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ON THE EMBEDDING Hw c Vp 

O N D Ř E J KOVAČIK 

(Communicated by Ladislav Mišík) 

ABSTRACT. In this paper a necessary and sufficient condition for the embedding 
Hw C Vp are given. 

Let p be a given constant for which 1 < p < oo holds. Then the function / 
defined on the interval [a; 6] is said to have finite p-variation if 

Vp(f;a,b) = sup i 5 3 | / ( s f e ) - / ( s f e - i ) | p | 

1/p 

< oo, 

where the supremum is taken over all decompositions G = {sk} of the interval 
[a: b] with a < so < si < • • • < s^ < b. The set of all functions with finite 
p-variation on [a; b] will be denoted by Vp. 

The functions from Vp are important in the theory of Fourier series as we 
can see in the following proposition. 

PROPOSITION. Let p > 1 and let f be a continuous function with finite 
p -variation on [0; 2n]. Then the trigonometrical Fourier series of f is uniformly 
convergent. (See [2, p. 283].) 

Embeddings of Lebesgue spaces into Vp are studied in papers of 
G . H . H a r d y and J . E . L i t t l e w o o d [3], A . P . T e r j o k h i n [6], 
P . L . U l j a n o v [7] and others. 

R e m a r k . Just for simplicity we note, that the whole investigation will be 
proceed on the interval [0; 1]. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26A16, 46E35. 
K e y w o r d s : Function spaces, Embeddings, Modu lus of continuity, p-variation. 
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DEFINITION 1. Any function w(t) defined, continuous and nondecreasing 
on [0;oo[ is called a modulus of continuity if w(0) = 0 and w(t\ + £2) < 
w(t\) + w(t2) for any nonnegative t\ and £2 • 

DEFINITION 2. For any function f continuous on [0; 1] we define the modulus 
of continuity of f as follows 

w(t,f)= sup \f(x + h)-f(x)\. (1) 
0<h<t 

0<x<l-h 

DEFINITION 3 . Let w be a modulus of continuity. By Hw we denote the class 
of all functions f continuous on [0; 1] for which the moduli of continuity (1) 
satisfy the following condition 

w(t,f) < c-w(t), 

where w(t) is a given modulus of continuity and c is some positive constant. 

DEFINITION 4. Let 0 < r < 1. For w(t) = a-tr denote by Hr the set He , 
where a is some positive constant. It is a Holder class of functions. 

LEMMA 1. The inequality 

w(c-t) < (c+l)-w(t) 

holds for any positive c and for any modulus of continuity w(t). 
(See [4, p. 177].) 

LEMMA 2. Let t £ [0; 1]. Then for arbitrary modulus of continuity w(t) ^ 0 
there exists a concave modulus of continuity w*(t) such that w(t) < w*(t) 
< 2 - w(t). (See [4, pp. 182-183].) 

R e m a r k 1. On the symbols O and o see e.g. in [1]. 

R e m a r k 2. From Lemma 2 we get that both of the functions w(t) and 
w*(t) define the same set Hw. Therefore we can consider the modulus of con
tinuity w(t) to be concave. 

R e m a r k 3. According to the expression (1) and Remark we are interested 
in t e [0; 1]. 

DEFINITION 5. We shall say that the function g: R —• R preserves the con
vergence of the series J ^ a n if from the convergence of this series there follows 
the convergence of the series ^2g(an). 
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LEMMA 3. The function g: R —• R preserves the convergence of the series 
^2 an if and only if there exists a real constant b such that g(x) = b • x holds 
for any x from some neighbourhood of zero. (See [5, pp. 84-85].) 

THEOREM. Let p be a given constant from [1; oo[ and w(t) be a given modulus 
of continuity. 

a) If w(t) = 0{t1/p} for t -> 0 + , then the embedding Hw C Vp takes 
place. 

b) If w(t) ^ 0{t1/p} and, moreover, t1/p = o{w(t)} for t -> 0 + , then 

there exists a function f £ Hw such that f £ Vp . 

