Mathematica Slovaca

Jerzy Topp; Lutz Volkmann
 Antineighbourhood graphs

Mathematica Slovaca, Vol. 42 (1992), No. 2, 153--171

Persistent URL: http://dml.cz/dmlcz/136546

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ANTINEIGHBOURHOOD GRAPHS

JERZY TOPP ${ }^{1) *)}$--... LUTZ VOLKMANN**)

Abstract

A graph H is called a neighbourhood graph if there exists a graph G in which the subgraph induced by the neighbours of each vertex is isomorphic to H. A graph H is said to be a j-antineighbourhood graph if there exists a graph G in which, for each vertex v of G, the subgraph induced by the vertices at distance at least $j+1$ from v is isomorphic to H. The classes of neighbourhood and j-antineighbourhood graphs are denoted by \mathcal{N} and \mathcal{A}_{j}, respectively. It is shown that every graph belongs to \mathcal{A}_{j} with $j \geq 2$, and that a graph belongs to \mathcal{A}_{0} if and only if it is a vertex-deleted subgraph of a vertex-symmetric graph. Some examples and properties of graphs which belong to \mathcal{A}_{0} are given. It is shown that a graph belongs to \mathcal{A}_{1} if and only if its complement belongs to \mathcal{N}. Next, the block graphs which belong to \mathcal{A}_{1} are determined. Finally, some results on cycles whose squares belong to \mathcal{N} and to \mathcal{A}_{1} are also included.

1. All graphs considered in this paper are finite, undirected, and with no loops or multiple edges. For a graph G, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. For a vertex v of G, let $N_{G}(v)$ be the set of vertices (neighbours) adjacent to v in G and, more generally, $N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$ for a subset S of $V(G)$. If X is a subset of $V(G)$, then $G-X$ denotes the subgraph of G induced by $V(G)-X$. We write $G-x$ instead of $G-\{x\}$ for $x \in V(G)$. For a vertex v of G, the neighbourhood graph $N(v, G)$ of the vertex v is the subgraph of G induced by the set $N_{G}(v)$. Denote by \mathcal{N} the set of all graphs H with the property that there exists a graph G in which the neighbourhood graph of every vertex is isomorphic to H. The problem which graphs belong to \mathcal{N} was raised by Zykov in [37]. Many papers on this subject have been published. Some of these papers investigated which graphs H are in \mathcal{N} and some characterized, for a given graph $H \in \mathcal{N}$, all graphs G such that $N(v, G)$ is isomorphic to H for any vertex v of G. For example, [4] lists all trees with fewer than 10 vertices which belong to \mathcal{N}. Similarly, [18] presents all graphs on 6 or fewer vertices which are in \mathcal{N}. Many

[^0]examples and characterizations of graphs from \mathcal{N} in more restricted classes of graphs were obtained in $[4,5,7-9,11-14,17,18,21,34,36]$. The ideas and methods of group theory applied to Zykov's problem (and to related problems) gave many interesting and important results in $[4,5,12,13,15-18,22,23,30,31]$. Some generalizations and modifications of Zykov's problem were considered in [2, 3, 24-28, 32, 35].

We consider the next modification in which we wish to change somewhat the point of view. Let j be a non-negative integer. For a vertex v of a graph G, the j-antineighbourhood graph $A_{j}(v, G)$ of the vertex v is the subgraph of G induced by the set $\left\{u \in V(G): d_{G}(u, v) \geq j+1\right\}$, where $d_{G}(x, y)$ denotes the distance between vertices x and y in G. Certainly, for a vertex v of G, $A_{0}(v, G)$ is the vertex-deleted subgraph $G-v$ of G. Similarly, $A_{1}(v, G)$ is obtained from G by removing the vertex v and all its neighbours. Let \mathcal{A}_{j} denote the set of all graphs H with the property that there exists a graph G in which the j-antineighbourhood graph $A_{j}(v, G)$ of every vertex v of G is isomorphic to H. It is natural to ask about graphs which belong to the set \mathcal{A}_{j} $(j=0,1, \ldots)$. In Section 2 , we characterize the graphs of \mathcal{A}_{0} in terms of vertexsymmetric graphs. We also present some examples and structural properties of graphs from \mathcal{A}_{0}. The connection between the graphs from the set \mathcal{A}_{1} and those which belong to \mathcal{V} is given in Section 3. Then we consider the problem of characterizing block graphs which belong to \mathcal{A}_{1}. We have some results for cycles whose squares belong to \mathcal{A}_{1} and \mathcal{N}, respectively. Finally, in Section 4 , it is indicated that every graph H belongs to the class \mathcal{A}_{j} for each integer $j \geq 2$.

In general, we follow the terminology and notation of H ar ary [19], and introduce new notation as it is required. Let $d_{H}(v), \delta(H)$ and $\Delta(H)$ denote the degree of a vertex v in a graph H, the minimum degree and maximum degree of H, respectively. A graph H is regular if $\delta(H)=\Delta(H)$. A graph H is biregular if $\delta(H)<\Delta(H)$ and each vertex of H is of degree either $\delta(H)$ or $\Delta(H)$. For a graph H, let $(H)_{\delta}$ denote the graph obtained from H by adding a new vertex and joining it to all vertices of degree $\delta(H)$ in H. For example, we have $\left(K_{n}\right)_{\delta} \cong K_{n+1}$. The symbols $F \cup G, F+G, F[G]$ and $F \times G$ represent the union, join, lexicographic product and cartesian product of graphs F and G, respectively. By $n G$ we denote the disjoint union of n copies of a graph G. A path, cycle, and complete graph with n vertices is denoted by P_{n}, C_{n}, and K_{n}, respectively. $K_{n_{1}, \ldots, n_{p}}$ denotes a complete p-partite graph with the vertex classes having $n_{1}, n_{2}, \ldots, n_{p}$ vertices, respectively. A wheel W_{n} on $n+1$ vertices is a graph isomorphic to $C_{n}+K_{1}$. The complement graph of a graph G is denoted by \bar{G}. By \cong we denote an isomorphism of graphs.

A vertex v of a graph G is called a cut vertex of G if $G-v$ has more components than G. A connected graph with no cut vertex is called a block. A block of a graph G is a subgraph of G which is itself a block and which is
maximal with respect to that property. A block H of G is called an cnd block of G if H has at most one cut vertex of G. A connected graph G is a block graph if every block of G is a complete graph. Note that if v is a non-cut vertex in a block graph G, then the vertices of $N_{G}(v) \cup\{v\}$ induce a block in G.
2. Before proceeding to a characterization of graphs which belong to \mathcal{A}_{0}, we recall some useful definitions and facts. In a graph H, two vertices v and u are said to be similar if there exists an automorphism α of H such that $a(v)=u$. A graph H is said to be vertex-symmetric if every two vertices of H are similar. Two edges $v u$ and $t w$ of a graph H are similar if there exists an automorphism α of H such that $\{\alpha(v), \alpha(u)\}=\{t, w\}$. A graph is edge-symmetric if each pair of its edges is similar. A graph is symmetric if it is both vertex-symmetric and edge-symmetric. There is an important class of graphs known as circulants. Following Boesch and Tindell [6], for an integer $n \geq 3$ and a subset S of $\{1,2, \ldots,\lfloor(n+1) / 2\rfloor\}$, the circulant graph $C_{n}(S)$ is a graph on n vertices $v_{0}, v_{1}, \ldots, v_{n-1}$, where each vertex v_{i} is adjacent to the vertices $v_{2 \pm s}$ for $s \in S$ (the subscripts are taken modulo n). Certainly, $C_{n}(\emptyset) \cong \overline{K_{n}}, C_{n}(\{1\}) \cong C_{n}$, and $C_{n}(\{1,2\})$ is isomorphic to the square C_{n}^{2} of C_{n}^{\prime}. It is casy to observe that circulant graphs are vertex-symmetric. The converse is not true since, for example, $C_{4} \times K_{2}$ is a vertex-symmetric graph which is not circulant. However, Turner [29] has proved that every vertex-symmetric graph of prime order is a circulant graph. For further results about vertex-symmetric, edge-symmetric, and symmetric graphs, the reader is referred to the book by Y a p [33] and the paper [10]. Other papers on this subject can be found in the references of Y a p) [33, pp. 145-155].

We now state and prove a characterization of graphs which belong to \mathcal{A}_{0} in terms of vertex-symmetric graphs. The proof is based in part on facts announced in [20].

THEOREM 1. A graph H belongs to \mathcal{A}_{0} if and only if $H=n \boldsymbol{\Lambda}_{1}$ for some positive integer n or its supergraph $(H)_{\delta}$ is a vertex-symmetric graph.

Proof. Certainly, $n K_{1} \in \mathcal{A}_{0}$ since $(n+1) K_{1}-v \cong n K_{1}$ for each vertex v of $(n+1) K_{1}$. Suppose now that $(H)_{\delta}$ is a vertex-symmetric graph and let u, be a vertex such that $(H)_{\delta}-w=H$. Since $(H)_{\delta}$ is vertex-symmetric, for each vertex v of $(H)_{\delta}$ there exists an automorphism α of $(H)_{\delta}$ that maps w to v. Then α restricted to $(H)_{\delta}-w$ is an isomorphism between $(H)_{\delta}-w=H$ and $(H)_{\delta}-v$. Hence $H \in \mathcal{A}_{0}$.

