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Math . Slovaca 40 , 1990, No . 4, 413—422 

NON-BOREL MEASURES ON NON-SEPARABLE 
METRIC SPACES 

JAROSLAV MOHAPL 

ABSTRACT. Our study of non-Borel measures on non-separable metric spaces, the 
Borel a-algebra of which differs from the a-algebra generated by the open balls, is 
motivated by the works of R. M. Dudley [4, 5] and D. Pollard [11]. Our aim is to show 
that the "non-separable" theory containing the general results from [4, 5] and [11] can 
be without difficulties developed by applying the "theory of additive set functions on 
abstract spaces" which was developed by A. D. Alexandroff[l] and other authors (see 
[8, 12—16]). 

1. Introduction 

The history concerning the non-Borel measures on a a-algebra 3^(X) which 
is generated by the open balls of a nonseparable metric space X, d, the Borel 
a-algebra 0&(X) of which is strongly larger than ^(X), is described in detail in 
the introduction to [11]. We may only note that the problem arose in connection 
with the study of random elements with values in X, d which are not 33(X) 
measurable, but which are measurable with respect to 0^ (X) and converge in 
some sense to a &(X) measurable element. 

The main results of the "non-separable" measure theory are related to the 
convergence of a sequence (Pn) of probability measures on ^(X) to a probabil
ity measure P on (%(X) with a separable support. The greatest problem in the 
study of such sequences was to define a suitable notion of convergence and then 
to derive by means of it some manageable convergence criterions. 

The original "non-separable" theory was developed by R. M. Dudley 
[4, 5]. In [4] (Pn) was said to be convergent to P if and only if 
limj,*fdi>„ = \\m\* fdPn = J fdP For all bounded continuous functions f 
Here J* and J* denote the lower and upper integrals off respectively. 

Later Dudley observed in [5] that this kind of convergence is equivalent 
with the relation lim J f dPn = J f dP for all bounded continuous ^ (X) measur
able functions f 
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D. Po l l a rd [11] decided to study (Pn) and P restricted to the support S 
of P. He showed that the Borel a-algebra of S, where S is provided with the 
topology induced from X, d, is contained in ^ (X) and thus (Pn) with P can be 
considered as measures on a Borel a-algebra of a separable metric space. 

Our approach is based on the fact that the original topological measure 
theory was constructed by A. D. Alexandro f f [1] for abstract spaces of 
functions and measures. The bounded continuous ^ (X) measurable functions 
on X form naturally an abstract space in the sense of [1] and Dudley's result 
from [5] suggests the possibility to obtain a stimulating theory by applying the 
abstract constructions from [1] and the later works (see i.e., the works of F. 
Topsoe [12—15]). 

2. The Representation theorems 

Let X, d be a metric space. By &(X), 3F(X) and Jf(X) we denote the classes 
of all open, closed and compact subsets of X, respectively. The subclasses of 
&(X) and £F(X) which are in ^ (X) (the a-algebra generated by the open balls) 
are denoted by % (X) and 3F0 (X), respectively. 

% (X) is the smallest class of open sets which is closed with respect to the 
formation of countable unions, finite intersections and containing all the sets 
{x: d(x0, x) < c} and {x: d(x0, x) > c}, where x0eX, ce]0, oof 2F0 (X) consists 
of the complements to the sets in %(X) and both classes generate %(X). 

In virtue of the Lindeloff theorem, if X, d is a separable metric space, then 
%(X) agrees with <8(X) and %(X) agrees with the Borel a-algebra @(X). 
However, generally it may not be so and throughout this paper we will 
automatically suppose, in order to avoid the trivialities, that % (X) is strongly 
smaller than <$(X). 

