
Mathematica Slovaca

Ján Andres; Svatoslav Staněk
Note to the Lagrange stability of excited pendulum type equations

Mathematica Slovaca, Vol. 43 (1993), No. 5, 617--630

Persistent URL: http://dml.cz/dmlcz/136594

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136594
http://project.dml.cz


Mathernatica 
Slovaca 

©1993 

Math. Slovaca, 43 (1993), No. 5, 617-630 S!Í!!*A£$SŠ iTs^L 

NOTE TO THE LAGRANGE STABILITY OF 

EXCITED PENDULUM TYPE EQUATIONS 

JAN ANDRES — SVATOSLAV STANEK 

(Communicated by Milan Medved') 

ABSTRACT . Higher-order pendulum-type equations under forcing are studied 
with respect to the Lagrange stability. The convergence result for the third-order 
equation is obtained as a partial answer for the so-called problem of 
B a r b a s h i n , 

In troduc t ion 

This note was stimulated by two recent papers [27] and [15] dealing with the 
periodically excited mathematical and physical pendulum, respectively. In the 
first, there is positively solved the problem of J . M o s e r [14, p. 11] concerning 
the Lagrange stability on the cylinder, i.e. the boundedness of trajectories with 
respect to the angular velocity components. In the second one, the conjecture 
of J . M a w h i n [12] on the existence of harmonics to the damped equation 
with the zero mean value of the applied torque is negatively answered by a 
counterexample. This means that in such a case all solutions are unbounded, 
according to the well-known Massera transformation theorem, and consequently 
a natural question arises whether the Lagrange stability (in general) can be 
proved for sufficiently large positive values, say a, of a viscous damping constant. 

Since we already know (see [1]) that this can be affirmatively answered for 
a > a, a suitable positive constant approaching y/b/n in the best case, where b 
is a positive multiple coefficient at the restoring torque, the above problem can 
be still specified as follows: "what is the sharpest lower estimate of a ?" 

In [16], R . O r t e g a has recently studied the stability of periodic solutions 

when only a > 2\fb. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34D40, 34D05. 
K e y w o r d s : Lagrange stability, Pendulum-type equations, Moser's problem, Mawhin's 

conjecture, Barbashin's problem. 
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In [1], we have already refined the related result of G . S e i f e r t [22], 
provided only 

< 0 0 . 

t 

l imsup|p(t) | < 00 and limsup / p(s) ds 
t—•00 t—•CO J 

0 

where p(t) is a (not necessarily periodic) forcing term. 

Although we are able to show in this paper that a can approach \/b/(2 + n) 
in the best case, the sharpest estimate remains yet unknown. 

In [25], F . T r i c o m i has shown that if the forcing term is constant (and 
thus considerable as a part of the restoring term), namely p(t) = p , 0 < p < 1, 
then a critical value, say a — a(p), exists such that ( 0 < ) a < d , ( 6 = l ) , 
implies the existence of a 27r-periodic (unbounded) solution of the second kind. 
This partially may explain the role of the interval (0, a) ( D (0, a)). 

We believe that the above problem is also of a big practical importance, 
because e.g. in electrical engineering it has the analogy with respect to the 
Josephson functions and especially the phase-locked loops; for the corresponding 
literature see e.g. [8], where also the detailed simulating circuit diagram for the 
phase-locked loop can be found. The higher-order analogies of damped pendulum 
equations can also be applied in modelling for the automatic control in TV 
systems realized by means of the RC-filters (see [23]). Therefore, we would like 
to enlarge here our results to the nth-order (especially for n = 3) equations, 
too. 

Let us note that the clarification of the phase space to the third-order pen
dulum-type equations is usually called the problem of B a r b a s h i n (see 
[5, p. 286], [11], [3]). 

There are not so many mathematical contributions (cf. [13]) on an excited 
nonlinear pendulum except those where the existence of harmonics is studied 
(for the survey of results see again [13]) or those where various aspects of chaos 
are treated as period doubling (cf. e.g. [8]) or the structure of the fractal basin 
boundaries (see e.g. [9], [18] and the references therein). 

