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MULTIPLE SOLUTIONS OF A THIRD ORDER 

BOUNDARY VALUE PROBLEM 

MILAN GERA*) — FELIX S A D Y R B A E V * ) 

ABSTRACT. An estimate from below of the number of solutions to the boundary 
value problem x'" = /(*., x, x', xu) = 0 , x(a) = A, x'(a) = Ax , x(b) = B 
is given provided that / along with first partial derivatives /_-, fx>, /__// are 
continuous functions and /x ___ 0 , /_-/ ^ 0 . 

We shall consider the two-point boundary value problem 

x" = / ( * , £ , x ' , x " ) , (1) 

x(a) = A, x'(a) = _4_ , (2) 

x(b) = B, (3) 

where .4, _4i, _9, a, 6 ( a < b) are given real numbers , provided tha t / : [a, b] x 
R x R x R —> R along with the first part ial derivatives / x , / x / , / x ' / are continuous 
functions . 

The aim of this paper is to give an est imate from below of the number of 
solutions of BVP (1-3) . 

The proof of the main result is based on a certain technique developed by one 
of the au thors in [1] and on some results from the theory of third-order linear 
differential equat ions . 

The following linear problem will be very impor tant in our considerations: 

y" = / > (t, t(t), t'(t), t"(t))y" + h> (t, m, Z'(t), t"(t))y' 

+f*(t,Z(t),t'(t),Z"(t))y, (4) 

y(a) = y'(a) = 0, y"(a) = 1 . (5) 

where c; is the solution of BVP (1-3) . (The differential equation (4) is a linear 
variat ional equation for the solution £.) 

We shall distinguish solutions of (1-3) by a certain property. The precise 
definition is the following: 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34B15. 
K e y w o r d s : Boundary value problem, Variational equation, Disconjugate. 
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D E F I N I T I O N . Let f be a solution of the BVP (1-3) and h the solution of the 
corresponding initial value problem (4) , (5 ) . Then the number of zeros of h in 
the interval (a, b) is called the index of £ . 

Now we are ready to present the main result of the paper . 

T H E O R E M . Assume that 

( A l ) there exists a solution £ of BVP (1-3) with nonzero index m; 
(A2) there exists a solution ?/ of (1) , (2) on [a,b] such that r](t) > £(£) 

for all t G (a, b] ; 
(A3) all solutions u of (1 ) , (2) for which £"(a) ^ un(a) = Il"(a) extend 

to [a,b]; 
(A4) the function f fulfils the following condition: 

V(t,x,x',x") e [a,b] x R x R x R: fx(t, x, x , x") = 0 , 

fx,(t,x,x',x") = 0. 

Then the boundary value problem (1-3) has at least m + 1 solutions. 

We first s ta te some lemmas needed for the proof of the Theorem. 

L E M M A 1. Let p, q, r be continuous functions on [a,b] and r(t) = 0 . q(t) = 0 
for all t £ [«,&]• Then a solution of the initial value problem 

x"' = p(t)x" + q(t)x' + r(t)x , (6) 

x(a) = x'(a) = 0, x"(a) / 0 (7) 

cannot have multiple zeros on (a,b]. All its zeros on (a,b] (if they exists) are 
simple. 

P r o o f . Let y be a solution of (6) , (7 ) . Suppose tha t there exists to £ [a, b] 
such tha t y(to) — y'(to) — 0 , y"(to) ^ 0 . Then, by Theorem 1 [2], the solution 
y has no zero on [a,to), i.e. y(t) ^ 0 for all t £ [a,to). This contradicts the 
fact tha t y(a) = 0 . Thus , when y has a zero in (a, b], it is simple. The proof is 
complete. 

Now denote by S the set of all solutions x of (1 ) , (2) satisfying the condition 

("(a) Z x"{a) S V"(a), 

where £ and ?/ are the solutions of (1) which fulfil the assumptions of the 
theorem. 

Note tha t ("(a) < / / " ( a ) , otherwise the solutions £ . ?/ must coincide since 
solutions of initial value problems for (1) are uniquely determined. 

In what follows we establish some properties of the set S. 
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L E M M A 2 . ([3] OT [4]). S is a compact set in C2([a,b], R) . 

L E M M A 3 . Let Mo, M i , M 2 be real positive numbers. Denote by G{ (i — 

0 , 1 , 2 ) a family of elements gt £ C([a,b], R) such that \gi(t)\ ^ M, for all 

t £ [ a , b ] . Then there exists a number 8 > 0 depending on Mo, AIi, M 2 only 

and such that for each gt 6 Gx , i = 0 , 1 , 2 , the length of any subinterval which 

contains three zeros counting their multiplicity of an arbitrary nontrivial solution 

of 
x'" = g2(t)x" + gi(t)x'+ g0(t)x (8) 

is larger than 8 . 