To prove the converse we assume that $H \in \mathcal{A}_{0}$ and $H \neq u \mathcal{N}_{1}$. Let G be a supergraph of H with $V(G)=V(H) \cup\{w\}$ and such that $G-v \cong H$ for each $v \in V(G)$. We prove that $G \cong(H)_{\delta}$ and G is vertex-symmetric.

First we show that G is regular. Let v and u be two vertices of G. Since the graphs $G-v$ and $G-u$ are isomorphic, they have the same number of
edges. Hence, $|E(G)|-d_{G}(v)=|E(G-v)|=|E(G-u)|=|E(G)|-d_{G}(u)$ and, therefore, $d_{G}(v)=d_{G}(u)$. That establishes the regularity of G. Surely, $\delta(G-w)=\delta(G)-1$ and $\left\{v \in V(G-w): d_{G-w}(v)=\delta(G-w)\right\}=N_{G}(w)$. It now follows easily that G is isomorphic to $(G-w)_{\delta}$ and, therefore, to H.

In order to prove that G is vertex-symmetric, it suffices to show that for every vertex v of G there exists an automorphism α of G for which $\alpha(w)=v$. Let $\alpha^{*}: V(H) \rightarrow V(G-v)$ be an isomorphism between H and $G-v$. Since α^{*} maps the set $\left\{x \in V(H): d_{H}(x)=\delta(H)\right\}=N_{G}(w)$ onto the set $\{y \in$ $\left.V(G-v): d_{G-v}(y)=\delta(G-v)\right\}=N_{G}(v)$, the function $\alpha: V(G) \rightarrow V(G)$, where $\alpha(x)=\alpha^{*}(x)$ if $x \in V(H)$ and $\alpha(w)=v$, is the desired automorphism.

The following two results follow easily from Theorem 1, and they are of help in deciding whether or not a given graph belongs to the family \mathcal{A}_{0}.

COROLLARY 1. A graph H belongs to \mathcal{A}_{0} if and only if it is a vertex-deleted subgraph of a vertex-symmetric graph.

COROLLARY 2. If a graph H belongs to \mathcal{A}_{0}, then exactly one of the following statements is true:
(i) H is regular and $H=n K_{1}$ or $H=K_{n}$ for some positive integer n;
(ii) H is biregular, in which case (a) $\Delta(H)=\delta(H)+1$ and (b) H has exactly $\delta(H)+1$ vertices of degree $\delta(H)$.

Note that the converse of Corollary 2 is not true. This can be seen with the aid of the graph H illustrated in Fig. 1. This graph satisfies the condition (ii) of Corollary 2, but it does not belong to \mathcal{A}_{0} since its supergraph $(H)_{\delta}$ is not vertex-symmetric as it has some vertices that are contained in two triangles and others which are not.

Figure 1.

Corollary 3. A cycle C_{n} belongs to \mathcal{A}_{0} if and only if $n=3$.
Proof. The result follows easily from Corollary 2.
Corollary 4. A wheel W_{n} belongs to \mathcal{A}_{0} if and only if $n=3$ or $n=4$.
Proof. The assertion is apparent for W_{3} since $W_{3} \cong K_{4}$. Since $\left(W_{4}\right)_{\delta} \cong$ $C_{4}+2 K_{1}$ is a vertex-symmetric graph, $W_{4} \in \mathcal{A}_{0}$ by Theorem 1. Finally, Corollary 2 implies that $W_{n} \notin \mathcal{A}_{0}$ for $n \geq 5$ since in this case W_{n} is biregular and $\Delta\left(W_{n}\right) \geq \delta\left(W_{n}\right)+2$.

Corollary 5. A block graph H belongs to \mathcal{A}_{0} if and only if H is a complete graph or a path.

Proof. According to Corollary 2 , every complete graph belongs to \mathcal{A}_{0}. In particular, the path $P_{1}=K_{1} \in \mathcal{A}_{0}$. If $n \geq 2$, then $C_{n+1}-v \cong P_{n}$ for each $v \in V\left(C_{n+1}\right)$ and thus $P_{n} \in \mathcal{A}_{0}$.

Conversely, assume that a block graph H belongs to \mathcal{A}_{0} and H is not a complete graph. Let V_{δ} be the set of vertices of degree $\delta(H)$ in H. By Corollary $2,\left|V_{\delta}\right|=\delta(H)+1=\Delta(H)$. Since H is not a complete graph, H has at least two end blocks and each of them has exactly $\delta(H)$ vertices of degree $\delta(H)$. It follows that $\delta(H)+1=\left|V_{\delta}\right| \geq 2 \delta(H)$. Then $\delta(H)=1=\Delta(H)-1$, so H is a path.

Theorem 2. A graph H belongs to \mathcal{A}_{0} if and only if its complement \bar{H} belongs to \mathcal{A}_{0}.

Proof. This follows from the fact that $\overline{G-v}=\bar{G}-v$ for every graph G and each vertex v of G.

Let \mathcal{A}_{0}^{c} be the subfamily of \mathcal{A}_{0} consisting of all connected graphs which belong to \mathcal{A}_{0}. Since a graph or its complement graph is connected, in our effort to find all graphs of \mathcal{A}_{0}, Theorem 2 allows us to concentrate on the graphs of the family \mathcal{A}_{0}^{c}. However, for disconnected graphs we have a useful result.

Theorem 3. A disconnected graph H with $p \geq 2$ components belongs to \mathcal{A}_{0} if and only if either $H \cong p K_{1}$ or $H \cong F \cup(p-1)(F)_{\delta}$ for some graph F from \mathcal{A}_{0}^{c}.

Proof. Since the "if" part is apparent, we prove the "only if" part. Suppose that a graph H with $p \geq 2$ components belongs to \mathcal{A}_{0} and $H \not \equiv p K_{1}$. Since $(H)_{\delta}$ is vertex-symmetric (by Theorem 1), it does not have a cut vertex, so $(H)_{\delta}$ has also p components. Certainly, these components must be mutually isomorphic and vertex-symmetric. Thus, there exists a connected vertex-symmetric $\operatorname{graph} G\left(\neq K_{1}\right)$ such that $(H)_{\delta} \cong p G$. Consequently, $H \cong(H)_{\delta}-v \cong p G-u \cong$
$(G-u) \cup(p-1)(G-u)_{\delta}$ for every vertex v of $(H)_{\delta}$ and every vertex u of $p G$. Since G is vertex-symmetric, $G-u \in \mathcal{A}_{0}$ by Corollary 1 . But G has no cut vertex, so $G-u$ is connected and it belongs to \mathcal{A}_{0}^{c}. Thus $H \cong F \cup(p-1)(F)_{\delta}$ for $F=G-u \in \mathcal{A}_{0}^{c}$.

A similar result holds for graphs whose complements are disconnected.
COROLLARY 6. If H is a graph whose complement has $p \geq 2$ components, then H belongs to \mathcal{A}_{0} if and only if either $H \cong K_{p}$ or $H \cong \bar{F}+K_{p-1}\left[\overline{(F)_{\delta}}\right]$ for some graph $F \in \mathcal{A}_{0}^{C}$.

Proof. Since the complement graph \bar{H} of H has $p \geq 2$ components, Theorems 2 and 3 imply that H belongs to \mathcal{A}_{0} if and only if either $\bar{H} \cong p K_{1}$ or $\bar{H} \cong F \cup(p-1)(F)_{\delta}$ for some $F \in \mathcal{A}_{0}^{c}$. But this is equivalent to saying that either $H \cong \overline{p K_{1}} \cong K_{p}$ or $H \cong \overline{F \cup(p-1)(F)_{\delta}} \cong \bar{F}+\overline{(p-1)(F)_{\delta}} \cong \bar{F}+K_{p-1}\left[\overline{(F)_{\delta}}\right]$ for some $F \in \mathcal{A}_{0}^{c}$.

COROLLARY 7. A complete p-partite graph $K_{n_{1}, \ldots, n_{p}}$ with $p \geq 2$ and $n_{1} \leq$ $n_{2} \leq \cdots \leq n_{p}$ belongs to \mathcal{A}_{0} if and only if either $n_{1}=\cdots=n_{p}=1$ or $n_{1}+1=n_{2}=\cdots=n_{p}$ for any positive integer n_{1}.

