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Math. Slovaca 40,1990, No. 1, 37—52 

RENYFS FORMULA WITH REMAINDER TERM 
ON ARITHMETICAL SEMIGROUPS 

STEFAN PORUBSKY 

A free commutative semigroup G with identity element \G generated by a 
countable set P is called arithmetical if in addition there exists a real-valued 
norm mapping | • | on G such that 
i) \ab\ = \a\-\b\ for all a,beG, 

ii) the total number NG(x) of elements n e G of norm |n | < x is finite for each real 
x. 

The elements of P, i.e. the generators of G, are called primes. Plainly, every 
element n # \G in G has a unique (up to the order of factors) factorization of the 
form 

(1) n=pa
x
x-pa

2
2...pa

r% 

where pt are distinct elements of P. 
In the following we shall always suppose not only the finiteness in ii), but that 

the following asymptotic axiom is satisfied [6, p. 75]: 

Axiom A. There exist positive constants A and 8, and a constant r\ with 
0 < h < 5, such that 

NG(x) = Ax5 + 0(xi) as x -> oo. 

Complex valued functions defined on an arithmetical semigroup are called 
arithmetical. Generalizing the standard arithmetical functions known from the 
classical number theory, one can define 
a) the Mobius function \iG as follows 

{ 1, if n= 1G, 
( -1 ) ' , if a, -=a2 = ... = a r = 1 in( l ) , 
0 otherwise, 

b) the functions coG and QG through 

coc(lc) = QGOG) = 0 
and 

coG(n) = r, QG(n) - a, + a2 + ... + ar. 
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Similarly, the notion of the asymptotic density d(T) of a subset T of an 
arithmetical semigroup G can be generalized as expected. If T(x) denotes the 
total number of elements of T of norm at most x and if there exists 

lim T(x)/NG(x), as x -* oo, 
then 

d(T)= lim H&m 
*-«> 1VG(x) 

For the sake of simplicity we shall often omit the index G if the basic 
semigroup G can be deduced from the context. For further details and proper
ties of arithmetical semigroups and arithmetical functions on them we refer the 
reader to Knopfmacher ' s book [6]. 

Let AG = A denote the pointwise difference Q — co, i.e. 

A(n) = Q(n) — co(n) for n e G. 

If G = Z, the set of positive integers, then the already classical result of 
Renyi [12] says that the set Aq of positive integers for which 

A7(n) = q 

has asymptotic density dq which is given by the generating series 

f^.-n(.-i)( .+-!-)-4n^^. 
<7 = 0 \ pj\ p — z J l V 1— z/p 

for \z\ < 2, where the products are extended over all the rational primes. This 
contains as a special case for q = 0 the well-known fact that the asymptotical 
density d(Q) of the set Q of all squarefree integers is 6/TC2. However, since 1909 
it has been known [8] that for the number Q(x) of squarefree integers below x 
we have 

(2) Q(x) = 6x/n2 + o(x]l2). 

L a n d a u proved this result using the fact that the sum function 

M(x) = X H(")> 
* n < x 

of the Mobius function |i(x) satisfies 

(3) M(x) = o(x). 

Previously he showed [9] that this result can be derived from the prime number 
theorem without using the method of complex integration and later [10] that 
also the fact that (3) implies the prime number theorem can be proved without 
using these analytic tools. 
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Unfortunately, Renyi's method does not give a possibility of obtaining an 
asymptotic estimate for the density of the set Ar This gap was subsequently 
filled by several authors, e.g. C o h e n [1], K a t a i [5], W. Schwarz [13] and 
D e l a n g e [2—4], to mention a few. Thus Cohen proved that 

X 1 = d , x + 0(x1 / 2 loglogx). 
n <. x 

Az(n) = 1 

and Delange using analytic means gradually improved this estimate for the 
general index q. However, Katai showed that the first improvement of Delange 
that 

£ l = d , x + o(x1/2(loglogx)<0 
n < x 

Az(n) = q 

can be deduced from Landau's estimate (2) for squarefree numbers without 
using analytic tools applied by Delange. 

In [6, p. 151] it is proved that Renyi's original result can be extended to 
arithmetical semigroups: 
Let G be an arithmetical semigroup satisfying Axiom A. Then the asymptotic 
density dqG of the set AqG of those elements neG for which AG(n) = q exists for 
each q = 0, 1, 2, ... and may be calculated from the power series formula 

i - w = n (i - \p\-sw+(\p\s - -0"').. 
•7 = 0 peP 

From a result of [11] an analogue of the above Cohen estimate follows for 
dUG if G satisfies Axiom A. The aim of this paper is to show that combining the 
ideas of [5] and [11] it is possible to prove an asymptotic estimate for the density 
of the set Aq G also in the case of arithmetical semigroups satisfying Axiom A. 