For further interesting information see [6], [10, pp. 201-204], [17] and [20, 
pp. 195-197], where mainly the Melnikov function technique is applied in the 
frame of the perturbation theory. 

B o u n d e d n e s s of derivatives 

Consider the equation 

x" + g(x)x' + h(x) = p(t), (1) 

where g(x), h(x) E C(R1) and p(t) € C((0,oo)) . 
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LEMMA 1. Let nonnegative constants H, P and a positive constant a exist 
such that 

\p(t)\<P for t>0, (2) 

\h(x)\<H for all x, (3) 

° < g(x) f°r alt* x • (4) 

Then 
limsup |x'(*)| < D' := (H + P)/a (5) 

£ — • 0 0 

is satisfied for all solutions x(t) of (1). 

P r o o f . Let x(t) be a solution of (1). Because of 

-g [x'2(t)) = 2x'(t)x"(t) = 2x'(t) [p(t) - g(x(t))x'(t) - h(x(t))] 

<2\x'(t)\[-a\x'(t)\ + H + P], 

we have 

d~ 
[x'2(t)]<-2e(H + P + ae)<0 for \x'(t)\ > (H + P)/a + e, 

where e is an arbitrary positive constant, and consequently (5) must be satis
fied. 

R e m a r k 1. The assertion of Lemma 1 remains obviously valid for the 
equation 

x" + g(t, x, x')x + h(t, x, x') = p(t, x, x'), 

where gsh,p E C((0,oo) x R 2) , a < g(t,x,y), \h(t,x,y)\ < H and 
\p(t,x,y)\ < P for t > 0 and all x, y. 

R e m a r k 2. Although the sufficient conditions are known (see [21]) for the 
uniform ultimate boundedness of the derivatives x^(t), j -=- 1 , . . . , n — 1, of all 
solutions x(t) to the equation 

n - l 

* ( n ) + E 9k (z*"-*-1))*^-*) + h(x) = p(t), (6) 
fc=i 

where h(x) E C(RX) satisfies (3), gk(y) G O(R1), A; = l , . . . , n - l , and 
p(t) E O((0,oo)) satisfies (2), it is rather cumbersome to find the estimating 
constants explicitly; for n = 3 see [26]. 
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R e m a r k 3. In the speciál čase of (6), námely 

n - l 

* ( n ) + J2 °^("~fc) + M*) = P(«) > (7) 
fc = l 

where ak, A; = 1 , . . . , n — 1, are positive constants with the Hurwitz structure, 
i.e. all roots of the "characteristic" polynomial 

n - l 

А ^ + ̂ аьА"-*- 1 (8) 
k=l 

have negative real parts, we are able (see [2]) to estimate ultimately the jth 
derivatives by means of the following constants: 

n - 2 

D^:=(H + P)J2^\\Mk/(-M)k+\ j = l,...,n-l, (9) 
fc=0 

n - 1 
where ||>1|| = m a x ( l , ^ ak) and M is the maximum of the real parts of the 

v k=i ' 

roots of (8). 

R e m a r k 4. If all roots of the polynomials 

n—i 

\n-1 + Y^ak\
n~k-i 

k=i 

are negative single for i = 1 , . . . , max(l, n — 4) , then the estimating constants 
(9) can be still specified as follows (see [4]): 

D& : = j(H + Pyon-j for j = 1, . . . , n - 1. (10) 

For n < 5 it is even sufficient to assume (see [4]) that the coefficients ak in 
(8) satisfy the Routh-Hurwitz conditions in order to obtain (10). 

R e m a r k 5. One can readily check that for n = 2 both (9) and (10) 
reduce to (5). For more detail and further information concerning such estimates 
see [2] and [4]. For example, applying the approach of [2], one can appropriately 
modify estimates (9) for (6). 
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Boundedness of solutions 

Consider equation (6) again and assume that the jth derivatives, j = 1, 
. . . , n — 1, of all solutions x(t) of (6) are ultimately bounded by means of the 
constants D(j), j = 1 , . . . , n — 1, i.e. 

limsup\x{j)(t)\<D(j) for j = l , . . . , n - l ; (11) 
t—*oo 

for the special cases of (6) see Remark 2, Remark 3 and Remark 4. 