Proof. The result is immediate if $n_{1}=n_{2}=\cdots=n_{p}=1$. If $n_{1}+1=$ $n_{2}=\cdots=n_{p}$ with $p \geq 2$ and $n_{1} \geq 1$, then $K_{n_{1}, \ldots, n_{p}} \cong \overline{K_{n_{1}}}+K_{p-1}\left[\overline{\left(K_{n_{1}}\right)_{\delta}}\right]$ belongs to \mathcal{A}_{0} by Corollaries 2 and 6 . Suppose now that $K_{n_{1}, \ldots, n_{p}} \in \mathcal{A}_{0}$ for some integers $n_{1} \leq n_{2} \leq \cdots \leq n_{p}$, where $p \geq 2$ and $n_{p}>1$. Since $\overline{K_{n_{1}, \ldots, n_{p}}}=$ $K_{n_{1}} \cup \cdots \cup K_{n_{p}}$ belongs to \mathcal{A}_{0} (by Theorem 2), it follows from Theorem 3 that we must have $\overline{K_{n_{1}, \ldots, n_{p}}} \cong K_{n_{1}} \cup(p-1)\left(K_{n_{1}}\right)_{\delta} \cong K_{n_{1}} \cup(p-1) K_{n_{1}+1}$. Hence $n_{1}+1=n_{2}=\cdots=n_{p}$.

To conclude this section, we describe the line and total graphs which belong to \mathcal{A}_{0}.

Theorem 4. If G is a graph, then its line graph $L(G)$ belongs to \mathcal{A}_{0} if and only if there exists an edge-symmetric graph H such that $L(G) \cong L(H-e)$ for some edge e of H.

Proof. Assume that the line graph $L(G)$ belongs to \mathcal{A}_{0}. According to Theorem 1 and Corollary $2,(L(G))_{\delta}$ is vertex-symmetric, or $L(G) \cong \overline{K_{n}}$, or $L(G) \cong K_{n}$ for some positive integer n. Certainly, if $L(G) \cong \overline{K_{n}}\left(L(G) \cong K_{n}\right.$, resp.), then the graph $H=(n+1) K_{2}\left(H=K_{1, n+1}\right.$, resp.) has the desired properties. Thus assume that $(L(G))_{\delta}$ is a vertex-symmetric graph.

First we claim that $(L(G))_{\delta}$ is a line graph, that is, $(L(G))_{\delta}$ is isomorphic to the line graph $L(F)$ of some graph F. Assume the contrary. Then
by Beineke's theorem [1] (see [19, p. 74]), at least one of the nine forbidden graphs G_{1}, \ldots, G_{9} shown in Fig. 8.3 of [19] is an induced subgraph of $(L(G))_{\delta}$. Moreover, since each vertex-deleted subgraph $(L(G))_{\delta}-x$ of $(L(G))_{\delta}$ is a line graph $\left(\operatorname{as}(L(G))_{\delta}-x \cong L(G)\right),(L(G))_{\delta}$ is isomorphic to one of the graphs G_{1}, \ldots, G_{9}. This contradicts the fact that $(L(G))_{\delta}$ is vertex-symmetric; therefore we must reject the assumption that $(L(G))_{\delta}$ is not a line graph. Consequently, there exists a graph F such that $(L(G))_{\delta} \cong L(F)$. Certainly, $L(F)$ is vertex-symmetric and $L(G) \cong L(F-e)$ for each edge e of F. Now, if we replace each component which is isomorphic to $K_{1,3}$ in F (if any) by a component isomorphic to K_{3}, the line graph of the resulting graph H is isomorphic to $L(F)$ and H does not contain both K_{3} and $K_{1,3}$ as components. Then Theorem 6 of [10], which states that a graph which does not contain both K_{3} and $K_{1,3}$ as components is edge-symmetric if and only if its line graph is vertex-symmetric, implies that H is edge-symmetric. Moreover, $L(G) \cong L(H-e)$ for each edge e of H.

Conversely, assume that H is an edge-symmetric graph such that $L(G) \cong$ $L(H-e)$ for some edge e of H. It follows from the edge symmetry of H that $H-e \cong H-f$ for each edge f of H (see Theorem 5 in [10]). Thus $L(G) \cong L(H-f)=L(H)-f$ for each vertex $f \in V(L(H))=E(H)$, so $L(G) \in \mathcal{A}_{0}$.

Theorem 5. If G is a graph, then its total graph $T(G)$ belongs to \mathcal{A}_{0} if and only if $G \cong K_{2}$ or $G \cong \overline{K_{n}}$ for some positive integer n.

Proof. Certainly, $T\left(K_{2}\right) \cong K_{3}$ and $T\left(\overline{K_{n}}\right) \cong \overline{K_{n}}(n \geq 1)$ belong to \mathcal{A}_{0}. Conversely, assume that G is a graph such that $T(G) \in \mathcal{A}_{0}$. Combining this with Corollary 2 we conclude that $T(G)$ is a regular graph; for if $T(G)$ were not regular, then G would not be regular and, therefore, we would have $\Delta(G) \geq \delta(G)+1$ and so $\Delta(T(G))=2 \Delta(G) \geq 2 \delta(G)+2=\delta(T(G))+2$, which is impossible. Corollary 2 now yields that $T(G) \cong K_{n}$ or $T(G) \cong \overline{K_{n}}$ for some positive integer n. This clearly forces that $G \cong K_{2}$ or $G \cong \overline{K_{n}}$ for some positive integer n.
3. We collect here some results on the classes \mathcal{A}_{1} and \mathcal{N}. We begin by observing the relationship between these two classes.

TheOrem 6. A graph H belongs to \mathcal{N} if and only if its complement \bar{H} belongs to \mathcal{A}_{1}.

Proof. It is easy to observe that $\overline{N(v, G)}=A_{1}(v, \bar{G})$ for every graph G and each vertex v of G. This implies the result.

The above theorem implies that all the elements of \mathcal{A}_{1} are determined by the elements of the class \mathcal{N}, and vice versa. In particular, the following result follows immediately from Theorem 6 and corresponding results of $[8,14,21,34]$.

Lemma 1.

(1) [21] For every positive integer n, K_{n} and $\overline{K_{n}}$ belong to \mathcal{A}_{1};
(2) [34] A cycle C_{n} belongs to \mathcal{A}_{1} if and only if $n=3,4,5$, or 6 ;
(3) [8] The complement $\overline{C_{n}}$ of a cycle C_{n} belongs to \mathcal{A}_{1} for every $n \geq 3$;
(4) [8] The complement $\overline{P_{n}}$ of a path P_{n} belongs to \mathcal{A}_{1} if and only if $n \neq 3$;
(5) [14] The union $K_{n_{1}} \cup \cdots \cup K_{n_{p}}$ of complete graphs $K_{n_{1}}, \ldots, K_{n_{p}}$ belongs to \mathcal{A}_{1} if and only if $n_{1}=\cdots=n_{p}$;
(6) [21] A graph H with n isolated vertices belongs to \mathcal{A}_{1} if and only if either $H \cong \overline{K_{n}}$ or $H \cong \overline{K_{n}} \cup F\left[\overline{K_{n+1}}\right]$ where F is some graph without isolated vertices which belongs to \mathcal{A}_{1};
(7) [21] If graphs H_{1} and H_{2} belong to \mathcal{A}_{1}, then their join $H_{1}+H_{2}$ belongs to \mathcal{A}_{1};
(8) [21] If H is a graph in which no vertex is adjacent to all other vertices of H, then H belongs to \mathcal{A}_{1} if and only if $H+K_{n}$ belongs to \mathcal{A}_{1} for a positive integer n.

The parts (1) and (7) of Lemma 1 imply that every complete p-partite graph $K_{n_{1}, \ldots, n_{p}} \cong \overline{K_{n_{1}}}+\overline{K_{n_{2}}}+\cdots+\overline{K_{n_{p}}}$ belongs to \mathcal{A}_{1}. It follows from the parts (1), (2), and (8) that a wheel $W_{n}=C_{n}+K_{1}$ belongs to \mathcal{A}_{1} if and only if $n=3,4,5$, or 6 . Many other examples, properties, and structural characterizations of graphs which belong (or do not belong) to \mathcal{A}_{1} can be obtained from the results of [4, $5,7-9,11,13-15,17,18,21,23,36]$.

In [34], Zelinka proved that every path belongs to \mathcal{A}_{1}. Our intent now is to characterize the block graphs which belong to \mathcal{A}_{1}. The following two definitions and two lemmas will be relevant in the sequel.

A block graph G is a regular windmill graph if it is isomorphic to $n K_{p}+K_{1}$ for some positive integers n and p. Note that a regular windmill graph $n K_{p}+K_{1}$ is a tree if and only if it is a star $K_{1, n} \cong n K_{1}+K_{1}$. For an integer $n \geq 4$, we denote by M_{n} the graph obtained by taking $n-2$ disjoint copies of K_{n} and a new vertex v_{0}, and then joining the vertex v_{0} to exactly one vertex in each copy of K_{n}^{-}. Note that M_{n} is a graph of maximum degree n, minimum degree $n-2$, and it has exactly one vertex of minimum degree and this vertex is a center of M_{n}. Figure 2 shows M_{4}.

ANTINEIGHBOURHOOD GRAPHS

Figure 2.

LEMMA 2. Let G be a block graph of diameter d, maximum degrec Δ, and minimum degree δ. If $d \geq 3$ and $\Delta \geq \delta+2$, then either in G there exist nonadjacent vertices x and y such that $\left|d_{G}(x)-d_{G}(y)\right| \geq 2$ or $G \cong M_{\Delta}$.

