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ABSTRACT. In this paper, the existence of a regularization of multifunctions
¢: T — Z and F: T x X — Y is stated if T is a topological measurable space,
and X .Y and Z are topological spaces with a countable base (Theorems 1 and
3). Utilizing Sainte-Beuve’s selection theorem ([6]), uniqueness theorems
(Theorems 2 and 4) are also derived. The obtained results generalize those of
Rzezuchowski in [5].

1. Introduction

Scorza-Dragoni type theorems for multifunctions F': Tx X — Y of Carathéo-
dory type are useful for the study of the set of solutions of Cauchy problems
associated with the differential inclusion

i€ F(t ). (1)

This occurs because the separated regularity of F' with respect to t and =
(i.e. the Carathéodory type property) implies (through the Scorza-Dragoni type
theorem) an almost regularity with respect to (¢,x).

For example, if T = [0,1], X =Y =R, F: T x X — Y has closed values,
F(-,xr) is weakly measurable, and F(t,-) is continuous, then for each ¢ > 0
there exists a closed set C. C [0,1], whose Lebesgue measure is > 1 — ¢, such
that F

C. is lower semicontinuous and has closed graph.
A tool for the study of the set of solutions of (1) when F is not of Carathéo-

dory type can be the “regularization” of F'.
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DIEGO AVERNA

Roughly speaking, a regularization of F' is a multifunction GG: T x X — Y
which has the following properties:

i) G(t,r) C F(t,x),

i2) q(t) € F(t,p(t)) == q(t) € G(t.p(t)) whenever p: T — X and
q: T — Y are measurable functions,

plus some Scorza-Dragoni type property.

In virtue of the properties iy) and i), the set of solutions of (1) is the same
as that of

i?EG(t,;I'). (2)

[N

Existence and uniqueness theorems for regularizations (' of certain mul i-
functions F' have been given in [1], [4], [5].

In particular, Rzezuchowski proved in [5] an existence theorem for regular-
izations of a given closed-valued multifunction F: 7' x X — Y such that F(f.-
has closed graph when T is a locally compact metric space endowed with a
Borel, o-finite. regilar and complete measure . and X and Y are separable
metric spaces ([5: Theorem 1]). A nniqueness theorem was also presented whei
X and Y are even complete ([5: Theorem 4]).

The aim of this paper is essentially to show that the Rzeznchowski existence
and unigneness theorems above remain still valid withont assauming that J
X and Y are metric and without strengthening of other hyvpotheses: that s
existence and nnigueness theorems for regularizations proved here extend 1o o
more general fraimework the results of [5].

The main idea for doing this, in existence theorems. is to replace the point-set
distance function in the range-space {whicli plays a key role in the Rzezuchowsic
existence proof) by a function ¢, taking only two values, which flags when twe
suitable sets, one coming from a basis of the topology of the range-space. 11+
other from the values of the multifunction, intersect.

This idea has heen tested also ina previous paper S concerning Lusin and
Scorza-Dragoni type theorenns: some results of (31 are adwo nseinl here.

The extension in nniqueness theorems essentially carrics ont i virtue of
Saiinte-Beuve's selection theorem.

Moreover, the results of this paper not only extend but also improve those of
[51. establishing indeed further properties for the regularization .
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REGULARIZATION OF CLOSED-VALUED MULTIFUNCTIONS ...

2. Preliminaries

Let S be a non-empty set and (Z,7z) be a topological space. P(Z) (resp.
C1(Z)) denotes the family of all subsets (resp. closed subsets) of Z, while B(Z2)
denotes the Borel o-algebra on Z. Let &: S — Z be a multifunction, i.e. a
function from S into the family P(Z). If the values of ® are closed subsets
of Z. we write ®: S — CI(Z). Gr(®) denotes the graph of ®, i.e. the set
{(.s‘. NeSxZ: ze€ <I>(s)} If ECS, we call (I)NE the restriction of ® to F.
fWCZ weput @ (W)={seS: ®(s)NW #£0} and ®H(W) = {s € S:
d(s) C W}, We have the fundamental relations @~ (W) = S - @ (Z - W) =
projs(Gr(®@)N(Sx W)), where projg denotes the projection map of Sx Z onto
S.and for each family {W, : a € A} € P(Z), <I)‘< U VVQ> = U ¢ (W,).
If &,.P,: S — Z are two multifunctions, we denote bf/Ad)lA(I)g thiﬁynnnetric

difference multifunction, that is the multifunction defined by (®;a®5)(s) =
by (s)ad,(s) for each s € 5.