Furthermore, let two sequences of intervals {(X~,Y{~)} and {(Xj~,Yj*~)} 
exist such that 

lim Y{~ = —oo , lim Xf = oo, 
i—•oc j—•oo •' 

and h(x)sgnx > 0 for x £ ( I r , ^ " ) , i e N, as well as for x G (X+' ,Yf), 

j e N, where h(Xr) = h(Yr) = h(X+) = h(Y+) = 0, ij e N. 

The following lemma is essential in order to precise the criteria for the La

grange stability of (6). 

LEMMA 2. Let e be a positive constant and let x(t) be a solution of (6) such 
that 

l imsupx(t) = oo. (12) 
t—*oo 

Then 

T2 Y 

J h(x(t)) dt > -^-£ J h(s) ds, (13) 
Ti X 

where T i , T2 (Ti < T2) are suitable (in order that h(x(t)) > 0 for 
t E (Ti,T2)) sufficiently large positive reals with 

h(x(Tx)) = h(x(T2)) = 0, X = x(Tx) < x(T2) = Y. 

P r o o f . Let e be a positive constant. Then a positive number To exists 
such that \x'(t)\ < D' + e for t > T0 and Ti ,T 2 <E (T0 ,oo), Tx < T2, exist with 
x ( T ! ) < x ( r 2 ) , h(x(Tx)) = h(x(T2)) = 0 , h(x(t)) > 0 for t G (TUT2). 

Let m be an arbitrary natural number. Then a system of intervals 
{(^/b vk)}k-i exists on (Ti,T2) such that the intersection of each pair consists 
at most of the boundary points with the property 

Y — X Y — X 
x(uk) = X H (A; - 1), x(vk) = X H k, k = 1 , . . . , m, 

m m 

621 



JAN ANDRES — SVATOSLAV STANEK 

and 
x(uk) < x(t) < x(vk) for te(uk,Vk). 

Thus, we have 
T2 m vjS m 
f h(x(t)) dt > 5 2 / h(x(t)) dt = J2 HZk)(vk ~ uk), 

i k=li *=-
where & e (x(uk),x(vk)) = (X + ^ ( k -1),X + Z=±k). 

Because of 
Y — X 

= x(vk) - x(uk) = x'(r)k)(vk - uk) = (Df + e)(vk - uk), 
m 

where r)k £ (uk,vK), we have furthermore that 
Y-X Vк~uк> 

m(D' + e) ' 

and consequently 

/

T 2
 Y - X m 1 m 

"W(» * £
 SKF+O ? M & ) = ^ n ? f c ( & ) 

Y-X 

m 

Y 

Therefore, in view of the continuity of h(x) and the definition of J h(s) ds, we 
x 

arrive at (13) with respect to 
Y 

lim V / г ( Є f c ) ^ - ^ = [h(s)ds. 

R e m a r k 8. One can readily check that the following assertion holds as 
well. If e is a positive constant and 

liminf x(t) = — oo 
t—• o o 

for a solution x(t) of (6), then 

T 2 Y 

Jh(x(t))dt<^^Jh(s)ds, 
Ti X 

where Ti, T2 (Ti < T2 ) are suitable (in order that h(x(t)) < 0 for t G (Ti, T 2)) 
sufficiently large positive reals with h(x(Ti)) = /i(x(T2)) = 0, Y = x(T{) > 
x(T2) = X. 