If we denote the space of all bounded continuous functions with the supre-
mum norm,||. || by C(X) and its subspace, consisting of all the $0(X) measur
able functions by C0(X), then 

Theorem 2.1.: a) IffgeC0(X) and ce] — oo, oo[, then fg,f+ g and cf are in 
g 

f 
b) C0(X) is norm complete 
c) C0(X) consists just of those functions f for which {x: f(x) ^ c) and 

{x\f(x) ^ c} are in 2F0 (X) for all ce]-co, oof 
The proof of 2.1. follows immediately from the properties of C(X), the $0 (X) 

measurable functions and the definition of C0(X). 
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C0(X), all the constant functions are in C0(X) and if < oo, then^eC0(X). 



Theorem 2.2.: J^ (X) agrees with the class of all the sets {x: f(x) < c} and 
{x:f(x) ^ c} where feC0(X) and ce] —oo, oo[. 

Proof: Let & consist of all sets of the form {x:f(x) ^ c} or {x:f(x) ^ c} 
for some fe C0(X), c e ] - o o , oo[. By 2.1. c) & c % (X). By the definition of 
%(X) all the functions c A d(x0, x), x0eX, ce]-oo, oo[ are in C0(X). Consequ
ently <F contains all the sets {x: c A d(x0, x) ^ c} and F = {x: c A d(x0, x) ^ c} 
for x 0 e l However, these sets generate J^ (X), whence Jft (Z) <= SFm 

Theorem 2.3.: a) If Fe^(X), then there is feC0(X) such that 
F={x:f(x) = 0}. 

b) If Fu F2e^0(X) are disjoint, then there is feC0(X) such that 
Pi = {x:f(x) = 0}, F2 = {x:f(x) = 1}. 

c) J^ (X) contains all one point sets 
d) $F0 (X) contains all closed separable subsets of X, particularly the class 

JT{X). 

Proof: a) By 2.2. to each Fe^0(X) there is geC0(X) and ce]-oo, oo[ 
for which F = {x: g(x) ^ c}. Now it suffices to putf= (g — c)+. 

b) f = fi/(f? + fl)> where f, f2eC0(X) are those functions for which 
Fx = {x:f(x) = 0}, F2 = {x:f2(x) = 0}. 

c) follows from the fact that all the functions 1 A d(x0, x), x0eX, are in 
C0(X). 

d) If (x,) is a dense subset in Fe^(X), then 

f(x): = 1 A d(x, F) = inf 1 A d(x, x,) 
i 

is %(X) measurable, whence F= {x:f(x) = 0 } e l 0 ( I ) . By the definition 
Fe^0(X). 

The bounded linear functional L on C0(X) is said to be T-smooth (a-smooth) 
if for each (countable) decreasing net (sequence) (fa) c= C0(X) with limfa(x) = 0 
for all xe X lim L(fa) = 0. The same functional is said to be tight if for each net 
(fa) a C0(X) with ||fa|| ^ 1 and limfa = 0 uniformly on the compact sets 
lim L(fa) = 0. Replacing C0(X) with C(X) we obtain the definition of a-smooth, 
T-smooth and tight functionals on C(X). 

LetL(X) and L0(X) be the spaces of all bounded linear functionals on C(X) 
and C0(X), respectively. If we denote the subspaces of the a-smooth, T-smooth 
and tight functionals in L(X) (L0(X)) by L(X, a), L(X, T) and L(X, t) (L0(X, a), 
L0(X, x) and L0(X9 t)), respectively, then 

Theorem 2.4.: If 0e{a , T, t} and LeL0(X\ then 

LeL0(X, Q)oL+ and L~eL0(X, S)o\L\eL0(X, 0 ) 
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where 
L+w-™p,L(л, L-(Л = - 0 Й f . / m ÌЦ = o!Zfm 

for all feCoW. The h are taken in C0(X). 
Proof: The fact that L+, L~ and \L\ are well-defined (non-negative) func

tional in L0(X) is proved in [1; ch. II, theorem 2]. Particularly, it is verified that 
L = L+ — L~. The proofs of the equivalences agree with the proofs of the 
theorems 7, 8 and 9 in [16; part I]. However, we have to work with C0(X) instead 
of C(X). 

Of course, 2.4. stays to be true if we consider L(X) instead of L0(X) and 
L(X, 0 ) instead of L0(X, 0 ) for 0e{a , T, t}. 