P r o o f . Let 8 be a positive number such tha t the following inequality holds 

—M0S
3 + IM1S + IM2 < 1. 

o l 0 o 

T h e n the differential equation (8) is disconjugate on each interval [a\, b\] C [a, b] 
for which bi — a\ _̂  8 is t rue [5]. (The differential equation (8) is disconjugate 
on [a\ ,b\] if each of its nontrivial solutions has at most two zeros, counting their 
multiplicity, on [a\, b\].) Thus , if a nontrivial solution of (8) has three zeros on 
any interval [a2, b2] C [a, b], it must be 62 — a2 > 8. The l emma is proved. 

P r o o f o f t h e T h e o r e m . The set S is compact in C 2 ( [ a , b ] , E ) by 

L e m m a 2. Consequently, there exist positive constants I\o, K\, I\2 such tha t 

\x(t)\ = I\0 , \x'(t)\ ^ I\i , \x"(t)\ <, K2 for all t E [a, 6] and x £ 5 . 

We may assume tha t | / | with | / x | , | / x / | and \fx"\ are bounded on [a, 6 ] x 
R x R x K . This means no loss in generality because the values of / outside the 
finite region D = {(t,x, y, z); a ^ t ^ b , \x\ :_ Ii0, \y\ ^ K\, \z\ £ K2] are not 
involved in our considerations . So we can always make \fx \, \fx> \, \fxn \ bounded 
by changing the functions outside the region D [6]. Thus , let M 0 , M\, M 2 , be 
positive numbers such tha t \fx\ ^ M 0 , | / x ' | ^ M\ , \fx»\ ^ M 2 on [a, b] x R x 
R x R . 

Let x\ = x(t; A) be a solution of the initial value problem 

X — J\Z, X, X , X J , 

x(a) = A, x'(a) = Au x"(a) = A, 

d^xit' A) 
where A0 := £"(a) = ^ = v"(a) ~ : ^1 • T h e n — ^ 7 7 — a r e continuous functions 
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of t e [a,b], A € [ A 0 , A i ] , xx G S, 

liш °'X^X) = *«>(.) ( 
A-.A+ Ot 

litr 
л->л; 

* * * » - , , « > ( « ) ( <3ť' 

ď 'д(<;Ao) . 

дv 

ć ) ' j ( ť ; Л i ) 

дť" 

d * ( l ; A 0 ) 
<9A 

are uniform for t G [«, 6] (? G {0,1,2}) and the function 

, ,. * A ) - ^ ) r ., r V . (A. ( r , . d.?(*;A0) 
( = lim ) is the solution of (4) , ( 5 ) , i.e. — — n(t) lor 

A—A+ A - A0 OX 

all te [a,h] [7]. 

Seating; y(t; A) = (.r(l; A) - £(t))/(\ - A()) ( A0 < A ^ A. ), we have tha t the 

function HA : t r-> H(l; A), £ G [O, b] , solves the initial value problem 

y"' = 92{t^)y" + g\(t\X)y + go{t; A)y, 

y(«) = y'(«) = 0, ?/'(«) = l , 

where 

.</.(*; A) 

, / , ( / ; A) 

í/o(!;A) 

.r, jť,r;A) 

= / L" (', a-0(ť, r, A), ;r, (ť, r, A), .r_(ť, r, A)) d r , 

0 

1 

= / fr> (*, .vo{*< ^ A ) ^ •'•!(/, r . A), x2(U r , A)) d r ^ 0 , 
b 

i 

= / / , ( / - ř ' o ( ^ ^ A ) , T 1 ( l , r , A ) , T 2 ( / , T , A ) ) d T ^ O , 

í ( i ) (/) + r 0 5 _ r 5 _ l , ( = 0 , 1 , 2 , 

and 

/ ť,,-(ť;Л), 
<Э.r(ť;A) д2x(t;\] 

дt ' дť1 /(-U(lU'(lU''(l)) 

2 
< M ' ; A > _ ( j ) 

1 = 0 
ðť ! 
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for / £ [a,b], A £ [A0, A i ] . It is obvious that |gz | = A/, on [a,b] x [A0, Ai] and 
also gt , i' = 0 , 1 , 2 , are continuous functions on [a, b] x [A0, Ai] . Fur ther it holds 
tha t 

r ^{UX) {i) <9<y(/;A) *,<•>*-£<'>/ 
hm — — = fr '(t), hm —-— = — ((J 

A->A+ dV V
 A _ A r OV A\ - A c 

are uniform for t £ [a, b] (i = 0 , 1 , 2 ) [8]. 

Let / i (A), Z2(A) < . . . (*i(A) < / 2 ( A ) , . . . ) denote zeros of yx in (a,b]. By 
Lemma 1, with regard to the assumption (.44), all zeros of yx and //, in (a,b] 

are simple . Since tin* solution h has exactly m zeros in (a,b), and yx tends 
to li uniformly on [a,b] as A —> A(j , tin1 functions t j(\), j = l , 2 , . . . , r a , 
are defined for sufficiently small A — Ay > 0 . However, this implies also tha t 
r\ 

- : - ( / ; ( A ) ; A) /- 0 . Using the Implicit Function Theorem to solve //(/; A) = 0 we 

get tha t tj(\) are continuous functions of the parameter A in their domains of 
definition. Besides, on the basis of Lemma 3, there is a positive number b such 
tha t tj(\) > a -f b for j = 1 ,2 , . . . , independently of A . 