Proof. Let v and u be vertices of degree Δ and δ in G, respectively. Note that v and every other vertex of degree Δ is a cut vertex in G^{\prime}. Let v^{\prime} be any farthest vertex from v in G. Since $d \geq 3$, the vertices v and v^{\prime} are not adjacent. In addition, v^{\prime} is not a cut vertex and it belongs to an end block of G. Let B be the end block that contains v^{\prime}, and let $v^{\prime \prime}$ be the only cut vertex adjacent to v^{\prime}. It follows that $\Delta \geq d_{G}\left(v^{\prime \prime}\right) \geq d_{G}\left(v^{\prime}\right)+1$ and $d_{G}(x)=d_{G}\left(v^{\prime}\right)$ for each $x \in V(B)-\left\{v^{\prime \prime}\right\}$. We distinguish two cases depending on the difference $\Delta-\delta$.

Case: $\Delta>\delta+2$. In this case it is straightforward to see that if $d_{G}\left(v^{\prime}\right) \leq \Delta-2$ ($d_{G}\left(v^{\prime}\right)=\Delta-1$, resp.), then the vertices v and $v^{\prime}\left(u\right.$ and v^{\prime}, resp.) have the required property.

Case: $\Delta=\delta+2$. Assume that $\left|d_{G}(x)-d_{G}(y)\right| \leq 1$ for every two nonadjacent vertices x and y of G. We need only show that G is isomorphic to M_{Δ}. Our assumption implies that every vertex of degree $\Delta-2$ is adjacent to every vertex of degree Δ. It follows that $d_{G}\left(v^{\prime}\right)=\Delta-1$, so $d_{G}\left(v^{\prime \prime}\right)=\Delta$. Consequently, $N_{G}\left(v^{\prime \prime}\right)-V(B)=\{u\}$ and, therefore, u is a unique vertex of degree $\Delta-2$ in G. Assume that $N_{G}(u)=\left\{v_{1}, \ldots, v_{\Delta-2}\right\}$. We claim that each vertex of $N_{G}(u)$ is a cut vertex. For if not,: let v_{i} be a counterexample. Then the set $N_{G}\left(v_{i}\right) \cup\left\{v_{i}\right\}$ induces a block of order $d_{G}\left(v_{i}\right)+1 \geq \Delta$ in G. But then we have $d_{G}(x) \geq \Delta-1$ for each $x \in N_{G}\left(v_{i}\right) \cup\left\{v_{i}\right\}$, which is impossible since $u \in N_{G}\left(v_{i}\right)$ and $d_{G}(u)=\Delta-2$. This implies the desired claim. In order to complete the proof, it suffices to show that each vertex of $N_{G}(u)$ belongs to an end block of order Δ. For this purpose, let X_{i} be the set of all vertices x of G for which the shortest $x-u$ path passes through the vertex $v_{i}(i \in\{1, \ldots, \Delta-2\})$. We now claim that X_{i} induces a block of order Δ in G. To prove this, let v_{i}^{\prime} be a vertex of X_{i} which is farthest from u. Since v_{i} is a cut vertex, v_{i}^{\prime} is not adjacent to u and, therefore, $d_{G}\left(v_{i}^{\prime}\right)=\Delta-1$. Furthermore, the choice of v_{i}^{\prime} implies that v_{i}^{\prime} is a non-cut vertex and it belongs to some end block of G, say B_{i} is an end
block such that $v_{i}^{\prime} \in V\left(B_{i}\right)$. Since $d_{G}\left(v_{i}^{\prime}\right)=\Delta-1, B_{i}$ is an end block of order Δ. Note that the unique cut vertex which belongs to B_{i} is of degree Δ and therefore it must be the vertex v_{i}. Consequently, v_{i} is a vertex of degree Δ and B_{i} is an end block induced by X_{i}. Hence $\bigcup_{i=1}^{\Delta-2} V\left(B_{i}\right)=\bigcup_{i=1}^{\Delta-2} X_{i}=V(G)-\{u\}$. Finally, since no two vertices of $\left\{v_{1}, \ldots, v_{\Delta-2}\right\}$ are adjacent (as the vertices of $N_{G}\left(v_{i}\right)=V\left(B_{i}\right) \cup\{u\}-\left\{v_{i}\right\}(i=1, \ldots, \Delta-2)$ are of degree $\Delta-1$ and $\left.\Delta-2\right)$, it follows from the above that G is isomorphic to M_{Δ}.

Lemma 3. For every integer $n \geq 4, M_{n}$ does not belong to \mathcal{A}_{1}.
Proof. Assume to the contrary that $M_{n} \in \mathcal{A}_{1}$ for some $n \geq 4$. Let G be a graph such that $A_{1}(x, G) \cong M_{n}$ for each vertex x of G. Fix an arbitrary vertex x_{0} of G and consider the graph $A_{1}\left(x_{0}, G\right)$. Since $A_{1}\left(x_{0}, G\right)$ is isomorphic to M_{n}, let v_{0} be the unique vertex of degree $n-2$ in $A_{1}\left(x_{0}, G\right)$, and let v_{1}, \ldots, v_{n-2} be the neighbours of v_{0} in $A_{1}\left(x_{0}, G\right)$. For each $i \in$ $\{1, \ldots, n-2\}$, let B_{i} be the end block of $A_{1}\left(x_{0}, G\right)$ that contains the vertex v_{i}. Certainly, B_{i} is a block of order n. We now choose any vertex $v \in V\left(B_{1}\right)-\left\{v_{1}\right\}$ and consider the graph $A_{1}(v, G)$. Since $A_{1}(v, G)$ is isomorphic to M_{n} and $V\left(A_{1}(v, G)\right) \cap\left(V(G)-N_{G}\left(x_{0}\right)\right)=\left\{x_{0}, v_{0}\right\} \cup \bigcup_{i=2}^{n-2} V\left(B_{i}\right)$, exactly $n-1$ vertices of $A_{1}(v, G)$ belong to $N_{G}\left(x_{0}\right)$, say $V\left(A_{1}(v, G)\right) \cap N_{G}\left(x_{0}\right)=\left\{x_{1}, \ldots, x_{n-1}\right\}$. It is a simple matter to observe that v_{0} must be the unique vertex of degree $n-2$ in $A_{1}(v, G)$, the vertices $x_{0}, x_{1}, \ldots, x_{n-1}$ form an end block in $A_{1}(v, G)$ (we denote it by B_{n-1}), exactly one vertex of $\left\{v_{0}\right\} \cup \bigcup_{i=2}^{n-2} V\left(B_{i}\right)$ is adjacent to exactly one of the vertices $x_{0}, x_{1}, \ldots, x_{n-1}$, and precisely v_{0} must be adjacent to exactly one of the vertices x_{1}, \ldots, x_{n-1}, say v_{0} is adjacent to x_{n-1}. Next consider the graph $A_{1}\left(v_{0}, G\right)$. In this graph we have $V\left(A_{1}\left(v_{0}, G\right)\right)=\bigcup_{i=1}^{n-1} V\left(B_{i}\right)-\left\{v_{1}, \ldots, v_{n-2}, x_{n-1}\right\}$. Furthermore, every vertex of $A_{1}\left(v_{0}, G\right)$ belongs to a complete subgraph of order at least $n-1 \geq 3$ in $A_{1}\left(v_{0}, G\right)$. This contradicts the fact that $A_{1}\left(v_{0}, G\right)$ is isomorphic to M_{n} because the center of M_{n} only belongs to complete subgraphs of order at most two in M_{n}. Consequently, M_{n} does not belong to \mathcal{A}_{1}.

We now state and prove the main theorem of this section.
Theorem 7. If G is a block graph, then G belongs to \mathcal{A}_{1} if and only if G is a path or a regular windmill graph.

Proof. Assume that G is a block graph of diameter d, maximum degree Δ, and minimum degree δ. The result is clear if $d \leq 1$. Thus assume that $d \geq 2$
and consider two cases: $d=2$ or $d \geq 3$.
Case: $d=2$. In this case $G=\left(K_{n_{1}} \cup \cdots \cup K_{n_{p}}\right)+K_{1}$ for some positive integers $n_{1} \leq \cdots \leq n_{p}=n$ and $p \geq 2$. It follows from the parts (5) and (8) of Lemma 1 that $G \in \mathcal{A}_{1}$ if and only if $n_{1}=\cdots=n_{p}=n$, that is, if and only if G is a regular windmill graph, $G=p \Pi_{n}+K_{1}$.

Case: $d \geq 3$. It is clear that if G is a path, $G=P_{d+1}$, then $G \in \mathcal{A}_{1}$ since $A_{1}\left(v, C_{d+4}\right) \cong P_{d+1}$ for each vertex $v \in V\left(C_{d+4}\right)$. It remains to prove that (i does not belong to \mathcal{A}_{1} if it is not a path. Suppose to the contrary that G belongs to \mathcal{A}_{1} and G is not a path. Then, let H be a graph such that $A_{1}(r, H) \cong C$ for each vertex x of H. Let r be the maximum degree in H. Our assmmptions on G imply that $\Delta>\delta \geq 1$. In addition, it is easy to observe that H is a regular graph of degree r and $r \geq \Delta \geq 3$. Now let x_{0} be an arbitrary vertex of H and consider the graph $A_{1}\left(x_{0}, H\right) \cong G$. We distinguish two subcases: $\Delta \geq \delta+2$ or $\Delta=\delta+1$.