Recall that the zeta function £G of an arithmetical semigroup G is defined by 
the formal Dirichlet series 

w*)= Z i r . 
aeG 

If G is an arithmetical semigroup satisfying Axiom A, the series on the right 
hand side is absolutely convergent for Re (z) > S and divergent for Re (z) _ <5[6, 
p. 84]. 

First of all we shall prove an estimate for the set QkG of k-free elements in 
an arithmetical semigroup satisfying Axiom A. Here as usual, given an integer 
k > 2, an element n e G is called k-free if at < k for every i < r in (1). Then for 
the total number Qk,c(x) of k-free elements of norm at most x in G we have: 
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Lemma 1. Let G be an arithmetical semigroup satisfying Axiom A written in 
the following form 

\NG(x)-Axs\<K-x\ 
Then 

5 ( 0(max(A2,AK,K2)xs'k), if r, < 8/k, 
QkG(x)-— = < 0(max(A2,AK,K2)xs/k\ogx), if 77 = 8/k, 

t>G(k8) [ 0 ( m a x (A 2> AK K2^ x^ if t]> 8/k, 

where the O-constants do not depend on A and K. 
Proof. Using standard ideas we immediately obtain the well-known for

mula 

(4) Q*,G(*)= I \iG(d)NG(x/\d\k). 
\d\k g x 

Consequently, 

QKG(x) = Ax%G\k8) + o(Axs £ \d\-k°) + o(Kx" £ \d\-k*\ 
\ \d\k>x J \ \d\k<.x / 

with O-constants not depending an A and K. 
Partial summation then gives 

/•oo 

x& £ \d\~kS= -NG(xllk) + xsSk\ NG(t)t~kS-{ dt 
\d\ > xVk JxW 

Similarly, 

\d\: 

= 0(max(A,K)xslk). 

x" £ \d\-k* = NG(xxlk) + x"rik\ NG(t)t'kl)-x dt = 
\d\<xVk J\ 

O(max (A, K)xs/k), if 77 < 8/K 
O (max (A, K) xn log x), if 77 = 8/k, 
O (max (A, K) x1), if 77 > 8/k, 

and the lemma follows. 
If MG(x) denotes the summation function of the Mobius function \iG of an 

arithmetical semigroup G, then Lemma 1 is based on the trivial estimate 
MG(x) = 0(xs). To improve the result of Lemma 1 better estimates for MG(x) 
are needed. Concerning this note that if an arithmetical semigroup G satisfies 
Axiom A, then the prime number theorem is true in G [6, Chapter 6]. However, 
it can be shown on the other hand that if G satisfies Axiom A, then the prime 
number theorem for G and the estimate MG(x) = o(xs) are equivalent. (Note 
that the prime number theorem and the assertion that M(x) = o(xs) are not 
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equivalent in general arithmetical semigroups; see [14] for more detail.) But 
using more subtle techniques one can prove more: 

Lemma 2. [7, Theorem 6.4] If G satisfies Axiom A, then for every a> 0 we 
have 

MG(x)^0(xs(logx)-a). 

Lemma 1 can be now strengthened as follows: 

Theorem 1. Let the arithmetical semigroup G satisfy Axiom A and let us have 
for a positive integer k > 2 

t]k < 5. 

Then for the set QkG ofk-free elements in G we have 

Qk,G(x) = Ax%G\k5) + R(x), 

where the estimate MG(x) = o(x5) yields 

(5) R(x) = o(x5lh) 

and Lemma 2 implies 

(6) R(x) = 0(x^(\ogx)-a) 

for every a > 0. 
Proof. We prove first (5). Since the function M(x)-x~s "increases" only 

in those points x which are values of the norm function, then MG(x) = o(xs) 
implies that the function 

кô ÍШ)\ 

takes its maximum on each interval O1'2*, oo) for every x > 1. Denote this 
maximum by t](x). The function 7](x) is clearly nonincreasing and let 

e = s(x) = max {A:-1/2*, r](xxllk)}. 