Let M(X) be the space of all bounded Borel measures on @l(X) and M0(X) be 
the space of all bounded Jfc (X) regular measures on J^ (X) (m is said to be ^0 (X) 

regular if mE = lim mF for all EG 0bo (X), where D(E) = {F: f c £, / r e ^ W } 
FeD(E) 

is directed by the inclusion). In [1, ch. II] it is proved that. 
Theorem 2.5.: To each LeL0(X) there is just one meM0(X) with the property 

L(f) = m(f)for allfeC0(X). Moreover L+(f) = m+(f), L~(f) = m~(f) and 
\L\(f) = \m\(f)for allfeC0(X), where 

m+E = sup mF, m~E = — inf mF, \m\E = sup \mF\ 
F^E F^E F c £ 

for all Ee@0(X). The Fare taken in ^0 (X). 
It is well known that 2.5. holds if we replace L0(X), M0(X) and C0(X) by 

L(X), M(X) and C(X), respectively. Using the theorem 2.4. and the methods in 
[12] we can easily prove. 

Theorem 2.6.: The functional LeL0(X) is o-smooth, x-smooth or tight if and 
only if the measure meM0(X) from 2.5. representing L on C0(X) is o-smooth, 
x-smooth or tight, respectively. 

We note that meM0(X) is said to be T-smooth (a-smooth) if for each 
(countable) decreasing net (sequence) (Fa) e !F0 (X) with f] Fa = 0 lim mFa = 0 
and m is said to be tight if to each 8 > 0 there is Ke Jf (X) with \m\ X — K < 8. 

So we have stated that there is a one to one correspondence between L0(X), 
M0(X) and L0(X, 0) , M0(X, 0 ) for 0e{a , T, t}, where M0(X, a), M0(X, T) and 
M0(X, t) denotes the subspaces of all a-smooth, T-smooth and tight measures in 
M0(X). An analogous result can be formulated for the spaces M(X, a), M(X, x) 
and M(X, t) of all a-smooth, T-smooth and tight Borel measures, respectively. 

Some other analogies with the Borel measures are true for M0(X) as well. The 
bounded measure m on &0(X) (not necessarily regular) is said to be a-additive 

X X 

if mE = £ mEn whenever E = ( J Ene$0 (X) and the En are pairwise disjoint. 
w = 1 « = 1 
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If m is a-additive then lim mEn = m [J En for each increasing sequence 

(En)cz@0(X). 

Theorem 2.7.: Each bounded a-additive measure on <90 (X) is $F0 (X) regular\ 
i.e. belongs to M0(X9 a). 

Proof: Each a-additive measure on 0&O(X) is a decomposition of two 
non-negative a-additive measures on 380(X) (see the Hahn and Jordan decom
position [8; sec. 9, theorem A]). The pavings %(X) and J^ (X) form on X a 
completely normal space, thus each Ge%(X)(Fe<F0 (X)) can be written in the 

00 / 00 \ 

form G = \^J Fn lF=f)Gn\9 where (F„) a 3F0 (X) form an increasing 
n=\ \ n=\ ) 

((Gn) c= %(X) a decreasing) sequence of sets. Thus if m is non-negative and 
a-additive, then mG = limmFn = sup{mF: F ^G9Fe^0 (X)}9 mF = limmGn = 
= inf{mG: G c F9 Ge%(X)}9 i.e. m is inner regular on %(X) and outer regular 
on 3F0 (X). Consequently m is regular on &0(X) [8, sec. 52]. 

From 2.7. it follows that studying the probability measures on J 0 ( I ) we can 
restrict our attention to the regular ones and the theory related to the regular 
a-smooth measures contains those from [4, 5] and [11]. 

Theorem 2.8.: To each m e M0(X9 T) there is a separable set S9Se&0 (X)9 which 
is a countable union of totally bounded sets from J^ (X) and mS = mX. 