Subcase: $\Delta \geq \delta+2$. Using Lemma 3 we need only consider the asse $G \nexists$ M_{Δ}. In this case Lemma 2 implies that there exist two nonadjacent vertiees 1 and u in $A_{1}\left(x_{0}, H\right)$ such that for their degrees $d_{v}=d_{\left.A_{1}\left(x_{0}, I\right)\right)}(v)$ and $d_{u}=$ $d_{A_{1}\left(x_{0}, H\right)}(u)$ we have $\left|d_{n}-d_{u}\right| \geq 2$, say $d_{v} \geq d_{u}+2$. We now consider the graphs $A_{1}(v, H)$ and $A_{1}(u, H)$ each of which is isomorphic to G. The graphs $A_{1}(r, H)$ and $A_{1}(u, H)$ have d_{v} and d_{u} vertices in $N_{H}\left(r_{0}\right)$, respectively. This implies that $\left|N_{H}(v) \cap N_{H}\left(x_{0}\right)\right|=r-d_{v}$ and $\left|N_{H}(u) \cap N_{H}\left(x_{0}\right)\right|=r-d_{u}$. Since $d_{v} \geq$ $d_{u}+2$, we can find two different vertices x and y such that $\{x, y\} \subseteq\left(N_{\| \prime}(u)--\right.$ $\left.N_{H}(v)\right) \cap N_{H}\left(x_{0}\right)$. Certainly, the vertices x, y, x_{0}, and u belong to the block graph $A_{1}(v, H)$ and, therefore, they are mutually adjacent in $A_{1}(v, H)$ and in H. Hence, $u \in N_{H}\left(x_{0}\right)$ and, therefore, $u \notin V\left(A_{1}\left(x_{0}, H\right)\right)$, a contradiction.

Subcase: $\Delta=\delta+1$. In this case every vertex of the graph $A_{1}\left(r_{0}, H\right) \cong G^{\prime}$ is of degree Δ or $\Delta-1$, and each vertex of degree Δ is a cut vertex in $A_{1}\left(r_{0}, H\right)$. In addition, each end block of $A_{1}\left(x_{0}, H\right)$ is of order Δ. Moreover, if B is an end block in $A_{1}\left(x_{0}, H\right)$ and z is a mique cut vertex of $A_{1}\left(x_{0}, H\right)$ that belongs to B, then z is a vertex of degree Δ and, therefore, there exists exactly one other block B^{\prime} in $A_{1}\left(x_{0}, H\right)$ that contains z, and B^{\prime} is of order two. This implies that if a vertex x belongs to an end block in $A_{1}\left(x_{0}, H\right)$ then it belong to exactly one such block and we denote this block by $B_{\epsilon}(x)$. We now choose a vertex v_{0} in $A_{1}\left(x_{0}, H\right)$ such that $d_{A_{1}\left(x_{0}, H\right)}\left(v_{0}, v\right)=d$ for some vertex v of $A_{1}\left(x_{0}, H\right)$. Let V_{d} be the set of all vertices at distance d from v_{0} in $A_{1}\left(x_{0}, H\right)$. We shall use the notation $V_{d}^{\prime}=N_{A_{1}\left(x_{0}, H\right)}\left(V_{d}\right)-V_{d}$ and $V_{d}^{\prime \prime}=N_{A_{1}\left(r_{0}, H\right)}\left(V_{d}^{\prime}\right)-V_{d}$. It is clear that the sets $V_{d}, V_{d}^{\prime}, V_{d}^{\prime \prime}$ are nonempty and mutually disjoint. Moreover, each vertex x of $V_{d} \cup\left\{v_{0}\right\}$ is a non-cut vertex and it belongs to some end block of $A_{1}\left(x_{0}, H\right)$, each vertex x^{\prime} of V_{d}^{\prime} is a cut vertex and it belongs to some end block of $A_{1}\left(x_{0}, H\right)$, each vertex $x^{\prime \prime}$ of $V_{d}^{\prime \prime}$ is a cut vertex, and for each vertex
x^{\prime} of V_{d}^{\prime} there exists exactly one vertex $x^{\prime \prime}$ in $V_{d}^{\prime \prime}$ such that together they form a block in $A_{1}\left(x_{0}, H\right)$.

We now consider the graph $A_{1}\left(v_{0}, H\right) \cong G$. In this graph we have $V\left(A_{1}\left(v_{0}, H\right)\right)=\left(V\left(A_{1}\left(x_{0}, H\right)\right)-V\left(B_{e}\left(v_{0}\right)\right)\right) \cup\left\{x_{0}\right\} \cup\left(N_{H}\left(x_{0}\right)-N_{H}\left(v_{0}\right)\right)$. Therefore the set $N_{H}\left(x_{0}\right)-N_{H}\left(v_{0}\right)$ has $\Delta-1$ vertices, say $N_{H}\left(x_{0}\right)-N_{H}\left(v_{0}\right)=$ $\left\{x_{1}, \ldots, x_{\Delta-1}\right\}$. Since $A_{1}\left(v_{0}, H\right)$ is connected and $N_{A_{1}\left(v_{0}, H\right)}\left(x_{0}\right)=$ $\left\{x_{1}, \ldots, x_{\Delta-1}\right\}$, there exists at least one edge joining a vertex of $\left\{x_{1}, \ldots, x_{\Delta-1}\right\}$ to a vertex of $V\left(A_{1}\left(x_{0}, H\right)\right)-V\left(B_{e}\left(v_{0}\right)\right)$. We may assume that $x_{\Delta-1}$ is adjacent to a vertex $x^{*} \in V\left(A_{1}\left(x_{0}, H\right)\right)-V\left(B_{e}\left(v_{0}\right)\right)$. Then no other vertex of $\left\{x_{1}, \ldots, x_{\Delta-2}\right\}$ is adjacent to a vertex of $A_{1}\left(x_{0}, H\right)-V\left(B_{e}\left(v_{0}\right)\right)$. For if a vertex $x_{i}(i \in\{1, \ldots, \Delta-2\})$ were adjacent to a vertex $x^{\prime} \in V\left(A_{1}\left(x_{0}, H\right)\right)-$ $V\left(B_{e}\left(v_{0}\right)\right)$, then a $x^{*}-x^{\prime}$ path (in $\left.A_{1}\left(x_{0}, H\right)\right)$ together with the edges $x^{\prime} x_{i}$, $x_{i} x_{0}, x_{0} x_{\Delta-1}, x_{\Delta-1} x^{*}$ would form a cycle in $A_{1}\left(v_{0}, H\right)$. Consequently, the vertices x_{0} and x^{*} would be in the same block of the block graph $A_{1}\left(v_{0}, H\right)$ and, therefore, they would be adjacent in $A_{1}\left(v_{0}, H\right)$ and in H, which is impossible since $x^{*} \in V\left(A_{1}\left(x_{0}, H\right)\right)=V(H)-\left(N_{H}\left(x_{0}\right) \cup\left\{x_{0}\right\}\right)$. We therefore henceforth assume that $x_{\Delta-1}$ is a unique vertex of $\left\{x_{1}, \ldots, x_{\Delta-1}\right\}$ which is adjacent to a vertex of $A_{1}\left(x_{0}, H\right)-V\left(B_{e}\left(v_{0}\right)\right)$ in $A_{1}\left(v_{0}, H\right)$. We now show that the vertices $x_{0}, x_{1}, \ldots, x_{\Delta-1}$ form an end block in $A_{1}\left(v_{0}, H\right)$. To prove this, it would suffice to show that every vertex $x_{i}(1 \leq i \leq \Delta-2)$ is adjacent to the vertex $x_{\Delta-1}\left(\right.$ since $A_{1}\left(v_{0}, H\right)$ is a block graph and $\left.N_{A_{1}\left(v_{0}, H\right)}\left(x_{0}\right)=\left\{x_{1}, \ldots, x_{\Delta-1}\right\}\right)$. Suppose to the contrary that some vertex $x_{i_{0}} \in\left\{x_{1}, \ldots, x_{\Delta-2}\right\}$ is not adjacent to $x_{\Delta-1}$. Then $N_{A_{1}\left(v_{0}, H\right)}\left(x_{i_{0}}\right) \subseteq\left\{x_{0}, \ldots, x_{\Delta-2}\right\}-\left\{x_{i_{0}}\right\}$ and therefore $d_{A_{1}\left(v_{0}, H\right)}\left(x_{i_{0}}\right)<\Delta-1$, a contradiction. This proves that the vertices $x_{0}, \ldots, x_{\Delta-1}$ form an end block of order Δ in $A_{1}\left(v_{0}, H\right)$. Moreover, since $\left\{x^{*}, x_{0}, \ldots, x_{\Delta-2}\right\} \subseteq N_{A_{1}\left(v_{0}, H\right)}\left(x_{\Delta-1}\right), d_{A_{1}\left(v_{0}, H\right)}\left(x_{\Delta-1}\right)=\Delta$ and, therefore, there exists exactly one vertex $x^{*} \in V\left(A_{1}\left(x_{0}, H\right)\right)-V\left(B_{e}\left(v_{0}\right)\right)$ adjacent to $x_{\Delta-1}$ in $A_{1}\left(v_{0}, H\right)$.