If (S.75) is a topological space, we say that ® is lower (resp. upper) semi-
continuous at sg € S if for each W € 74 such that sy € &~ (W) (resp.
so € @T(17)) there exists an open neighbourhood I of s, such that I € ®~ (1)
(resp. [ C @1 (WW)). We say that ® is lower (resp. upper) semicontinuous if it
is lower (resp. upper) semicontinuous at every s € S, or equivalently, if for
cach W€ 7, the set @ (W) (resp. T (W)) is open in S. We say that & is
continuous if it is simultaneously lower and upper semicontinuous.

I (S, X g 1) is a measure space, we denote by X% the completion of Xg with
vespect to g and with g the completion measure. (S, X%, 1*) is a complete
measure space. Recall that £ € Y5 if and only if there exist £/, £ € ¥ such
that 1/ C FC E" and p(E') = p*(E) = p(E").

If Y is a g-algebra of subsets of S, we say that ® is ¥-weakly measurable
(resp. M-measurable) [resp. 2-B measurable] if for each W € 75, (resp. W €
CHZY) resp. We B(Z)] @ (W) e Eg.

The definitions of lower and upper semicontinuity for real valued functions
and those of measurability and continuity for functions with values in a topo-
logical space are the usual ones.

I (5.7} is a topological space. (9,Y) is a measurable space, and I C S.
then 77 == Ti[,; and Y, = Y|

E denote respectively the induced topology and
the induced a-algebra on . If £ ¢ S, and F has the induced topology, then
Bi H",‘”; BRI I e X then X - {A e ¥: AC E}:so we speak

of Moweak measurability (resp. E-measurability) of a multifunction (resy. iic-

tion) instead of llljg—wvnk measurability (resp. }:‘F—Inezmumi)ilit,_v) Wi eve
the multifunction {resp. function) is defined on E'.
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If S is a structured space, and we want a structure on F C S when it is
not specified, we refer to the induced structure; i.e., if S is a topological (resp.
measurable) space, then FE is a topological (resp. measurable) space with the
induced topology (resp. g-algebra).

If S and S’ are two sets and £ C S x §', then for s € S, E, = {s’ s
(s,8') € E} denotes the s-section of E, and for ' € §'. Ey = {s € 5 :
(s,5') € E} denotes the s'-section of E.

If S and S’ are two structured spaces, and we want a structure on S x 85’
when it is not specified, we refer to the product structure; i.e., if S and S’
are topological (resp. measurable) spaces, then S x S’ is a topological (resp.
measurable) space with the product topology (resp. product c-algebra). We
notice that if S and S’ are topological spaces, in general. B(S) x B(S') C
B(S x S"), and the inclusion can be proper; B(S) x B(S’) = B(S x ') if. for
example, S and S’ are second-countable topological spaces or Suslin spaces.

Moreover, when in the sequel we deal with the product of three sets S. S'.
and S”, we always identify S x (S x S”) with §x S’ x S” even if the structure
is essentially that of S x (8’ x S”). So, for example, if £ and Yg g are
o-algebras on S and S’ x S” respectively, when we say that £ C S x 5" x 5"
liesin g x X g/x 5, we mean that {(s (s',8") € Sx(8'x8"): (s.8.5") € £}
S ZS X ES'XS”-

As in [7], we say that a topological space is Polish if it is separable and
metrizable by a complete metric, Suslin if it is Hausdorff and a continuous image
of a Polish space.

3. Regularization of closed-valued multifunctions
We begin with the following proposition in measure theory.

LEMMA 1. Let (T,%1) be a measurable space, and p be a o-finite measure
on Y.
For each subset E of T there exists M € ¥ such that:
a1) MCE;
az) for each L € ¥% such that L — E € ¥% and p*(L — E) = 0. ther
holds p*(L — M) = 0.

Proof. We prove Lemma 1 for pu(7T) < +o00 because it is obvious how to
extend it to the o-finite case.

Let a = sup{u(A): A€ Xr, AC E} < +oo. Then there exists a sequence
(An), of sets in Bp such that, for each n € N, A, C FE and p(A,) >a—1/n.
The set M =|J A, is the requested set.
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In fact, obviously, M € Y7 and satisfies a1).

Moreover, let L € ¥% be such that L — E € ¥% and pu*(L — E) = 0; then
(L-M)NE=(L-M)—-(L-F)eX¥} and u*((L— M)NE) =u*(L - M).

Obviously, ((L — M)n E) UM € X%; solet L' € ¥p be such that L' C
(L - M)NE)UM and p(L') = p*(((L-M)NE)UM). We have L' C E
and o > pu(L') = p*(L — M) 4+ p(M) > «, from which p*(L — M) = 0. Hence
M verifies az). a

We need, for the sequel, to reformulate Lemma 1 in terms of functions with
only two values.