Proof: In virtue of 2.6. it suffices to consider only the non-negative 

measures. Let meM0(X9 x) be non-negative. The sets 1V(x0, n) = \x: d(x0, x) < 

< - >, where x0 e X9 n is a natural number, are in % (X). Their finite unions and 
n) 

intersections form a direction with respect to the inclusion and filter up to X. 
Due to the t-smoothness to a given 8 > 0 there are xf, ..., x£ such that 

mX<m\J N(xi9 n) + e/2". Put FE = f) I (J N(x?, n))9 where 1V(xf, n) = 
i=\ n= 1 \ i = 1 / 

x: d(x,w, x) < - \. FEe!F0 (X)9 it is totally bounded and therefore separable. 

Moreover mX < mFe + 8. Now S = ( J Fe9 e-rational, has the desired properties. 

Corollary 2.9.: Each meM0(X9 x) has a separable support in ^0(X). 
Proof: It is a simple consequence of 2.8. and 2.3. d). 

Corollary 2.10.: IfX9 d is a complete metric space, then M0(X91) = M0(X9 x). 
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3. The weak topology w(M0(X), C0(X)). 

Now we are ready to state the main properties of the weak topology 
w(M0(X), C0(X)). The well-known Alexandroff and Portmanteau theorem [1; 
ch. IV, § 16, theorem 2] and [13, part II, theorem 8.1.] says: 

Theorem 3.1.: Let m be a measure in M0(X) and (ma) a net in M0(X). Then 
the following conditions are equivalent: 

i) limsupma(f) ^ m(f) 
for all bounded &0(X) measurable u.s.c functions, 

ii) liminfma(f) ^ m(f) 
for all bounded 8ft0(X) measurable l.s.c functions, 

iii) lim sup maF ^ mF and lim maX = mX for all Fe 3F0 (X), 
iv) lim inf maG ^ mG and limmaX = mX for all Ge%(X), 
v) (ma) converges to m in w(M0(X), C0(X)). 
Proof: Clearly i ) o i i ) and i) with ii) implies v). 
Since C0(X) is a complete system of functions and J^ (X) forms from X a 

completely normal space, for each Fe^0(X) we can write mF = inf{m(f): 
1 f̂̂  %F,feC0(X)} (see i.e. [1, ch. II, §7, theorem 1]. Consequently to each 
8 > 0 and fixed Fe^0 (X) there is feC0(X), 1 ̂ f̂  %F with m(f) < mF + 8. 

mF + 8 > m(f) = limma(f) ^ lim maF, 

which proves the implication v) => ii). Clearly ii) => iii). The proof of iii) => i) is 
based on the fact that if 0 f̂̂  1 and f is J^ (X) measurable and lower 

1 " 
semicontinuous, then for each n the function s„(x) = - V y f n satisfies the 

relations limsupma(s„) ^ m(s„) and s„^f^- + s„. More in detail see [13, 
n 

theorem 8.1.]. 
I hope the reader has noticed that l.s.c. and u.s.c. are the abbreviations of 

lower semicontinuous and upper semicontinuous. 
Remark 3.2.: Theorem 3.1. holds as well for M(X), C(X). 
Theorem 3.3.: The spaces M + (X, T) and M0(X, T) provided with the topolo

gies w(M(X), C(X)) and w(M0(X), C0(X))y respectively, are homeomorphic. 
Proof: Each m0eM0(X, x) has a unique extension to a measure 

meM + (X9 T) [13, theorem 5.1.]. This proves the one to one correspondence 
between the members of M+(X, T) and M0(X, x). 

Let (ma) eM+(X, x) be a net, m be a measure in M + (X, x). By m0a and m0 we 
will denote the restrictions of ma and m from 3$(X) to 0&o(X), respectively. 

Clearly if (ma) converges to m in w(M(X), C(X)), then (m0a) converges to m0 

in w(M0(X), C0(X)). Conversely, if (m0a) converges to m0 in w(M0(X), C0(X)), 
then for each G0e%(X) liminfmaG0 ^ mG0 (see 3.1. iv)). &0(X) contains the 
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base for 0$(X). Thus to a given Ge^(X) there is a net (G0) c ^0(X) filtering up 
to G. By the T-smoothness of m to each 8 > 0 there is G0 e (G0) with 
mG < mG0 + e and 

mG — 8 < mG0 ^ lim inf maG0 ^ lim inf maG. 