Next we show that x^{*} is a vertex of degree $\Delta-1$ in $A_{1}\left(x_{0}, H\right)$. Suppose to the contrary that $d_{A_{1}\left(x_{0}, H\right)}\left(x^{*}\right)=\Delta$. Then consider the graph $A_{1}\left(x^{*}, H\right)$. Clearly, v_{0} is a vertex of $A_{1}\left(x^{*}, H\right)$. In addition, exactly $\Delta+1$ vertices of $A_{1}\left(x^{*}, H\right)$ belong to the set $N_{H}\left(x_{0}\right) \cup\left\{x_{0}\right\}$ which is the disjoint union of the sets $\left\{x_{0}, \ldots, x_{\Delta-1}\right\}$ and $N_{H}\left(x_{0}\right) \cap N_{H}\left(v_{0}\right)$. By the above we have $V\left(A_{1}\left(x^{*}, H\right)\right) \cap$ $\left\{x_{0}, \ldots, x_{\Delta-1}\right\}=\left\{x_{0}, \ldots, x_{\Delta-2}\right\}$. Hence, there exist two vertices y and y^{\prime} such that $V\left(A_{1}\left(x^{*}, H\right)\right) \cap N_{H}\left(x_{0}\right) \cap N_{H}\left(v_{0}\right)=\left\{y, y^{\prime}\right\}$. But then x_{0}, y, y^{\prime}, and v_{0} belong to the same block of $A_{1}\left(x^{*}, H\right)$. Thus x_{0} is adjacent to v_{0} in $A_{1}\left(x^{*}, H\right)$ and in H, a contradiction. This shows that $d_{A_{1}\left(x_{0}, H\right)}\left(x^{*}\right)=\Delta-1$.

It follows from the above that $x^{*} \notin V_{d}^{\prime}$ (since each vertex of V_{d}^{\prime} is of degree
Δ in $A_{1}\left(x_{0}, H\right)$). We now show that $x^{*} \notin V_{d}^{\prime \prime \prime}$. For $d=3$, this is crident. Thus assume that $d \geq 4$ and suppose to the contrary that $x^{*} \in \mathrm{I}_{d}^{\prime \prime \prime}$. Since $d_{A_{1}\left(x_{0}, H\right)}\left(x^{*}\right)=\Delta-1$, there exists a vertex $y \in N_{H}\left(x_{0}\right) \cap N_{H}\left(r_{0}\right)$ such that $V\left(A_{1}\left(x^{*}, H\right)\right) \cap\left(N_{H}\left(x_{0}\right) \cup\left\{x_{0}\right\}\right)=\left\{y, x_{0}, \ldots, x_{\Delta-2}\right\}$. Now let us observe that if v belongs to $N_{A_{1}\left(x_{0}, H\right)}\left(x^{*}\right) \cap V_{d}^{\prime}$, then $N_{A_{1}\left(x^{*}, H\right)}(x) \subseteq V^{\prime}\left(B_{f}(v)\right) \cup\{y\}-\{v\}$ and $d_{A_{1}\left(x^{*}, H\right)}(x) \geq \Delta-1$ for each $x \in V\left(B_{e}(v)\right)-\{v\}$. Hence, $N_{A_{1}\left(x^{*}, H\right)}(x)=$ $V\left(B_{e}(v)\right) \cup\{y\}-\{v\}$ for each $x \in V\left(B_{e}(v)\right)-\{v\}$. Consequently, $V\left(B_{e}(v)\right) \cup$ $\left\{x_{0}, v_{0}\right\}-\{v\} \subseteq N_{A_{1}\left(x^{*}, H\right)}(y)$ and $d_{A_{1}\left(r^{*}, H\right)}(y) \geq \Delta+1$, a contradiction. This shows that $x^{*} \notin V_{d}^{\prime \prime}$.

Next we show that $x^{*} \in V_{d}$. This is clear if $d=3$. Assume that $d \geq 4$ and suppose to the contrary that $x^{*} \notin V_{d}$ and, therefore, $r^{*} \notin V_{d} \cup V_{d}^{\prime} \cup V_{d}^{\prime \prime}$. Choose any vertex $v \in V_{d}^{\prime}$ and consider the graph $A_{1}(v, H)$. It is casy to observe that there exists a vertex $y \in N_{H}\left(x_{0}\right) \cap N_{H}\left(v_{0}\right)$ such that $V\left(A_{1}(u, H)\right)=$ $V\left(A_{1}\left(v, A_{1}\left(x_{0}, H\right)\right)\right) \cup\left\{y, x_{0}, \ldots, x_{\Delta-1}\right\}$. On the other hand, our assumption on x^{*} implies that the vertices v_{0} and x^{*} are in the same component of $A_{1}\left(v, A_{1}\left(x_{0}, H\right)\right)$. But now an $x^{*}-v_{0}$ path in $A_{1}\left(v, A_{1}\left(x_{0}, H\right)\right)$ and the edges $v_{0} y, y x_{0}, x_{0} x_{\Delta-1}, x_{\Delta-1} x^{*}$ form a cycle in the block graph $A_{1}(v, H)$. This implies that the vertices v_{0} and x_{0} are adjacent in $A_{1}(v, H)$ and in H, which is impossible. It follows that $x^{*} \in V_{d}$.

Let $P=\left(v_{0}, v_{1}, \ldots, v_{d}=x^{*}\right)$ be the shortest $v_{0}-x^{*}$ path in $A_{1}\left(x_{0}, H\right)$. Let B_{i} denote the block of $A_{1}\left(x_{0}, H\right)$ that contains the vertices v_{i-1} and v_{i} of $P(i=1, \ldots, d)$. Note that B_{1} and B_{d} are end blocks of $A_{1}\left(x_{0}, H\right)$. As a matter of fact, B_{1} and B_{2} are the only end blocks of $A_{1}\left(x_{0}, H\right)$. For if not, let B be another end block of $A_{1}\left(x_{0}, H\right)$, and let $z \in V(B)$ be a vertex of degree $\Delta-1$ in $A_{1}\left(x_{0}, H\right)$. Clearly, B is disjoint with the blocks B_{1}, \ldots, B_{d}, and, therefore, we have $d_{A_{1}\left(x_{0}, H\right)-V(B)}\left(v_{0}, x^{*}\right)=d_{A_{1}\left(x_{0}, H\right)}\left(v_{0}, x^{*}\right)=d$. On the other hand, observe that $A_{i}(z, H)$ consists of $A_{1}\left(x_{0}, H\right)-V(B)$, the block induced by the vertices $x_{0}, \ldots, x_{\Delta-1}$, and the edge $x^{*} x_{\Delta-1}$. This combined with the above forces $d_{A_{1}(z, H)}\left(v_{0}, x_{0}\right)=d+2$, which is impossible since $A_{1}(z, H) \cong G$ is a graph of diameter d. This proves that B_{1} and B_{d} are the only end blocks of $A_{1}\left(x_{0}, H\right)$. Consequently, $B_{1}, B_{2}, \ldots, B_{d}$ are the only blocks of $A_{1}\left(x_{0}, H\right)$. Moreover, d is an odd integer, and $B_{1}, B_{3}, \ldots, B_{d}$ are blocks of order Δ, while $B_{2}, B_{4}, \ldots, B_{d-1}$ are blocks of order two.