Now, we can give the principal result of this paper. 
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THEOREM 1. Let h(x) be an oscillatory function in the above sense and let 
(11) be satisfied for all solutions of (6). //, furthermore, a nonnegative constant 
Po exists such that 

t 

fм ж > , d í 

ío 

and 

= P0 for all t>to>0, (14) 

Д > D' + P0 for n = 2, 

' n - 3 

Д>An_2D' + 2 [^AkD^-k-V + D^Ҷ+Po for n = 3, 
fc=i 

(E- = °). 
k=i 

where 

: = i # ( ° i y . j + - * г / i + _57 / iадid в ) , 
XІJ 

(15) 

(16) 

( 0 < ) a : = inf gn-i(x), (17) 
xGR1 

Ak := sup _ 7 k ( y ) ( < o o ) , fc = l , . . . , n - 2 , (18) 
|y |<D( T l -fc- 1 ) 

_/ien aW solutions of (6) are bounded. 

P r o o f . Let x(t) be a solution of (6) satisfying (12); the case 

liminf x(t) = —oo 
t—•oo 

can be treated quite analogously (see Remark 6). Let e be a positive constant. 
According to (11), there exists a nonnegative real Tx such that 

\x(j)(t)\ <D{j)+e for t>Tx, j = l , . . . , n - l . 

Furthermore, there exist numbers T_, T 2 > T x having the same properties as 
in Lemma 2 and x'(T_) > 0, x'(T 2) > 0. Define 

_4Ĵ  := sup _7k(y), fc = l , . . . , n - 2 . 
| y |<D( r i - fc- 1 )+e 
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Substituting x(t) into (6) and integrating the obtained identity from T\ to 
T 2 , we get 

n _ 1 x<"- f c - 1 ) (T 2 ) T2 T2 

n~l\T2) - xí"-1)^) + J2 J 9k(s) ds + J h(x(t)) dt = Jp(t) 
fc=1 i(»-fc-i)(T!) Tx n 

dť. 

Since there is still 

x(T2) - x(Tx) = Y - X > 0, \x'(T2) - xf(Tx)\ < Df + e, 

\x^(T2)-x^(T1)\<2(D^+e), j = 2 , . . . , n - l , 

we arrive at the inequality (cf. (13), (14), (17), (18)) 

Y 

a[x(T2) -x(T0] +^-Jh{s) ds 
X 

x(T2) T2 

< J gn-1(s)ds + J h(x(t)) dt 
X(TІ) Tг 

i(£) ín' <A(:i2(D' + є) + 2 J2Ąє)(D(n-к-V+є) + (D^+є) 
Lfc=l 

+ To, 

holding for all positive e, and that is why 

Y 

a[x(T2)-x(Ti)] + - l | / i ( 5 ) ds < An.2D
f+2 ( V A ^ ^ - ^ + D ^ A + P O . 

However, this is a contradiction (cf. (16)) to (15), and consequently x(t) must 
be bounded. 

Since we have A = an + 2bjDf (cf. (5)) for h(x) = 6sinx in (16), where b 
is a positive constant, we can give immediately the following important conse
quence of Theorem 1 and Lemma 1. 

THEOREM 2. Equation 

x" + g(x)x' + òsina; = p(t) 
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is stable in sense of Lagrange, provided (2), (4), (14) and 

(b + P){Po+[P> + 4(2b + n(b + P))}1/2} 

2(2b + n(b + P)) ' K } 

R e m a r k 7. For p(t) = 0 inequality (19) reduces to a > \Jb/(2 + n), 
which is not a necessary condition, because we know [1] that the same assertion 
can be proved for every positive a. 

Convergence result for n = 3 

At last, consider equation (7) for n — 3 , i.e. 

x"' + axx" + a2x' + h(x) = p(t), (20) 

where a\, a2 are positive constants, h(x) 6 (^(R1) satisfies (3) and 

p(t) G C((0,oo)) satisfies (2). 

It follows from Remark 4 that 

l imsup|x ,( t ) | < £>!, limsup|x , ,(*)| < D2 ( = > l imsup|x , ; /( t ) | < D3 ) , 
t—>oo t—>oo t—>oo 

(21) 
where 

Di:=—(B + P ) , D2:=^-(H + F ) ( =-» D3 := 4(H + P ) ) 

for all solutions x(t) of (20), and consequently x(t) must exist on the whole 
positive half-line. 