This proves that mG ^ lim inf maG for each Ge^(X) . The rest of the proof 
follows from remark 3.2. 

Theorem 3.4.: Let (ma) c M0(X) be a net. Ifm is a measure in M0(X, x) and 
if m is the x-smooth extension of m from %(X) to @)(X), then the conditions 

i) ("O converges to m in w(M0(X)y C0(X)), 
ii) limma*(f) = limm*a(f) = m(f) for allfeC(X), 

iii) lim supm^f) ^ m(f) for all bounded u.s.c. f 
iv) liminfm*a(f) ^ m(f) for all bounded l.s.c.f 

where m^m^J denotes the upper (lower) integral ofma, are equivalent. 
Proof: ii) => i) is trivial. If i) holds and iff is a bounded @)0(X) measur

able l.s.c. function, then by 3.1. ii) m(f0) ^ liminfma(f0). Iff is bounded and 
l.s.c, 0 < f< 1, then there is an increasing net (fop) of bounded @l0(X) measur
able l.s.c. functions with 0 <fop < 1 and limfp = f By the x-smoothness of m 
m(f) = lim m(f0p). Whence to each 8 > 0 there is p such that m(f) < m(fop) + 8 
and 

"Hf) - e < m(f0p) ^ liminfma(fop) ^ lim inf m*a(f), 

which shows that m(f) ^ liminfm*a(f). This relation can be extended to each 
l.s.c. function, i) => iv) is proved. The implications iv) => iii) => ii) are now 
obvious. 

3.3. states that there is no need to develop any "non-separable" theory for 
M0(X, x) provided with the topology w(M0(X), C0(X)). 3.4. i) => ii) was proved 
by Dudley [5] and later, by methods more similar to ours, by Pollard [11]. 

Theorem 3.5.: If (ma) c Af0(I) is a net converging to meM0(X, x) in 
w(M0(X), C0(X)), then the conditions i)—iv) are equivalent to the relations 

v) limmais = fhEfor each m continuity set Ee&0(X) 
vi) limm^f) = lim m*a(f) = m(f) for each bounded m continuity function. 
The proof of 3.5. uses the arguments analogous to those in the proof of [13, 

part II, theorem 8.1.] (compare also with [11, theorem 2]). 

4. Completness and Compactness in w(M0(X), C0(X)) 

The theorem 4 from A. D. Alexandroff in [1; ch. V, § 19] can be interpreted 
by the following: 
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Theorem 4.1.: If (mn) c M0(X, a) is a sequence of measures converging to 
meM0(X) in the weak topology w(M0(X), C0(X)), then meM0(X, a). 

Using the arguments of V. S. Varadarjan [13, part II, §6] we can state. 
Theorem 4.2.: If (mn) c: M0(X, x) is a sequence converging weakly to 

m e M0(X), then m e M0(X, x). 
Proof: The mn are concentrated on closed separable subsets in J^ (X) 

(corollary 2.9.), thus by 2.3.d there is a separable Fe ^ (X) such that all the mn 

are concentrated on F. Since \m\ X — F ^ lim inf \mn\ X — F = 0, m has a separ
able support. By 4.1. m is a-smooth, whence, it must be x-smooth. 

Corollary 4.3.: IfX, d is a complete metric space and (mn) <= M0(X, t) is weakly 
convergent in M0(X), then it converges in M0(X, t). 

4.1.—4.3. state that w(M0(X), C0(X)) is sequentially complete under the same 
conditions as w(M(X), C(X)), although as regards some equivalence of these 
topologies, we are sure only if the measures are non-negative and x-smooth. This 
situation is made clear in 

Theorem 4.4.: Let (ma) cz M(X) be a net, m be a measure in M(X)..Let(m0a) 
and m0 be the restrictions of the ma and m from 88(X) to l 0 ( I ) , respectively. If 
the ma are concentrated on a separable closed set Fe^0 (X), then (ma) converges 
to m in vv(M(X), C(X)) if and only if(m0a) converges to m0 in vv(M0(X), C0(X)). 