COROLLARY 1. Let (T, Y1) be a measurable space, u be a o-finite measure
on Y, and let {0,1} be endowed with the discrete topology.
If p: T — {0,1} is a function, then there exists a Xp-measurable function
v T — {0,1} such that:
1) w(t) < p(t) for each t € T;
y)  for each ¥%-measurable function ¥: T — {0,1} such that ¥(t) < p(t)
a.e. in T, there holds 9(t) < (t) a.e. in T.

3
I

From now on, unless otherwise stated, (T, 7r) is a topological space, ¥ is
a o-algebra of subsets of T such that 77 C X7 (equivalently B(T') C £r), p
is a o-finite measure on Y such that for every A € ¥ and every € > 0 there
exists a closed set C. C A with p(A — C.) < e. Obviously, ¥} and p* have
also these properties.

LEMMA 2. Let Z be a topological space and B(T x Z) = B(T) x B(Z).

Let W:'T — Z be a multifunction such that for each € > 0 there erists a
closed set C. C T with p(T — Ce) < e such that Gr(\If|CE) is closed in a
Y x B(Z) -measurable set 2 which contains Gr(¥).

Then there exists Ty € Yp with u(T,) = 0 such that Gr(\Il‘T_TU) €
Y x B(Z).

Proof. Foreach k € N there exists a closed set Cx, C T with u(T —Cy) <
1/k such that Gr(\I/ka> = Gr(\I}le)ﬂQ, where Gr(\IIICk) denotes the closure
of Gr(¥|c, ) in TxZ. But B(T'xZ) = B(T)xB(Z),s0 Gr(¥|¢, ) € S5 xB(Z).
Put Ty = (YT = Cy); then u(Ty) = 0 and Gr(¥|p_7,) = L;‘J:Gr(\lf‘ck) €

k
Yy x B(Z). O

We need also the following proposition, whose proof we give for completeness.

417



DIEGO AVERNA

LEMMA 3. Let Z be a Suslin space. If W: T — Z is a multifunction such that
Gr(V) € X7 x B(Z), then for every € > 0 there exists a closed set C- C T with
w(T — C.) < ¢ such that ‘IJ‘CE 1s lower semicontinuous.

Proof. Let ¢ be a continuous function from a Polish space Z’ onto Z.
Define the multifunction ¥': T — Z' by putting W'(t) = ¢~ ' (¥(t)) for all
teT.

We claim that Gr(¥’) € ¥p x B(Z'). Indeed, it is easily seen that (17.¢):
T x Z'—Tx Z,defined by (1r,9)(t,2") = (t,9(z")) forall (t.2") e T x Z' is
continuous, and (17,g) " 1(Q) € L7 x B(Z') for each Q € ¥ x B(Z). Thus the
claim follows from the fact that Gr(¥') = (17,¢) ' (Gr(¥)).

By Sainte-Beuve’s projection theorem [6; Theorem 4. W' s
¥%.- B-measurable since W'~ (W) = proj; (Gr(¥" )N (T xW')) for each W' C Z'.
Hence, a fortiori, ¥’ is ¥7-weakly measurable.

Now, by Theorem 1 of [3], for every € > 0 there exists a closed set (. C T
with u(T — C.) < € such that \I/’]CE is lower semicontinuous.

Since g is surjective, W(t) = g(W'(t)) for every t € T'. and so W~ (1) =
W' (g (W) for each W C Z; thus ‘I"Ce is lower semicontinuous. O

Asin [3],if B, B’ C Z, we define

I if BOB 40,

§(B,B) =
(B.B) {o i{ BnB =0.

The following theorem is the key result of this paper.

THEOREM 1. Let Z be a sccond-countable topological space and &: T — Cl(Z)
a multifunction.

Then there exists a multifunction V: T — CI(Z) such that:

v1) Y(t) C ®(t) for each t € T;

v2) for each A € % and for each Y -weakly measurable multifunction

O: A — Z such that ©(t) C ®(t) a.e. in A, there holds O(t) C W(t
a.e.in A;

v3) for each € > O there exists a closed set Ce C 1 with p(I — () < =
such that Gr(\IJ|O ) is closed in T X Z ;
€
’7’4) Gr(\I/) € X X B(Z)
If, moreover, we assume that Z is also a Suslin space, then:
vs5) for each € > 0 there exists a closed set C. C T with n(T — C.) < =
such that ‘II‘C s lower semicontinuous;
€
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Y6) for each A € X% and for each multifunction ©: A — Z with Gr(0) €
Y5 x B(Z) such that ©(t) C ®(t) a.e. in A, we have O(t) C ¥(t)
a.e. in A.

Proof. Let B = {B,, : n € N} be a countable basis for 7. For each
n € N define ¢,,: T — {0,1} by putting, for each t € T, ¢, (t) = 6(Bn, ®(t)).
By Corollary 1, there exists a Yp-measurable function ,,: T — {0,1} such
that:
1) ¥,(t) < pnp(t) for each t € T
2) for each Y}-measurable function ¥: T' — {0, 1} such that 9(t) < ¢, (t)
a.e. in T, we have J(t) < 9, (t) a.e.in T.