Assume additionally that h(x) £ C 1 (R 1 ) , all the zero points x of h(x) are 
isolated, p(t) is differentiable and 

a\a2 — h'(x) > e > 0 (£ - constant) , lim inf h'(x) > —oo , (22) 
|x |—+oo 

l imsup|/i(x)| > 0, (23) 
-+oo 

X 

fh(s)ds>-oo, (24) 

|x |—*oo 

X 

lim inf 
|x |—^oo 

0 

as well as 
oo 

/ \p(t)\ dt < oo , lim sup \p'(t)\ < oo ([19=^11] lim p(t) = 0). (25) 
J t-»oo *->°° 
0 
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THEOREM 3. Under the above assumptions, a zero point x of h(x) exists to 
every solution x(t) of (20) such that 

lim [x(t) - x} = lim x'(t) = lim x"(t) = 0. 

P r o o f . Let x(t) be a solution of (20). Substituting x(t) into (20) and 
multiplying (20) by x'(t), we obtain, after integration from t\ to t2, that 

- Ix"2(t) dt + a2 I x'2(t) dt+ f h(s) ds 
ti t\ X(ti) 

t2 

= [x'(ti)x"(ti) - x'(t2)x"(t2)} + ^ [x'2(tx) - x'2(t2)} + Jp(t)x'(t) dt . 
tl 

Similarly, substituting x(t) into (20) and multiplying (20) by x"(t), we obtain, 
after integration from t\ to t2, that 

t2 t2 

ax fx"2(t) dt- jh'(x(t))x'2(t) dt 
ti tx 

= \ [x"\tx) - x"\t2)} + I [x'\h) - x'\t2)} 

t2 

+ [fc(x(ti))x'(ti) - h(x(t2))x'(t2)} + jp(t)x"(t) dt. 

After the summation of the first identity multiplied by a\ and the second, 
we arrive at the relation (cf. (25)) 

Í 2 

í[a1a2-h'(x(ť))}x'2(t) dt 
ti 

x{t2) oo 

< - a i / h(s) ds + sup(\x"(t)\+ai\x'(t)\) \p(t)\ dt 
J t>o J 

x(ti) 0 

+ | \ [x"2(ti) - x"2(t2)} +\(a2 + a2) [x'2(tx) - x'2(t2)} 

+ a i [x'(ti)x"(ti) - x'(t2)x"(t2)} + [fc(x(ti))x'(ťi) - h(x(t2))x'(t2)} 
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and consequently (observe that tA is fixed and so x(t{) is finite) 

0 0 0 0 

Ix'2(t) dt< ! [0102 - h'(x(t))]x'2(t) dt 

because of (21), (22), (24) and (25). 

This implies, according to the well-known lemma of B a r b a l a t (see e.g. 
[19, p. 211]) that 

l imx'(0 = 0. (26) 
t—*oo 

It follows, furthermore, from the first identity that 

00 

x"2(t) dt<oo, 

ti 

and by the same reason (Barbalat's lemma) 

lim x"(t) = 0 . (27) 
£—•00 

Now, substituting x(t) into (20) and derivating the obtained identity, we 
come to the inequality (cf. (25)-(27) and the second part in (22)) 

l imsup|x , , , ,( t) | < lim supai |x / ; / (t)| + lim sup \pf(t)\ 
£—•00 t—+oo t—>oo 

< l imsupai | / i (x( t ) ) | + lim sup \pf(t)\ < oo . 
£—•00 t—*oo 

This implies (see [7, p. 161]) jointly with (26), (27) that also 

lim x"'(t) = 0, 
t—KX> 

and consequently (cf. (25) again) 

lim h(x(t)) = 0 , 
t—>oo 

i.e. (see (23)) 
lim x(t) = x . 

t—^00 

This completes the proof. 
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COROLLARY. For the same purpose, condition (24) together with (23) and 
the second part in (22) can be evidently replaced by the one ensuring the bound-
edness of all solutions, namely (see (14) -(16) for n = 3) 

*ÍJ 

mí(a2\Yr;+ - X7f\ + i - j \h(s)\ ás\ > a.D, + 2D2 + P0 . 

v - . + 

R e m a r k 8. Observe that Theorem 3 applies, for example, if a\a2 > 6 > 0 
and h(x) := bsvnx . 

