satisfied. If not, we can take a further subsequence 
of Vp9 p > 1 satisfying (a). 

For e = 1/n, denote kXjn by kn. Let 

n n í ^ ^ í i i1.(Pr(®))i'<i/4-

Then condition (a) implies P(E) = 1. Let F = D n E. We have P(F) = 1. Now, 
we claim that for each coeF, Vr(co), r > 1 is a Cauchy sequence. 

Let coeF. Let e > 0. Then we can find n > 1 such that (\/n) < e. 

II vr(a>) - vm{(o)\\p = Z \fAKm -fAVMY = 
/.> 1 

I \fi(K(co))-MVm(mp + 
/ = 1 

Z шШ)-fM*w<-
ІZk„ 
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I UÄKicoЂ-MKXcoW + l/n. 
/ = I 

Sincef(K(^)X r -̂  - converges for each / = 1 to kn — 1, we can find M > 1 such 
that 

\f(VXco))-f(Vm(co))\p<s/(kn-\) 

for every / = 1 to k„ — 1 and r, m> M. 
Consequently, if r, w > M, 

\\K(co)-Vm(co)\\p<3s. 

From this, it follows that 

P{coeQ\ {Vr(co), r> 1} is relatively strongly compact} = 1. 

This proves that (a) and (b) imply (ii) of Theorem 2. 

Theorem 4. Let Vn, n > 0 be a sequence of random elements defined on a 
complete probability space (Q, srf, P) taking values in c0. Then Vn,n>\ converges 
to V0 in probability if the following two conditions are satisfied. 
(a) Every subsequence of Vn,n> 1 admits a further subsequence V„k, k > 1 such 

that for every e > 0, there exists a positive integer ke satisfying 

P{<oe£2:\fi(Vnk(co))\<£}=i 

for every i > ke and k>\. 
(b) f(Vn), n > 1 converges tof(V0) in probability for every i> \. 

Proof. A proof can be supplied in the same way as that of Theorem 3. 
Hans [4, Theorem 34, p. 94] characterized convergence almost surely in 

Lp[0, 1] forp > 1. Here the measure on [0, 1] is the Lebesgue measure. We give 
a characterization of convergence in probability for general LP spaces. 

Theorem 5. Let (Y, %>, //) be a probability space, where %> is a separable a-field 
on Y. Let En, n>\ be a generator of ^ closed under finite intersections and 
containing Y. Let Vn, n > 0 be a sequence of random elements defined on a 
complete probability space (Q, stf, P) taking values in LP(Y, %>, n)for some p > 1. 
Then Vn,n>\ converges to V0 in probability if the following two conditions are 
satisfied. 
(a) Every subsequence of Vn,n>\ admits a further subsequence V„k, k > 1 such 

that 

í 
\V„k(co)(y)\p/j(dy), k > 1 converges to 

\V0(có)(y)\p^(dy),for almost all coed. 
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í" (b) ^(*)(y)^(dy), n > 1 converges to 

1 ^o(')(y)/i(dy) in probability for every i = 1, 2, ... 

Proof. A proof of this result can be patterned along the lines of the 
proof of Theorem 3. 
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НЕКОТОРЫЕ ЗАМЕЧАНИЯ ПО ПОВОДУ ВЫВОДОВ ГАНША О СИЛЬНОЙ 
СХОДИМОСТИ ПОСЛЕДОВАТЕЛЬНОСТЕЙ СЛУЧАЙНЫХ ЭЛЕМЕНТОВ 

В РАЗДЕЛЬНЫХ БАНАХОВЫХ ПРОСТРАНСТВАХ 

А. Во2ог§гпа—М. ВЬазкага Као 

Резюме 

В работе рассматриваются выводы Ганша о сильной сходимости последовательности 
случайных элементов в раздельном банаховом пространстве в сопоставлении с подобными 
результатами, имеющимися в литературе. 

Рассматривается также использование этих выводов в некоторых специальный бана
ховых пространствах. 
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