P r o o f . Let / G Hw and w(t) = 0{t1/p}. Then there exists some positive 
constant d such that 

w(t)<d-t1/p 

holds for any t 6 [0; 1]. For every decomposition G of [0; 1] we have 

N N N 

J2 I / M - /(xfc-or < ][>p(xfc - xfc-i,/) < J2ď •wP^ - x*-i) 
fc=i fe=i 

N 

k=l к=l k=l 

N 

k=l 

Therefore / € Vp . 

Now let we have t1/p = o{w(t)} . According to Lemma 2 and Remark 2 we 
can put w(t) = w*(t). From the continuity and concavity of w(t) there follows 
an existence of some positive to such that w(t) will be increasing on [0; to]. If 
to > 1, then according to Remark 3 we can put to = 1. Denote To = w(to). 
Then for the function w(t) there exists an inverse function w_i ( t ) , which is 
defined on [0;To]. From the assumption t1/p = o{w(t)} we get 

w_i(t) = o{tp} for t - > 0 + , t e [ 0 ; T o ] . 

According to Lemma 3 there exists a sequence { t n } , t i < To, t n —* 0 + , 
such that 

CO 

X > " ) P = OO (2) 
n = l 

and 

^ г y _ i ( í n ) = 5 , 
n = l 

575 



ONDREJ KOVAClK 

where S is some positive constant. 

We construct the decomposition G of [0; 1] using the following points 

i 

x2i = ( 1 / S ) ^ w _ i ( t f c ) and x2i+l = x2i + (1/25) -w_ i ( t i + i ) 
fc=i 

o 
for i = 0 , 1 , . . . , putting ]£ w-i(*k) = 0. 

k=i 

Define the function / as follows: 

{ t0(25[x — x2i]) if x2 i < x < x2i+i, 

w(2S[x2 i+2 - x\) if x2i+i < x < x2i+2 , 

0 if x = 1, 
for z = 0 , 1 , . . . . 

We can see that the function / is continuous on [0; 1]. We will now prove 
w(tj)<cw(t), (3) 

where C — 2S + 1. According to (1) we shall investigate the following absolute 
value 

\f(x + h)-f(x)\, h€[0;l). (4) 

The supremum of (4) will be attained in some interval of monotonicity of function 
/ . It is equivalent to the investigation on the corresponding interval of increasity 
of this function / . Then there exists a natural number i such that 

x2i < x < x2i+i — h. 

Using (1) we obtain 

sup \f(x + h)- f(x)\ = sup U(2S[x + h- x2i+i]) - w(2S[x - x2i+i]) \ . 

0<x<l-h 0<x<l-h 

From the Definition 1 we get 

w(x + h) < w(x) + w(h) for any x > 0 and h > 0 
and 

w(x + h) — w(x) < w(h). 
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Therefore we obtain the supremum if x — #21+1 — 0, i.e. 

sup \f(x + h)-f(x)\=w(2Sh). 
0<x<l-h 

According to (1) and using Lemma 1 we have 

w(tj)= sup w(2Sh) = w(2St) < (2S+l)-w(t). 
0<h<t 

It proves (3). Therefore / G Hw . 

Finally we shall prove f £ Vp. For a given constant p > 1 we have 

oo 

k=l 

oo oo 

= J2{\f(^+i)-f(x2k)\p + \f(x2(k+1))-f(x2k+1W} = $ > £ . 
k=l k=l 

Using (2) we obtain 

oo 

W;Ofl)>2£(*2)1/p = ~ . 
k = l 

Therefore f £ Vp. Proof of the Theorem is complete. 

COROLLARY. Let p be a given constant from [l;oo[. Then the condition 
r > 1/p will be the necessary and sufficient condition for embedding Hr C Vp. 

P r o o f . 

Sufficiency we obtain from the proof of Theorem with respect to Definition 4. 

Necessity. Let r < 1/p. Then there exists some positive c < 1 such that 

r = c/p. Hence according to Definition 4 there follows w(t) = a • £c/p , i.e. 

w-i(t) = a~plc • tplc. Choosing xk = k~xlp from the proof of Theorem we get 

oo oo 

k=l k=l 

and 
oo oo oo 

5 2 «•_!(**) = J2 «"P/C • fc(-1/p)(p/c) = a-p/c • 5 2 k~1/c < oo. 
k = l k=l k = l 

The proof of the Corollary is complete. 
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