Proof: Using only some trivial modifications the reader can verify that 
the Tietze extension theorem [6, theorem 2.1.8.] can be modified by the follow
ing: LetfF be a continuous function on Fe ^ (X) with the induced topology. If 
fFe C0(F), thenfr has an extension to a function fe C0(X). 

Now if the m0a are concentrated on a separable set Fe 3F0 (X) and if they 
converge to m0 in w(M0(X), C0(X)), then m0 is concentrated on F (see the proof 
of 4.2.). By the Tietze theorem, to eachfeC(X) there isf0eC0(X) such that 
f0 = fon F. This implies that (ma) converges to m in w(M(X), C(X)). 

Since the reverse assertion is trivial, the proof is finished. 
Theorem 4.5.:If(ma) c: M0

+ (X) converges tomeM0+ (X) in w(M0(X), C0(X)), 
then 

a) meM0(X, x)(M0
+(X, a)) if and only if for each decreasing net (sequence) 

(R) cz<F0(X) with p | p̂ = 0 
P 

i) inf limsupn^Fp = 0, 

b) meM0
+(X, t) if and only if 

\\) inf sup l imsupm a F=0 
' KeJT{X) Fc:K< 

Proof: a) The necessity of i) is an immediate consequence of 3.1. iii). 

r versely, let (Fn) c J j ( I ) b e a decreasing sequence with f) Fn = 0. By [13, 
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part I, theorem 15] there are increasing (E*) c J* (X), (G*) c %(X) such that 

F*cX- F„, F* c G* c E*+, for all « and (J E* = X. Using i) we obtain the 
n 

relation mX = supmX — Fn9 which proves the a-smoothness. 
n 

If (_Fp) c ^ (X) is a decreasing net with f] _Fp = 0, then to each P there is at 
least one Fe^(X) and Ge%(X) for which _F_2G_2_Fp and the class 
{F: F =2 G _2 Fp for some P and Ge%(X)} forms a decreasing net filtering to 0. 

Now, using i) and 3.1. hi), we can easily prove that m(~) F$ = inf mF^. 

b) If meM0(X, t), then by 3.1. hi) 

mX = sup mK = sup inf mG ^ sup inf liminfmaG ^ limmaX, 
Ke.r(X) Ke j f (X) G 2 K Ke JT(X) G 3 K 

which proves the necessity of ii). 
Now let (ma) converge weakly to m and let ii) hold. (ma) contains a subnet 

(ma ) such that limma G exists for all Ge%(X). The relation 

m'E= sup inf liminfma<_7 for all Ee3#0(X) 
KczE G=>K 

defines a measure m'eM0(X, t) (see [14]). m'G ^ limma G for all Ge%(X) and 
since 

lim ma X = lim ma X — inf sup lim sup maF = 
P P KeJT(X) Ecr K<- P 

= sup inf lim inf mn G ^ lim m„ X 

limma X = m'X. However, this means that (ma) converges weakly to m' and 
there must be m' = m. 

Corollary 4.6.: Let (ma) c M0(X) be a net of measures with limsupmaX < 
< oo. Then (ma) has a weakly convergent subnet with the limit point 
meM0

+(X). 
a) If the condition i) from 4.5. holds for each decreasing net (sequence) 

(Fp) c ^ (X) with P | Fp = 0, then meM 0
+ ( I , t)(/w6M0

+ (X, a)). 
P 

b) if ii) from 4.4. b) holds, then meM0
+(X, t). 

If we consider the x-smooth case in a) and the tight case in b), then we can say 
instead of net and subnet sequence and subsequence. 

The first part of 4.6. follows from the Banach-Alaoglu theorem and from 4.5. 
The second part uses the fact that the limit measure must be concentrated on a 
separable subset in ^0(X). For more detail see [11, sec. 4.]. 
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