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MULTIPLE SOLUTIONS OF A THIRD ORDER
BOUNDARY VALUE PROBLEM

MILAN GERA*) -- FELIX SADYRBAEV**)

ABSTRACT. An estimate from below of the number of solutions to the boundary
value problem z"' = f(t,z,2',2") = 0, z(a) = A, z'(a) = A, z(b) = B
is given provided that f along with first partial derivatives f;, fp/, fpn are
continuous functions and f: £0, f./ 20.

We shall consider the two-point boundary value problem

2= f(t,z,z',z”), (1)
z(a) = A, z'(a) = Ay, A (2)
z(b) = B, (3)

where A, A;, B, a, b (a < b) are given real numbers, provided that f: [a,b] X
RxRxR — R along with the first partial derivatives f,, f;s, fz» are continuous
functions.

The aim of this paper is to give an estimate from below of the number of
solutions of BVP (1-3) .

The proof of the main result is based on a certain technique developed by one
of the authors in [1] and on some results from the theory of third-order linear
differential equations.

The following linear problem will be very important in our considerations:

ylll = fI” (tv i(t)) él(t)a 6”(t))y” + fI' (tv é(t)a fl(t)7 gll(t))y,
+f2(8,6(1),€'(1),6" 1))y, (4)
y(a) =y'(a) =0, y"(a)=1. (5)
where ¢ is the solution of BVP (1-3) . (The differential equation (4) is a linear
variational equation for the solution £.)
We shall distinguish solutions of (1-3) by a certain property. The precise
definition is the following:
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DEFINITION. Let £ be a solution of the BVP (1-3) and h the solution of the
corresponding initial value problem (4), (5). Then the number of zeros of h in
the interval (a,b) s called the index of €.

Now we arc ready to present the main result of the paper.

THEOREM. Assume that

(A1) there exists a solution £ of BVP (1-3) with nonzero index m;

(A2) there exists a solution 1 of (1), (2) on [a,b] such that n(t) > £(t)
for all t € (a,b];

(A3) all solutions u of (1), (2) for which £"(a) £ u"(a) £ n'"(a) extend
to [a,b];

(A4) the function f fulfils the following condition:

V(t,z, 2" 2") € [a,b] x Rx R x R: f,(t,z,2",2") 0,
fo(t,o 2’ 2")20.

Then the boundary value problem (1-3) has at least m + 1 solutions.
We first state some lemmas needed for the proof of the Theorem.

LEMMA 1. Let p, q, v be continuous functions on [a,b] and r(t) S0, ¢(t) 20
for all t € [a,b]. Then a solution of the initial value problem

" = p(t)a" + q(t)x' +r(t)x, (6)
z(a) =2'(a) =0, a"(a)#0 (7

cannot have multiple zeros on (a,b]. All its zeros on (a,b] (if they exists) are
simple.

Proof. Let y beasolutionof (6), (7). Suppose that there exists to € [a, b]
such that y(to) = y'(to) = 0, y"(t0) # 0. Then, by Theorem 1 [2], the solution
y has no zero on [a,tp), 1.e. y(t) # 0 for all t € [a,to). This contradicts the
fact that y(a) = 0. Thus, when y has a zero in (a,b], it is simple. The proof is
complete.

Now denote by S the set of all solutions x of (1), (2) satisfying the condition
€"(a) = 2" (a) £ n"(a),

where € and 7 are the solutions of (1) which fulfil the assumptions of the
theorem.

Note that £"(a) < n"(a), otherwise the solutions £, 7 must coincide since
solutions of initial value problems for (1) are uniquely determined.

In what follows we establish some properties of the set S.
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LEMMA 2. ([3] or [4]). S 1s a compact set in C?*([a,b], R).

LEMMA 3. Let My, My, My be real positive numbers. Denote by G; (1 =
0,1,2) a family of elements g; € C([a,b], R) such that g,-(f)| < M; for all
t € [a,b]. Then there exists a number 6 > 0 depending on My, My, M, only
and such that for each ¢g; € G;, 1 = 0,1,2, the length of any subinterval which
contains three zeros counting their multiplicity of an arbitrary nontrivial solution

of

2" = ga(t)a" + ga(t)2" + go(t)x (8)
18 larger than §.

Proof. Let ¢ be a positive number such that the following inequality holds

2 ) 1 2
— My + =M+ =M, < 1.
51 Mo + GMI + 3 M2 <

Then the differential equation (8) is disconjugate on each interval [ay, b] C[a, b]
for which b; —a; £ § is true [5]. (The differential equation (8) is disconjugate
on [aj, by] if each of its nontrivial solutions has at most two zeros, counting their
multiplicity, on [aj,b].) Thus, if a nontrivial solution of (8) has three zeros on
any interval [aq,bz] C [a,b], it must be by — a; > §. The lemma is proved.