If (23) is, however, replaced by 

lim h(x) = 0, (28) 

| x | — • o o 

then we are not able to eliminate the case 

lim \x(t)\ = oo, (29) 
t—»oo 

as far as h(x)sgnx < 0 for all or, i.e. the Lagrange stability need not hold. 
Indeed, imagine for a moment that there are no zero points of h(x), but (28) 
takes place. Then, necessarily (29) holds, and consequently also equation (20) 
having a finite number of zero points of h(x) must have the same property (29) 
(as far as h(x)sgnx < 0 for all x and (28) are satisfied). 

R e m a r k 9. Although Theorem 3 does not apply to (20) for h(x) := 
sinx — A:, where k G (0,1) , Corollary says that this difficulty can be overcome, 
when e.g. p(t) ~ 0 , a\ = 1 < a2 and especially 

7r — 2 arcsin k + [2 cos(arcsin k) — k(ir — 2 arcsin k)] > 5(1 + &). 
1 + k J 

The last inequality is satisfied for k < 0.0117. 

R e m a r k 10. If h(x)sgnx > 0 for all x (see Corollary), then our result 
reduces to the one in [24]. In fact, K . E . S w i c k has not assumed that (2), 
(3), (23) and the second parts in (22) and (25) are satisfied. 

R e m a r k 11. One can readily check in the proof of Theorem 3 that 
x'(t),x"(t) G L2(0,oo) for all solutions x(t) of (20). If there is still h'(x) ^ 0 
for all the zero points x of h(x), then it can be proved (see [3]) that also 
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[x(t) — x\ £ £2(0,00) for each solution x(t) and the appropriate zero point x 
of h(x). 

R e m a r k 12. For p(t) = 0, the zero points x of h(x) with hf(x) > 0 are 
asymptotically stable in sense of Liapunov with the basin of attractivity given 
by (cf. [5, p. 279]) 

X 

ax f h(s) ds + h(x)x' + ^-x'2 + \(x" + alX')2 > 0 . 
J 2 2 
x 

It might be, therefore, expected that the desired convergence results are es
pecially valid (not necessarily under (24)) when the first as well as the second 
derivatives of all solutions of (20) are ultimately very small in an absolute value. 
This is true (see (21)) for sufficiently large values of both a\ and <22 • 

For a more detailed analysis and other related methods see [23] (cf. also 
Example in [11]). 

R E F E R E N C E S 

[1] ANDRES, J . : Note to the asymptotic behaviour of solutions of damped pendulum equations 
under forcing, J. Nonlin. Anal. T.M.A. 18 (1992), 705-712. 

[2] ANDRES, J . : Lagrange stability of higher-order analogy of damped pendulum equations, 
Acta Univ . Palack . Olomouc . Fac . Rerum Natur . Math . 106 , Phys . 31 (1992), 154-159. 

[3] ANDRES, J . : Problem of Barbashin in the case of forcing. In: Qualit . Theory of Dif
ferential Equations (Szeged, 1988). Colloq. Math . Soc. Janos Bolyai 53, North-Holland, 
Amsterdam-New York, 1989, pp. 9-16. 

[4] ANDRES, J .—VLCEK, V. : Asymptotic behaviour of solutions to the n-th order nonlinear 

differential equation under forcing, Rend. 1st. Mat . Univ. Trieste 2 1 (1989), 128-143. 

[5] BARBASHIN, V. A.—TABUEVA, E. A . : Dynamical Systems with Cylindrical Phase 

Space (Russian), Nauka, Moscow, 1964. 

[6] CHENCINER, A. : Systemes dynamiques differentiates. In: Encyclopedia Universalis, 

Universalia, Paris, 1978. 