The proof may now be completed. We distinguish two cases: $d>3$ or $d=3$. First, if $d>3$, then we consider the graph $A_{1}\left(v_{d-2}, H\right)$. Certainly, there exists $y \in N_{H}\left(v_{0}\right) \cap N_{H}\left(x_{0}\right)$ such that $V\left(A_{1}\left(v_{d-2}, H\right)\right)=V\left(A_{1}\left(x_{0}, H\right)\right) \cup$ $\left\{y, x_{0}, \ldots, x_{\Delta-1}\right\}-V\left(B_{d-2}\right)-\left\{v_{d-1}\right\}$. Note that the set $V\left(B_{d}\right)-\left\{v_{d-1}, v_{d}\right\}$ is nonempty and each its vertex x is adjacent to the vertex y in $A_{1}\left(v_{d-2}, H\right)$ (otherwise $d_{A_{1}\left(v_{d-2}, H\right)}<\Delta-1$). This implies that the vertices of $V\left(B_{d}\right) \cup$
$\left\{y, x_{0}, \ldots, x_{\Delta-1}\right\}-\left\{v_{d-1}\right\}$ are in the same block of $A_{1}\left(v_{d-2}, H\right)$. Hence, the vertex x_{0} is adjacent to the vertex $x^{*}=v_{d}$ in $A_{1}\left(v_{d-2}, H\right)$ and in H, a contradiction. If $d=3$, then we consider the graphs $A_{1}\left(v_{0}, H\right), A_{1}\left(v_{3}, H\right), A_{1}\left(v_{3}^{\prime}, H\right)$ for $v_{3}^{\prime} \in V\left(B_{3}\right)-\left\{v_{2}, v_{3}\right\}$, and $A_{1}\left(v_{1}, H\right)$. Note that there exists a vertex $t \in N_{H}\left(v_{0}\right) \cap N_{H}\left(x_{0}\right)$ such that $V\left(A_{1}\left(v_{3}, H\right)\right)=V\left(B_{1}\right) \cup\left\{t, x_{0}, \ldots, x_{\Delta-2}\right\}$, $N_{A_{1}\left(v_{3}, H\right)}(t)=\left\{v_{0}, x_{0}, \ldots, x_{\Delta-2}\right\}$, and, therefore,

$$
N_{A_{1}\left(v_{3}, H\right)}\left(v_{1}\right) \cap\left\{t, x_{0}, \ldots, x_{\Delta-2}\right\}=\emptyset .
$$

On the other hand, since $V\left(A_{1}\left(v_{3}^{\prime}, H\right)\right)=V\left(B_{1}\right) \cup\left\{x_{0}, \ldots, x_{\Delta-1}\right\}$, the vertex t must be adjacent to the vertex v_{3}^{\prime}. Finally, there exists a vertex $z \in N_{H}\left(x_{0}\right)-$ $\left\{x_{0}, \ldots, x_{\Delta-2}\right\}-\{t\}$ such that $V\left(A_{1}\left(v_{1}, H\right)\right)=\left\{t, z, x_{0}, \ldots, x_{\Delta-2}\right\} \cup V\left(B_{3}\right)-$ $\left\{v_{2}\right\}$. Since $\left\{v_{3}^{\prime}, x_{0}, \ldots, x_{\Delta-2}\right\} \subseteq N_{A_{1}\left(v_{1}, H\right)}(t)$ and $\left\{t, z, x_{1}, \ldots, x_{\Delta-2}\right\} \subseteq$ $N_{A_{1}\left(v_{1}, H\right)}\left(x_{0}\right)$, the vertices t and x_{0} are of degree Δ in $A_{1}\left(v_{1}, H\right)$ and they do not form a bridge in $A_{1}\left(v_{1}, H\right)$ (as x_{1} is their common neighbour). This implies that $A_{1}\left(v_{1}, H\right)$ is not isomorphic to G, which is a final contradiction.

COROLLARY 8. If G i.s a tree, then $G \in \mathcal{A}_{1}$ if and only if G is a path or a star.

In the next theorem we determine the eycles whose squares belong to the family \mathcal{N}.

Theorem 8. If C_{n} is a cycle of length n, then its square C_{n}^{2} belongs to \mathcal{N} if and only if $n=3,4,5$, or 6 .

Proof. It is clear that $C_{3}^{2} \cong K_{3}, C_{4}^{2} \cong K_{4}, C_{5}^{2} \cong K_{5}$ belong to \mathcal{N}. Moreover, C_{6}^{2} belongs to \mathcal{N} since $N\left(v, C_{6}^{2}+\overline{K_{2}}\right) \cong C_{6}^{2}$ for each vertex v of $C_{6}^{2}+\overline{K_{2}}$. Thus, it remains to prove that C_{n}^{2} does not belong to \mathcal{N} if $n \geq 7$. Suppose to the contrary that $C_{n}^{2} \in \mathcal{N}$ for some $n \geq 7$. Let G be a graph such that $N(x, G) \cong C_{n}^{2}$ for each $x \in V^{\prime}(G)$. Fix an arbitrary vertex x_{0} of G. Since $N\left(x_{0}, G\right)$ is isomorphic to C_{n}^{2}, we may assume that $c_{0}, r_{1}, \ldots, c_{n-1}$ are the vertices of $N\left(x_{0}, G\right)$, and $v_{2} v_{1}+1$ and $v_{i} v_{i+2}$ are the elges of $N\left(x_{0}, G\right)$ (all indices are taken modulo n). We next consider the graph $N\left(r_{2}, G\right)$ which is also isomorphic to C_{n}^{2}. Assume that $u_{0}, u_{1}, \ldots, u_{n-1}$ are the vertices of $N\left(v_{2}, G\right)$, and let $u_{i} u_{i+1}$ and $u_{i} u_{i+2}$ be the edges of $N\left(v_{2}, G\right)$. Since x_{0} and the vertices $v_{0}, v_{1}, v_{3}, v_{4}$ of $N\left(x_{0}, G\right)$ belong to $N\left(v_{2}, G\right)$, without loss of generality we may assume that $u_{0}=v_{0}, u_{1}=v_{1}, u_{2}=r_{0}, u_{3}=v_{3}$, and $u_{4}=v_{4}$ (see Figure 3). But now the graph $N\left(v_{3}, G_{G}\right)$ contains a subgraph with the edges $r_{0} e_{1}, r_{0} v_{2}$. $x_{0} u_{4}, r_{0} l_{5}, r_{1} c_{2}, r_{2} u_{4}, r_{2} u_{5}, r_{4} r_{5}$, and $u_{4} u_{5}$, which is impossible in C_{n}^{2} for $n \geq 7$. This contradicts $N\left(v_{3}, G\right) \cong C_{n}^{2}$, and our theorem follows.

ANTINEIGHBOURHOOD GRAPHS

Figure 3.

Finally, we have the following partial result on cycles whose squares belong to \mathcal{A}_{1}.

THEOREM 9. If C_{n} is a cycle of length n, then its square C_{n}^{2} belongs to \mathcal{A}_{1} for $n \in\{3,4,5,6,7\}$, and C_{n}^{2} does not belong to \mathcal{A}_{1} for $n \geq 10$.

Proof. Certainly, $C_{3}^{2} \cong K_{3}, C_{4}^{2} \cong K_{4}, C_{5}^{2} \cong K_{5}, C_{6}^{2} \cong K_{2,2,2} \cong$ $\overline{K_{2}}+\overline{K_{2}}+\overline{K_{2}}$, and $C_{7}^{2} \cong \overline{C_{7}}$ belong to \mathcal{A}_{1} by Lemma 1 . We now claim that C_{n}^{2} does not belong to \mathcal{A}_{1} if $n \geq 10$. Suppose to the contrary that $C_{n}^{2} \in \mathcal{A}_{1}$ for some $n \geq 10$. Then there exists a graph G such that $A_{1}(x, G) \cong C_{n}^{2}$ for each $x \in$ $V(G)$. Take any vertex x_{0} of G and consider the graph $A_{1}\left(x_{0}, G\right)$. Assume that
$\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ is the vertex set and $\left\{v_{i} v_{i+1}, v_{i} v_{i+2}: i=0,1, \ldots, n-1\right\}$ is the edge set of $A_{1}\left(x_{0}, G\right)$ (all indices are taken modulo n). Now, the graph $A_{1}\left(v_{2}, G\right) \cong C_{n}^{2}$ contains the vertices $v_{5}, v_{6}, \ldots, v_{n-1}$ of $A_{1}\left(x_{0}, G\right)$, the vertex x_{0}, and four vertices of $N_{G}\left(x_{0}\right)$. Assume that $V\left(A_{1}\left(v_{2}, G\right)\right)=$ $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}, V\left(A_{1}\left(v_{2}, G\right)\right) \cap N_{G}\left(x_{0}\right)=\left\{u_{0}, u_{1}, u_{3}, u_{4}\right\}, u_{2}=x_{0}$, and $u_{5}=v_{5}, \ldots, u_{n-1}=v_{n-1}$. Then, without loss of generality we may assume that $\left\{u_{i} u_{i+1}, u_{i} u_{i+2}: i=0,1, \ldots, n-1\right\}$ is the edge set of $A_{1}\left(v_{2}, G\right)$. But now, since $n \geq 10$, the vertices $v_{n-2}, v_{n-1}, v_{0}, v_{1}, u_{0}, u_{1}$ belong to the graph $A_{1}\left(v_{5}, G\right)$ and $\left\{v_{n-2}, v_{0}, v_{1}, u_{0}, u_{1}\right\} \subseteq N_{A_{1}\left(v_{5}, G\right)}\left(v_{n-1}\right)$. This implies that v_{n-1} is a vertex of degree at least 5 in $A_{1}\left(v_{5}, G\right)$ and, therefore, $A_{1}\left(v_{5}, G\right)$ is not isomorphic to C_{n}^{2}, a contradiction. This proves that C_{n}^{2} does not belong to \mathcal{A}_{1} if $n \geq 10$.

There are a number of questions raised by the results presented in this section. We present some of them. Indeed, the following simple question is still unresolved by us. Do the graphs C_{8}^{2} and C_{9}^{2} belong to \mathcal{A}_{1} ? Since the square C_{n}^{2} of C_{n} is a circulant graph, Theorems 8 and 9 also raise the more general question: characterize those circulant graphs which belong to \mathcal{N} and those which belong to \mathcal{A}_{1}.