Then e(x) is also nonicreasing and 

(7) lim e(x) = o. 
X-* 00 

Then for y £ *>/-* W e h a v e 

IMOOI 

< e(x)k«ys, 
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Let xx/k = z for the sake of simplicity. Then (4) can be written in the form 

Q*,G(*)= I PóW- I Vin) I 1. 
\nkm\<tx \n\<.z |m|<.jcl|rt|* 

and consequently 

QUx) = I n(«) I i + I I n(«) -
\n\ <.ez \m\ <. x/\n\k \m\ < e~k \n\ <. */í/R 

- I I n(H) = S, + S2-S3, 
|«| <. ez \m\ < e~k 

where € = e(x). 
For the first sum we have 

S,= I M(n)Nc(x/|/I|*) = Ax^ I n(n)N~w + 
|«| <. ez v |«| <. ez 

o(x" I \n\-k*\ = Ax%a\k5)-Axs I \i(n)\n\-kS + 
\ \n\ <. ez / \n\ > ez 

+ o(x" I N"*"). 
V |«| <; ez ) 

The last term can be estimated easily as 

oix" Z \n\-k") = 0(zs-es-kl>) = o(xs/k), 
\ \n\<.ez ) 

Here the last equality follows from (7) and the fact that 8 — kr/ > 0. 
Partial summation gives for the second term in 5, that 

£ \i(n)\n\kS= -M(ez)-(ez)-kS + ksTM(y)y~kS~l dy 
\n\ > ez Jez 

Since 

(9) ez>x-x/2k-xx/k = xx/2k, 

and because the function e is nonincreasing, the relation (8) yields 

\M(sz).(ez)-kS\ < ekS-(ez)s.(ez)-kS=esz*x-k) = esx~sxs/k. 

Similarly we have for B = 1/(5 — kS) 

PM(y)y- k S- x dy! < ekS [™y-**+*-\ dy = BekS(ez)S{x~k) - Be'x-'x*. 
Jez I Jez 
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Thus together 

S, = Ax%o\k8) + o(xs,k). 

For the second sum we have 

S2 = £ £ H(")= £ M((*/M)"*). 
|w| < e~k \n\ < kJxj\m\ \m\ < e~k 

If \m\ < E~*, then owing to (9) 

(x/|m|)1/A[>^z>x,/2/: 

and (8) gives 

M((x/\m\)l/k) < £(x)kS-(x/\m\)s/k, 

which in turn yields that 

\S2\ < e(x)kSxs/k £ \m\-5lk = 
\m\<e~k 

= 0(skSxs/k(e-k)sv-]/k)) = 0(esxs/k) = o(xs/k). 

Finally, the relations (7), (8) and Axiom A give for the sum S3 

Sг = M(єz) £ 1 = 0(M(єz) -є-kS) 
\m\ < є~k 

-kS\ _ 

= 0(skS-(ez)s-e-kS) = 0(esxslk) = o(xm), 

which proves (5). 
In the proof of (6) let 

£(x) = (log2\fx)-a/k{S-n) 

and let x0 =
 xo(a> k> &> *]) be such that for x > x0

k 

(\0g*yfc)-a/«S-*>X-X/2k. 

Then for x > x0
k we have 

€(x).z>x~l/2k'Xl/k = xl/2k>x0. 

Therefore we obtain along the lines of the preceding part of the proof that for 

x > x0 

S, - Ax%c\kS) = 0(es-k"-zs(logez)-° + ss~ks-zs) = 

= 0(es-k,,'Zs(\ + e-w-'^logez)-"). 
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Since (log t) a is a decreasing function and ez > 2k\fx, 

(\ogsz)~a < (log2Vx)"fl = (s(x)f{S-77), 

and thus 
1 +€~k(S-Tl)(\0g€z)-a<2. 

Further 

es-k" = (log V * ) " * ' " * ^ * " 1 0 = ((l/2k)logx)-a<s-k"),kiS-''). 

With a also r = a(£ — krj)/k(8— //) runs through positive real numbers and 
therefore 

S} = Ax%cl(kS) + 0(xs,k(\ogx)-r) 

for every r > 0 with the O-constant not depending on r. 
Similarly we can prove that 

S2 = 0[xs,k(\ogekx)-a }~ \m\-s,k) = 
\ \m\<e-k J 

= 0(zsss~kS(\ogezya) = 0(zsss-k\s-kiS-Ti)(\ogszya)) = 

= 0 ( : V " * ' ) = 0 (x^( logx ) - r ) . 

For 53 we get analogically 

S3 = M(sz) £ 1 = O((e) J0og ez)-ae-kS) = 
H < c~* 

= 0(zses-k\s-k^s-^(\ogezya)) = <9(x^(logx)- r), 

and the theorem is proved. 
The following analogue of a classical result will be useful in the proof of the 

next theorem. 