Proof of the Theorem. The set S is compact in C?*([a,b],R) by
Lemma 2. Consequently, there exist positive constants Ky, K;, A, such that
|z(t)| < Ko, |z’(t)| <Ky, |x”(t)| <K, forall t € [a,b] and z € S.

We may assume that |f| with |fz], |f«/] and |fz#| are bounded on [a,b] x
R x R x R. This means no loss in generality because the values of f outside the
finite region D = {(t,z,y,2); a St < b, |z| £ Ko, |y| £ K1, |2] £ K, } arenot
involved in our considerations. So we can always make |fz|, |fz/|, |fz#| bounded
by changing the functions outside the region D [6]. Thus, let Mo, M,, M, , be
positive numbers such that |f;| £ Mo, |fo| £ My, |fer| £ My on [a,b] xR x
RxR.

Let 25 = z(¢; \) be a solution of the initial value problem

2" = flt,z,a', 5",

z(a) = A, z'(a) = Ay, 2'"(a) = A,

0'x(t; M)
ati

are continuous functions

where )\g := €"(a) £ X < 7n"(a) =: Ay. Then
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of te [(l,b], A€ [/\(),A]], Ty € S,

arc uniform for t € [a,b] (¢ € {0,1,2}) and the function w
(= ,\h—ff\lg 7“’/\—/\1—;\5(—”) is the solution of (4), (5), i.e. % = h(t) for

all t € [a,b] [7].
Setting y(t;A) = (x(t; ) — E(1)) /(A = Xo) (Ao < A £ Ay), we have that the
function yx: t = y(t;A), t € [a,b], solves the initial value problem

y" = g2t Ny + (BN F go(t Ny,
y(a)=y'(a) =0, y"(a)=1,

where

1
g2(t; ) = /fl.u (f, ro(t, Ty A), o (B, T N) oo (t, T, /\)) dr,
0
1
gi(t: \) = /.f'x-’(f,~17()(f- T ), (A )t T, N)) dr 20,
0

1
go(t; ) = / fe(toao(t, 7 ), 0 (8,7, 0), 0o (1, 7, AN)dr £0,
0

ri(t Ay = €9+ T[—O 10(;“\—) - E“’(f)] . 0Sr<1. i=0.1,2,

aud

Ox(t: \) O%x(t; A , "
p(rortein, 2R GBI e oo 610
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for t € [a,b], A € [Ao. Aq]. It is obvious that |g;| £ M; on [a,b] x [A\¢,A] and
also ¢,, 1 = 0,1,2, are continuous functions on [a, b} x [\y, A;]. Further it holds
that

Yt A Dy (t: Wy _ £
lim Iyt A) = 10(t),  lim Oy(t; ) 't — €t

AT A 9)
A—AF Ot A—A; O Ay =X (

are uniform for t € [a,b] (: =0,1,2) [8].

Let t1(A), t2(N) < ... (t1(N) < #2(N), ... ) denote zeros of yy in (a,b]. By
Lemma 1, with regard to the assumption (A4), all zeros of yx and h in (a,b]
are simple. Since the solution h has exactly m zeros in (a,b), and yy tends
to h uniformly on [a,b] as A — \(» , the functions (X)), j = 1,2,...,m,
are defined for sufficiently small A — Ay > 0. However, this implies also that
dy
ot

get that £,(X) are continnous functions of the parameter A in their domains of

(t;(A); A) # 0. Using the Implicit Function Theorem to solve y(t;A) = 0 we

definition. Besides, on the basis of Lemma 3, there is a positive number 6 such
that t;(A) >a+¢ for j =1,2,..., independently of A.

Now we show that there exists a nnmber 8y = 6;(S) > 0 such that #;4,(\) -
t(A) > 6, forall ) =1,2,..., independently of A. Suppose, for contradiction,
that, e.g.. t,(N) = t1(A) > &) is not true. We have two possibilities: either we
can find a sequence (/\,,)’)U in (M. Ay, to(A) — 1 ()\7,) — 0 such that py, =
max {;.r(t; M) = EDE () 1S (A, )} cno=1,2,..., is bounded from

below by a positive number, or py  is not separated in this way from zero. In

01( A)

the first case we obtain that H_(')—f_ is not bounded for some A € [N, A1,

but this is a contradiction with the compactness of the set S in C%([a,b],R).
In the second case both #;(\) and #,(\) are separated from ¢ = a. Since
S is compact in C*([a,b],R), there is a uniformly convergent subsequence of
(ry, )IX) which converges to & € S, such that + — € has a double zero in (a,b].
This is a contradiction with the assertion of Lemina 1. Therefore, the differences
f]_H()\) —1;(X) (j = 1,2,...) are separated from zero. From these facts along
with 5(t) > £(t) for every t € (a,b] it follows that there exist \; = sup{A;
AE (/\u. 1), ti(A) < b} and at the same time t;(A;) = b, 7 = 1,2,...,m,
A> Ay >0 > Ay Tt s clear that the functions oy, j = 1 2,...,m, are
sohutions of BVP (1-3) . The proof is complete.