[7] C O P P E L , W . A . : Stability and Asymptotic Behavior of Differential Equations, D . C 
Heath, Boston, 1965. 

[8] D 'HUMIERES, D .—BEASLEY, M . R .—HUBERMAN, B . A .—LIBCHABER, A . : 
Chaotic states and routes to chaos in the forced pendulum, Phys . Rev . A 26 (1982), 
3483-3496. 

[9] GREBOGI, C - N U S S E , H. E .—OTT, E .—YORKE, J . A . : Basic sets: sets that de
termine the dimension of basin boundaries. In: Lecture Notes in Math . 1342, Springer, 
New York-Berlin, 1988, pp . 220-250. 

[10] GUCKENHEIMER, J .—HOLMES, P . : Nonlinear Oscillations, Dynamical Systems and 
Bifurcations of Vector Fields. Appl. Math. Sci. 42, Springer, New York-Berlin, 1984. 

[11] LEONOV, G . A . : On a problem of Barbashin, Vestnik Leningrad Univ . Math. 13 (1981), 
293-297. 

629 



JAN ANDRES — SVATOSLAV STAN^K 

MAWHIN, J . : Periodic oscillations of forced pendulum-like equations. In: Lecture Notes 
in M a t h . 964, Springer, New York-Berlin, 1982. 

MAWHIN, J . : The forced pendulum: A paradigm for nonlinear analysis and dynamical 
systems, Exposition. Math . 6 (1988), 271-287. 

MOSER, J . : Stable and Random Motions in Dynamical Systems, Princeton Univ. Press 
and Univ. of Tokyo Press, Princeton, 1973. 

O R T E G A , R.: A counterexample for the damped pendulum equation, Bull. Roy. Acad. 
Sci. Belgique 7 3 (1987), 405-409. 

O R T E G A , R.: Topological degree and stability of periodic solutions for certain differential 
equations, J . London Math. S o c , (To appear) . 

PALMER, K. J . : Exponential dichotomies and transversal homoclinic points, J . Differen
tial Equations 5 5 (1984), 225-256. 

PARK, B. S — G R E B O G I , C . — O T T , E . — Y O R K E , J. A . : Scaling of fractal basin bound
aries near intermittency transitions to chaos, Phys. Rev. A 40 (1989), 1576-1581. 
P O P O V , V. M . : Hyperstability of Control Systems, Springer, Berlin, 1973. 
SANDERS, J . — V E R H U L S T , F . : Averaging Methods in Nonlinear Dynamical Systems. 
Appl. Math. Sci. 59, Springer, New York-Berlin, 1985. 

S§DZIWY, S.: Boundedness of solutions of an n-th order nonlinear differential equation, 
Atti Accad. Naz. Lincei 6 4 (1978), 363-366. 

S E I F E R T , G . : The asymptotic behaviour of solutions of pendulum type equations, Ann. 
of Math. 69 (1959), 75-87. 

SHAHGIL'DJAN, V. V . — L J A H O V K I N , A. A . : Systems of Phase-Shift Automatic Fre
quency (Russian), Control. Svjaz, Moscow, 1972. 

SWICK, K. E . : Asymptotic behavior of the solutions of certain third order differential 
equations, SIAM J. Appl. Math . 19 (1970), 96-102. 

T R I C O M I , F . : Integrazione di un'equazione differenziale presentatasi in elettrotecnia, 
Ann. R. Sc. Norm. Sup. di Pisa 2 (1933), 1-20. 

VORACEK, J . : On the solution of certain non-linear differential equations of the third 
order, Acta Univ. Palack. Olomouc. Fac. Rerum Natur . Math . 3 3 (1971), 147-156. 
YOU, J . : Invariant tori and Lagrange stability of pendulum-type equations, J . Differential 
Equations 8 5 (1990), 54-65. 

Received October 6, 1992 Department of Math. Analysis 

Revised November 24, 1992 Faculty of Science 

Palacký University 

tř. Svobody 26 

771 46 Olomouc 

Czech Republic 

630 


		webmaster@dml.cz
	2012-08-01T08:50:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