Lemma 3. [6, p. 165] If an arithmetical semigroup G satisfies axiom A, then 

Z \p\~5 =\og\ogx + BG + 0(\/\ogx). 
peP 

\p\£x 

In the proof of the following theorems we shall use the "descent" technique, 
which is based on the following result and which shows certain advantages of 
the abstract approach through arithmetical semigroups: 

Lemma 4. [6, p. 77] Let a be an arbitrary element of an arithmetical semigroup G. 
Let G(a) denote the set of all the elements ofG which are coprime to a. Then 
i) G(ci) is also an arithmetical semigroup; 
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ii) if G satisfies Axiom A, then also G(a} does and 

NG<a>(x) = Ay£a)\a\-Sxs + 0(xT1)9 x-*co, 

where for real w we define 

d\a 

This result can be proved by induction on the number of the prime divisors 
of a. If a has a unique prime divisor p, then 

NG<a>(x) = NG(x) - NG(x/\p\) = Ax5 + 0(x") - A(x/\p\)s + 

+ 0((x/\p\y) = A(\ - \p\~s)xs+0(x\\ + \p\-)) 

and the lemma follows because 

n o - \p\~s) = i vaww*. 
peP deG 
p\a d\a 

An element n e G will be called squarefull if for every prime divisor p e P we 
have 

if p\n then p2|n. 

Lemma 5. Let G be an arithmetical semigroup satisfying Axiom A and m a 
positive integer. If S^ denotes the set of squarefull elements in G with at most m 
prime divisors, then 

sim&x)= x l^^x^oogiogxr-viogx) . 
-4m£ 
|n| <, x 

Proof follows the ideas of [5]. If \pa\ < x, then a = 0(\ogx)9 where the 
O-constant does not depend on p. Then the prime number theorem for arith
metical semigroups satisfing Axiom A [6, p. 154] implies 

S&(x)= I \=nG(x^2) + nG(x^) + ...=nG(x^2) + 
\pa\ < x 

a>2 

.812 

Uog. 

Thus the lemma is true for m=\. For m > 2 we have 

+ 0(nG(x^)logx) = o(^—). 
Vlogx/ 

(Ю) SЩx)= I 1+ I 1 

©(«) = 1 (o(n) > 2 
\n\ < x \n\ < x 
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The first sum is S£]
G. Rearrange the terms neS£$ in the second sum as 

follows: Let qa be one of the powers p? in the canonical decomposition 
n = p°l ...pm

m, where a, > 0 and __#/>, for which a, > 0 and in which the 
minimum 

min{|p"'|; i = 1, ..., m). 

is taken. Then \qa\ < x1/2 and the second sum is 

X l = o( X l) = o( X S£G--\x/\q*\))== 
Am) \ \qah\<,x / \\qa\ _JC 1 / 2 / 

" a _ 2 

xSi2(\og\ogx/\qa\)m-2^ 

"eS2.G o г 2, ( ? , * ) = ! 0 2:2 

|л| _ v 2, G 

-o I Ms*'/- kTMogx/lq l 
< 7 _ 2 

= 0 / _ _ _ g l o g _ _ _ _ _ 1 _ 

V log* |_-|s*i/ -1?°.*" 

Further, 

(ii) Z iqr* 2 - Z M~'+ Z i*r*. • 
| _ f l | < X l / 2 M ^ X 1 / 4 |_ _ < X J / 2 

c 7 _ 2 o _ 3 

Lemma 3 implies that the first sum in (11) is O (loglogx). In the second sum we 
have for b(a) = [a/3] 

I \qT5/1 Z \q\-™(a)ll<3^G(38/2), 
|<7° |_x '/2 \qo\ <X\I2 

a _ 3 a>3 

as £G(z) converges for complex z with Re (z) > 5. Thus the left-hand side of (11) 
is O(loglogx). After substituting into (10) the mathematical induction finishes 
the proof 

In the next two theorem we shall give an estimate for densities in Renyi's 
result. 

Theorem 2. Let G be an arithmetical semigroup satisfying Axiom A. 77*en there 
exists a constant dqGfor which 

f 0(x^2(loglogxn ifii<8/2, 
Aq,G(x) = dq,Gxs + 1 0(x^2 logx(loglogxr) , i/i7 = 5/2, 

I 0(x"\ if 7]> 8/2. 