Hall [17] has proved that the Petersen graph belongs to \mathcal{N}. It is natural to ask which generalized Petersen graphs (see [33, p. 2] for the definition) belong to \mathcal{N} and which of them belong to \mathcal{A}_{1}. In particular, which products $C_{n} \times K_{2}$ belong to $\mathcal{N}\left(\mathcal{A}_{1}\right.$, resp. $)$? Note that $C_{3} \times K_{2}$ belongs to \mathcal{N}, since $N(x, G) \cong C_{3} \times K_{2}$ for each vertex x of the graph G shown in Figure 4 . Similarly, $C_{3} \times K_{2}$ belongs to \mathcal{A}_{1}, since $C_{3} \times K_{2}$ is isomorphic to $\overline{C_{6}}$, and $\overline{C_{6}}$ belongs to \mathcal{A}_{1} by Lemma 1. Buset [11] has shown that $C_{4} \times K_{2}$ belongs to \mathcal{N}.

A sunflower of order $n \geq 3$ is a graph S_{n} with the vertices $v_{0}, v_{1}, \ldots, v_{n-1}$, $u_{0}, u_{1}, \ldots, u_{n-1}$ and the edges $v_{i} v_{i+1}, u_{i} v_{i}$, and $u_{i} v_{i+1}$ (i is taken modulo $n)$. It is easy to check that $S_{3} \notin \mathcal{N}$. On the other hand, Figure 5 exhibits a graph F of order 16 (the opposite sides of the square are to be identified) such that $N(x, F) \cong S_{4}$ for each $x \in V(F)$. This implies that $S_{4} \in \mathcal{N}$. For which n does there exist a finite graph G such that $N(x, G) \cong S_{n}$ for each $x \in V(G)$? Which sunflowers belong to \mathcal{A}_{1} ?

Finally, find the paths P_{n} for which the square P_{n}^{2} belongs to \mathcal{N} and those for which the square P_{n}^{2} belongs to \mathcal{A}_{1}.
4. In this section we have only one result.

Theorem 9 Every graph H belongs to \mathcal{A}_{j} for $j \geq 2$.
Proof. It is easy to see that for the lexicographic product $C_{2 j+2}[H]$ of the cycle $C_{2 j+2}$ of length $2 j+2$ and the graph H we have $A_{j}\left(v, C_{2 j+2}[H]\right) \cong H$ for each vertex v of $C_{2 j+2}[H]$. This implies that $H \in \mathcal{A}_{j}$.

REFERENCES

[1] BEINEKE, L. W.: Characterzzations of derived graphs, J. ('ombin. Theory 9 (1970), 129-135.
[2] BIELAK, H.: On j-neighbourhoods in simple graphs, In: (iraphs and ()ther (©ombinatorial Topics, vol. 59, Teubner-Texte zur Mathematik, 1983, pr. 7 -11.
[3] BIELAK, H.: On graphs with non-isomorphic 2-neighbourhoods, C'asopis Pèst. Mat. 108 (1983), 294-298.
[4] BLASS, A.--HARARY, F.--MILLER, Z.: Which trees are link: graphs, J. Combin. Theory B 29 (1980), 277-292.
[5] BLOKHUSS, A.-BROUWER, A. E. BUSET, D. (OHEN, A. M.: The locally acosahedral graphs. Lecture Notes in Pure and Appl. Math., vol. 103, 1985, pp. 1922.
[6] BOESCH, F.--TINIDELL, R.: Circulants and their connectivitzes, J. Giraph Theory 8 (1984), 487-499.
[7] BROWN, M.-CONNELLY, R.: On graphs with a constant link:. I, In: New Directions in the Theory of Graphs, Academic Press, 1973, pp. 19-51..
[8] BROWN, M.-CONNELLY, R.: On graphs with a constant link. II., Discrete Math. 11 (1975), 199-232.
[9] BULITKO, V. K.: On graphs with given vertex-neighbourhoods, Trudy Mat. Inst. Steklov. 133 (1973), 78-94.
[10] BURNS, D.-KAPOOR, S. F.-OSTRAND, P. A.: On line-symmetric graphs, Fund. Math. 122 (1984), 1-21.
[11] BUSET, D.: Graphs which are locally a cube, Discrete Math. 46 (1983), 221-226.
[12] CHILTON, B. L.-GOULD, R.-POLIMENI, A. D.: A note on graphs whose neighborhoods are n-cycles, Geom. Dedicata 3 (1974), 289-294.
[13] CRUYCE, VANDENP.: A finite graph which is locally a dodecahedron, Discrete Math. 54 (1985), 343-346.
[14] DOYEN, J.-HUBAUT, X.-REYNART, M.: Finite graphs with isomorphic neighbourhoods, In: Problèmes Combinatoires et Théorie des Graphes (Colloq. Orsay 1976), CNRS,

JERZY TOPP - LUTZ VOLKMANN

Paris, 1978 , p. 111.
[15] (:OI)SIL, C. I.: Neighbourhoods of transitive graphs and GRR's, J. Combin. Theory B 29 (1980), 116-140.
[16] GOIDSIL, (: I). MCKAY, B. I).: Graphs with regular neighbourhoods. Lecture Notes in Math. 829, 1980, pp. 127-140..
[17] HALL, J. I.: Locally Petersen graphs, J. Graph Theory 4 (1980), 173-187.
[18] HALL, J. I.: Graphs with constant link: and small degree or order, J. Graph Theory 8 (1985), 419444.
[19] HARARY, F.: Graph Theory., Addison-Wesley, Reading, Mass., 1969..
[20] HARARY, F.-- PALMER, E.: A note on similar points and similar lines of a graph, Rev. Roumaine Math. Pures Appl. 10 (1965), 1489-1492.
[21] HELL, I'.: Graphs with given neighbourhoods I, In: Problèmes Combinatoires et Théorie des (iraphes (Golloq. Orsay 1976), CNRS, Paris, 1978, pp. 219-223..
[22] HELL, P. LEVINSON, H... WATKINS, M.: Some remarks on transitive realizations of graphs, In: Proc. 2nd Carrib. Conf. on Combinatorics and Computing, Barbados, 1977, PD. 1-8..
[23] M(КАY, B. D.: Transitive graphs with fewer than twenty vertices, Math. Comp. 33 (1977), 1101-1121.
[24] RYJÁČ'EK, Z.: On graphs with isomorphic, nonisomorphic and connected N_{2}-neighbourhoods, C'asopis Pèst. Mat. 112 (1987), 66-79.
[25] RYJÁČEK, Z.: Graphs with nonisomorphic vertex neighbourhoods of the first and second types, C'asopis P’ěst. Mat. 112 (1987), 390-394.
[26] SEDLÁČEK, J.: On local properties of finite graphs, Časopis Pěst. Mat. 106 (1981), 290-298.
[27] SEILÁĊEK. J.: On local properties of finite graphs. Lecture Notes in Math. 1018, 1983, pp. 242247.
[28] SEDLÁ(EK, J.: Finite graphs with distinct neighbourhoods, Teubner-Texte Math. 73 (1985), 152-156.
[29] TURNER, J.: Point-symmetric graphs with a prime number of points, J. Combin. Theory 3 (1967), 136-145.
[30] VO(iLER, W.: Graphs with given group and given constant link, J. Graph Theory 8 (1984), 111-115.
[31] VOGLER, W.: Representing groups by graphs with constant link and hypergraphs, J. (iraph Theory 10 (1986), 461-475.
[32] WINKLER, I. M.: Existence of graphs with a given set of r-neighbourhoods, J. Combin. Theory Ser. B 34 (1983), 165-176.
[33] YAP, H. P.: Some Topics in Graph Theory. London Mathematical Society, Lecture Note Serics 108, Cambridge University Press, Cambridge, 1986.
[34] ZELINKA, B.: Graphs with prescribed neighbourhood graphs, Math. Slovaca 35 (1985), 195-197.
[35] ZELINKA, B.: Edge neighbourhood graphs, Czech. Math. J. 36(111) (1986), 44-47.
[36] ZELINKA, B.: Disconnected neighbourhood graphs, Math. Slovaca 36 (1986), 109-110.

ANTINEIGHBOURHOOD GRAPHS

[37] ZYKOV, A. A.: Problem 30, In: Theory of (iraphs and its Applications, Academia, Prague, 1964, pp. 164-165.

Received April 6, 1990
*) Faculty of Applied Physucs and Mathematics
Gdańsk Technical Unvecrsity
Majakowskiego 11/12
80-952 ('dańsk
Poland
**) Lehrstuhl II für Mathematik:
Technische Hochschule Aachen
Templergraben 5.5
5100 Aachen
Germany

[^0]: AMS Subject Classification (1991): Primary 05C75.
 Key words: Graph, Subgraph, Neighbourhood, Antineighbourhood.
 ${ }^{1}$) Research supported by the Heinrich Hertz Foundation.