Now we show that there exists a number b\ = b\(S) > 0 such tha t / ^ ( A ) — 

tj(\) > b\ for all / = 1,2, . . . , independently of A. Suppose, for contradict ion, 

tha t , e.g., /2(A) — t\(\) > b\ is not true. We have two possibilities: either we 

can find a sequence (A7J). in ( A u , A i ) , / 2(A„) —/i(A„) —» 0 such tha t pXn = 

max l\x(t;\u) - £( / ) | ; / i (A n ) = t = t2(\n ) | , ?/ = 1, 2 , . . . , is l)ound(Hl from 

below by a positive number, or px is not separated in this way from zero. In 

tin1 first case we obtain that — is not bounded for SOUK1 A £ [A 0 ,Ai ] , 
at 

but this is a contradiction with the compactness of the set S in C 2 ( [O ,b ] ,K) . 

In the second case both t\(\) and /2(A) are separated from / = a. Since 

S is compact in C2([a, b], R) , there is a uniformly convergent subs(Hpi(>nc(l of 

('J'\ ) \ which converges to x £ S , such that x — ^ has a doubh* Z(TO in (a, b] . 

This is a contradiction with the assertion of Lemma 1. Therefore, the differences 

tj+\(\) — tj(\) (j = 1,2, .. . ) are separated from zero. From these facts along 

with 7](t) > £(/) for every / £ (a,b] it follows that there exist \j = sup{A; 

A £ ( A 0 , A i ) , tj(\) < b) and at the same time tj(\j) = b, j = 1,2, . . . , m , 

Ai > A 2 > ••• > Am . It is clear that the functions xXj , j = 1,2,... ,in, are 

solutions of BVP (1-3) . The proof is complete. 

COROLLARY. Suppose that the function f is bounded on [a,b] x R x R x I 
and such that fx(t,x,x',x") = 0 , fx>(t, x, x', x") = 0 for all (t,x,x',x") £ 
[ a , / j ] x E x R x E . Let / ( f , 0 , 0 , 0 ) = 0, r(t) := / x (« , 0 , 0 , 0 ) , q(t) := fx<(t, 0, 0, 0 ) , 
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p(t) := fT"(t, 0 ,0 ,0 ) for t G [a, b] and let the soluUon of the initial value problem 

x'" = p(t)x" + q(t)x' + r(t)x , (10) 

x(a) = x'(a) = 0 , x"(a) = 1 (11) 

have m zeros in (a, b). Then the boundary value problem 

x" = f(t,x,x ,x"), (12) 

x(a) = x'(a) =x(b) = 0 (13) 

has at least m + 1 solutions. In particular, the boundary value problem 

x'"=f(x), 

x(a) = x'(a) = x(b) = 0 , 

where / : R -> R is bounded, / ( 0 ) = 0 , f'(0) < 0 . f'(x) = 0 for x e R and 

b — a _ 2(m + l ) 7 r / v 3 y —/'(O). /ia,s atf /east m + 1 solutions. 

P r o o f . Since the function / is bounded, all the solutions of (12) extend 
to [a,b]. Let M be a positive constant such that | / | = M and let £ = 0 . Let 
r/ be the solution of the initial value problem 

X = f(t,x,x ,x ) , 

x(a) = 0 , x'(a) = 0 , x"(a) = /? , 

where /? is a real number, ft > (b — a)M/3. Then for r/ we have 

m = / ? ^ ^ + / {±Z^f{^ *(*)> '/'('•). V'(r)) dr 

^(í^-MÍi^^íi^L2 
Ø-y(Ь-a) > 0 

for tf E (a, 6 ] , i.e. rj(t) > £(t) = 0 for all t G (a,&]• Since the solution of (10) , 
(11) has m zeros in (a, b), the solution £ of BVP (12) , (13) is of the index m . 
We see tha t all the hypotheses of the Theorem are satisfied. Thus B V P (12) , 
(13) has at least m + 1 solutions and the proof is complete . 

For example, the boundary value problem 

... 8 
x = -= arct e; x , 

3\/3 

x(a) = x'(a) = 0, x(b) = 0 
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has at least ra -f 1 solutions when b — a ^ (ra + 1 )TT . 

R e m a r k . We still note tha t in the paper [9] there is investigated the exis
tence and uniqueness of solutions of multipoint boundary value problems for an 
n th order nonlinear differential equation under the assumption of the existence 
and Liniqueness of solutions of certain boundary value problems for the corre
sponding variational equations (in particular, when the variational equations are 
disconjugate on a given interval). For example, from Corollary 2 [9], provided 
tha t the assumptions (A), (B), (C) from [9] hold, we obtain the following result . 

If the differential equation (4) is disconjugate on [a,b] for all solutions £ 
of ( 1 ) , then B V P (1-3) has a unique solution. Consequently, if BVP (1-3) has 
several solutions, then the variational equation (4) for some solution £ of (1) is 
not disconjugate on [a, b]. 
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