COROLLARY. Supposc that the function f 1s bounded on [a,b] x R x R xR
and such that f.(t,x, ', x2") <0, fo(t.x,2',2") 2 0 for all (t,z,z' 2") €
[a.b]xRxRxR. Let f(¢,0,0,0) =0, r(t) := f,(¢,0,0,0), = fu (f O 0,0),
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p(t) := frn(t,0,0,0) for t € [a,b] and let the solution of the initial value problem

" = p(t)e" + q(t)" + r(t)x, (10)
z(a) =1'(a) =0, a"(a)=1 (11)

have m zeros in (a,b). Then the boundary value problem

" = f(t,z,2',2"), (12)
z(a) = 2'(a) = x(b) =0 (13)

has at least m + 1 solutions. In particular, the boundary value problem
" = f(x),
z(a) = 2'(a) = z(b) =0,

where f: R — R is bounded, f(0) =0, f'(0) <0, f((z) £0 for x € R and
b—a=2(m+ 1)1/V/3 3/—=f'(0), has at least m + 1 solutions.

Proof. Since the function f is bounded, all the solutions of (12) extend
to [a,b]. Let M be a positive constant such that |f| £ M and let £ = 0. Let
n be the solution of the initial value problem

2" = f(t, e, 2",

z(a) =0, a'(a)=0, z"(a)=4,

where f is a real number, 8 > (b — a)M/3. Then for n we have

—a)? f(t— 1)
o0 =855+ [ ) ar

2P

(t —a)? (t —a)? S (t-—a)[, M

2 M——2"3 [ﬂ 5 (b “)]>0
for t € (a,b], i.e. n(t) > &(t) =0 for all ¢t € (a,b]. Since the solution of (10),
(11) has m zeros in (a,b), the solution ¢ of BVP (12), (13) is of the index m.
We see that all the hypotheses of the Theorem are satisfied. Thus BVP (12),
(13) has at least m + 1 solutions and the proof is complete.

For example, the boundary value problem

n

= ———arctgr,

3V3
z(a) =z'(a) =0, z(b) =0

178



MULTIPLE SOLUTIONS OF A THIRD ORDER BOUNDARY VALUE PROBLEM

has at least m + 1 solutions when b—a 2 (m + 1)r.

Remark. We still note that in the paper [9] there is investigated the exis-
tence and uniqueness of solutions of multipoint boundary value problems for an
nth order nonlinear differential equation under the assumption of the existence
and uniqueness of solutions of certain boundary value problems for the corre-
sponding variational equations (in particular, when the variational equations are
disconjugate on a given interval). For example, from Corollary 2 [9], provided
that the assumptions (A), (B), (C) from (9] hold, we obtain the following result.

If the differential equation (4) is disconjugate on [a,b] for all solutions ¢
of (1), then BVP (1-3) has a unique solution. Consequently, if BVP (1-3) has

several solutions, then the variational equation (4) for some solution € of (1) is
not disconjugate on [a,b].

REFERENCES

1

SADYRBAEV, F.: The number of solutions of a two-points boundary value problem.
(Russian), Latv. Mat. Ezhegodnik. 32 (1988), 37-41.

[2] GERA, M.: Bedingungen der Nichtoszillations fahigkeil fir die lineare Differentialgle-
tchung dritter Ordnung y'"" + p1(z)y" + p2(z)y’ + p3(z)y = 0, Acta Fac. Rer. Nat. Univ.
Comenian. Math. XXIII (1969), 13-34.

FILIPPOV, A. F.: Differential Equations with Discontinuous Right-hand Side. (Russian),
Mir, Moscow, 1985.

[3

—_

[4) GREGUS, M.—SVEC, M.—SEDA, V.: Ordinary Differential Equations. (Slovak), Alfa,
Bratislava, 1985.

[5) BESMERTNYCH, G. A.-LEVIN, A. JU.: On some estimates of differentiable functions
of one variable. (Russian), Soviet. Math. Dokl. 144 (3) (1962), 471-474.

[6] DUGUNDIJI, J.: An eztension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353-367.

[7) CODDINGTON, A. E—LEVINSON, N.: Theory of Ordinary Differential Equations,
New York-Toronto-London, 1955.

[8] JERUGIN, N. P.: Reading for General Course on Differential Equations. (Russian),
Minsk, 1970.

179



MILAN GERA — FELIX SADYRBAEV

[9] PETERSON, A.: Existence-uniqueness for ordinary differential equations, J. Math. Anal.
Appl. 64 (1978), 166 172.

Received January 4, 1990 *) Departinent of Mathematical Analysis
Comenius Unwversity
Mlynskd dolina
842 15 Bratislava

Czecho-Slovakia

") Computing Center
Latvian State University
Riga

Latvia

180



		webmaster@dml.cz
	2012-08-01T07:24:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