Proof. From the remark following Lemma 4 we obtain that 
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Nc<„ ...„,>(*) - A fl (i - \pi\-s)xs+o(x"fi(i + \Pi\-")): 
/ = 1 \ i = i / 

where the 0-constant depends on G but not on the primes px,...,pr. Since 

u , *>(-o-w-)n<--i/».r). 
i = i 

then from Lemma 1 we have 

ЛДO-ІАГV 
Ô2,G<p, .../>,>(*) = ~r I -

ШS) П 0 - ІАГ") 
1 = 1 

(12) 

' © ( j l O + l A r 1 1 ) 2 ^ 2 ) , if i?<*/2, 

+< © ( n o + iArn '^ iog^, if TJ = S/2, 

[ o(n(l+|p/ |-
, 7)2^ l ?), if tl>S/29 

where the 0-constants do not depend on pl9 ...,pr. 
Let A*G denote the set of squarefull elements from AqG. Every element 

neAqG can be uniquely written in the form n = km, where keA*G and m is 
squarefree with (k,m) = 1. This uniqueness and (12) yield 

AY-8 

03) A?,c(*)= i fiww(*/|*|) = j!£_ £ i*r'no + iprv + 
1*1 <-* SG(2o) 1*1 <* p|* 

* € > 4 $ , G keA1j,G 

( 0(4^\x/\k\)s'2)), if TJ< 5/2, 
+ Z 0(4^(k/\k\)"\og(x/\k\)), if J7 = <5/2, 

&& I 0(4<*k\x/\k\)*)), if /7 > «V2. 

Expanding the inner product in the above main term we obtain the following 
infinite series 

ZHv)\v\-s, 
V 

where X(v) = ( - l)n(u) is the Liouville function and v runs over the set 

Sk = {veG; p\v implies p|k for every pePG}. 
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Thus the main term leads formally to the series 

(14) £ X(v)\kv\~s. 
keA$,G 

ve$k 

Let keA*G and k = px
x ...pr

r. Then at > 2 for every i = 1, ...,r and simul
taneously a! + a2 + ... 4- ar = r + q. This implies firstly that 2r < ax + a2+ ... 
... + ar -= r + q, i.e. r < q. The equality ax+ a2+ ... + ar — r + q gives further 
that for every fixed r there exist only finitely many r tuples (a,,.... ar) satisfying 
it. Since r < q, the total number of possible exponent r tuples (au ..., ar) of 
elements in ^4*G is finite. 

Now 
00 

I l *» | -*=I I \kv\~s. 
\kv\ >x j = 0 Ux < \kv\ = 21 + ! JC 

keA]f,GiVe$k keA]f,G,veSk 

Fix one of the possible above mentioned exponent r tuples, say, (al9...9ar). Then 
every element in G can be expressed at most once in the form kv, where 
k = px

l ...pr
r and veSk. The product kv is squarefull and has at most r < q 

prime divisors. Therefore 

X \kv\'*< 2-JS-x~s-S¥)
G(2j+lx). 

Ux<\kv\<2J+lx 
keAlf,G,veSk 

Thus using Lemma 5 we get together 

£ \kv\-5<x-sfj2-jS<S(
2%(2j+lx) = 

\kv\ > x j = 0 

= x-m £ 2 - , , 0 /Qog(C /+ l)log2 + l o g x ) ^ 1 \ 2 , / + n O T = 

y-0 V ( j + l ) l o g 2 + logX / 

= jc-^^.oCOogjcY'-Ooglogjc)'-1)- £ 2-y5/2 = 
y = o 

= O(jc~*2-(log xY '-Ooglog *)«- ' ) . 

Since the number of possible exponent r tuples (a,, ...,ar) is finite as we have 
seen, we have proved that (14) is convergent and that 

AxS I m-sm + \p\-srl = 
ţG(2ô) \k\<x P\k 

kєAђ,G 

= dq,Gx
s + O^Ңlogx)^ •(loglogx)"-1), 
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where 

d9<G = A&(28) £ X(v).\kv\-S. 
keA|,G 

veSk 

We saw that o)(k) < q and therefore it is enough to realise the following two 
estimates: 
Similarly as in (11) we can prove that 

I ikr5/2<( x ipi^/2Y = o((iogiogxn 
1*1 < Jc \ IPfl| < x / 

keA$,G a>2 

which settles the case rj < 8/2. 
For // = 8/2 we have 

X ikr'/2-iogx/iki<iogx x ikr^-ooogx-oogiogx)^). 
|*| < x \k\ < x 

keA%,G keA%,G 

Finally, in the case 77 > 8/2 note that if keA*G and 

1 a, a 

then at> 2, 1 = l , . . .5r . Thus Ikl"77-^ IPi ••• A-l~27?. s i n c e 2y7 > ft t h e n 

X ikr^oo), 
1*1 < x 

keA}f%G 

and the proof is finished. 
In the next theorem we show that under certain circumstances the previous 

estimates can be improved. 

Theorem 3. Let G be an arithmetical semigroup satisfying Axiom A for which 
2rj < 8. Then for every q > 1 the estimate (5) implies 

AqA
x) = dq%Gx* + o(xsl2(loglogxf), 

whereas the estimate (6) implies 

^ , c W = dq%Gx*+ 0(x5i2(\og\ogxy-x). 

Proof. As a first step we prove an identity. Namely that for every keG 
of the form 

1 al ar 

k=PX
X ...Pr\ 
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we have 

O5) <22,C<*>(*)= I Kv)QXG(xl\v\), 
\i'\ < x 

where v runs over all the elements of the form 

k=p1
6,...pr\ b1?...,br-=0,1,... 

and where X(v) = (~lf(v). 
To see (15) note that |nG(n)| is the characteristic function of the set of 

squarefree elements in G and that 

I i^)i>r== n o + i/>r) = 
neG(k) p(=pG 

P*k 

(no + \p\-'))' no+ipr) 
>G / pePG 

P\k 

i' | f | neG 

Let 

BW = Q2,cW-^-Cc
,(2J)-x5. 

Then (13) gives 

A,.C(*)= I Q2.c<k>(xl\k\) = X Mv)Q2rG(x/\kv\) = 

(16) 

1*1 < -v \kv\ < X 
keA^G 

= A-&(28)xs X Hv)-\kv\-'+ X MtOR(*/IM). 
\kv\ < x \kv\ < x 

As in the proof of the previous theorem we have 

AQH25) I ^ = ^ + o ( ( ' ° t ° f ) ' " ' ) . 
1/V.̂ JC \kv\5 \ x ^ l o g x / 

Let us estimate the second term in (16). If M(x) = o(xs), then (5) implies the 

existence of a decreasing function h(x) with lim h(x) = 0 and for which 

|R(x)| </.(*)x5/2. 

Then for every fixed function g(x), which monotonically tends to infinity, we 

50 



have 

< 

Moreover, 

X X(v)R(x/\kv\)\ 
\kv\ < x 

< £ l*(*/l*»l)l+ I \R(x/\kv\)l 
\kv\ <Z x/g(x) x/g(x) < \kv\ <; x 

£ \R(x/\kv\)\<h(g(x))xs'2 £ \kv\-č,-< 
\kv\ < x/g(x) \kv\ < x 

<h(g(X))xs'2o(( i \Prs'2)) 
\\\pa\<.x J / \pa\ <> x 

Similarly as in (11) we obtain that the last expression is h(g(x))xs'*o((\og\ogx)q). 
Further, 

I \R(x/\kv\)\= X 0((x/\kv\)s'2)=* 
x/g(x) < \kv\ < x x/g(x) < \kv\ < x 

- (g(x))8l20( £ l) = (g(x)Y20(S%l(x)) ^ 
\x/g(x)<\kv\<x J 

= 0ttg(x))V2(\og\ogxy-* 
\ logx 

Now the first part of the theorem follows with g(x) = (logx)1!^, whereas the 
second part for 

h(x)=-l/logx, g(x) = (\ogxfs. 
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ФОРМУЛА РЕНЬИ С ОСТАТОЧНЫМ ЧЛЕНОМ 
ДЛЯ АРИФМЕТИЧЕСКИХ ПОЛУГРУПП 

§(еГап РогиЬвку 

Резюме 

Арифметическая полугруппа С — это мультипликативно записанная свободная ком
мутативная полугруппа с единицей со счетной системой образующих, наделеная гомомор
физмом — нормой |*| в мультипликативную полугруппу положительных действительных 
чисел, в которой для каждого х > 0 найдется только конечное число элементов п е С таких, 
что \п\ < х. Пусть для этого числа ^(х) выполняется условие Nс(x) -= Ах5 Л- 0(хп) для 
х -> оо. Уточняются результаты об асимптотической оценке числа &-свободных элементов в 
С и для числа элементов 

\а(х) = {пеС; \п\ = х, П(п) - с ф ) = д}9 

кде к, ^ — натуральные числа, к > 1. 
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