Let us define ¥: T' — CI(Z) by putting, for each t € T,
U(t)=( {2~ Bn: va(t)=0}.

U verifies 71). In fact, for each z € ¥(t) and each n € N such that ¢, (t) =
0, it follows that z € Z — B,, in virtue of 1). Thus we obtain z € ®(¢), taking
into account that, ®(t) being closed, ®(t) = ({Z — B, : pn(t) = 0}.

U verifies 72). Let A € ¥ and ©: A — Z be a Yj-weakly measur-
able multifunction such that ©(t) C ®(¢) a.e. in A. For each n € N define
¥, : T — {0,1} by putting:

9u(t) = { §(B,,0()) ifteA,
1o iftg AL

Then, by using [3; Lemma 2. 3) (=)], it follows that ¥, is X7-measurable;
moreover, since ©(t) C ®(t) a.e. in A, V,(t) < ¢,(t) a.e. in T. Hence, by 2),
U, (1) <p(t) ae.in T, and thus O(¢) C ¥(¢) a.e. in A.

U verifies v3). Fix ¢ > 0. By Lusin’s theorem (see also [3; Lemma 1]) and
by a standard argument which takes into account the countability of the family
{¢, : n € N}, we can find a closed set C. C T with u(T — C.) < e such
that v, C. is continuous for each n € N. We claim that Gr(\I/'Ce) is closed in
T x Z.Indeed, if zo € ¥(ty), to € C., then there is @ € N such that ¥ (t)) =0
and zy € Bg. By the upper semicontinuity of 1/)5‘06 at tp, there exists an
open neighbourhood I of ¢y such that ¥7(t) = 0 for each t € I N C.. Thus
(INC) x Br) NGr (Y|, ) = 0.

W verifies v4). In fact, (T' x Z) — Gr(¥) = UJ(¥;; 1 ({0}) x Bn).

n

Finally, under the additional hypothesis on Z, vs) is a direct consequence of
71). by Lemma 3, while 76) is a consequence of 72) because, using the equality
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0~ (W)= projT(Gr(("))ﬁ(A xW)) for W € 7z, it follows that © is Xj-weakly
measurable by Sainte-Beuve’s projection theorem. O

Remark 1. Obviously ;) and 7v2) of Theorem 1 imply respectively the
following:
) ¥(t) C ®(t) ae. in T
v5) for each A € ¥% and for each Yi-measurable function #: N — Z
such that 6(t) € ®(t) a.e. in A, there holds 0(t) € V() a.e. in \.

Hence Theorem 1 extends and improves [5; Theorem 2]. in which ~7). ~5) and
v3) are proved when T is a locally compact metric space. 1 is a Borel. o-finite.
regular and complete measure on 7', and Z is a separable metric space.

Moreover, if Q is a % x B(Z)-measurable set, with Gr(¥) C . then -~y
of Theorem 1 implies the following:

~4) for each € > 0 there exists a closed set C. C T" with p(T — (.) < =
such that Gr(\I/

C.-) is closed in .

Now we prove the following uniqueness result, whose part 1) extends
[5; Theorem 5].

THEOREM 2. Let Z be a Suslin space and .V, Vy: T — Z be three multi-
functions.
Let us consider the following properties for i = 1.2:
) Wi(t) C P(t) a.e in T;
) for each A € Y% and for cach Yi-measurable function 6: N — 7
such that 6(t) € ®(t) a.e. in A, we have 0(1) € U, (t) a.e. in N
v4)  for some Q € ¥% x B(Z) with Gr(®) C Q. and for each = > 0. the
exists a closed set C. C T with p(T — C.) < = such that GI‘(\IJI"(Z}
1s closed in Q; ;
vy) thereis Ty € Xp with u(To) = 0 such that Gr(\I/,»iT - To> eXTxB(7):
~vs) for each & > 0 there exists a closed set Co C T with pu(T — C.) < =
such that \I/i|CE 15 lower semicontinuous.

~

/
~,
/

/
1
!
2

1) 71), 74) and ~j) imply that W,(t) = Wo(t) a.c.in T .

2) If B(TxZ)=B(T)xB(Z), then ~v{), v5). and ~}) imply that U (t) =
Uo(t) a.e. in T.

3) If Z s also a second-countable topological space and W, and WV,
are closed-valued, then ~1), ¥5) and ~s5) imply that W (t) = W, )
a.e. in T.
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Proof.

1) Gr((\IflA\P2>|T _ T()) = Gr(\If1|T "T())A GI‘(\If2|T _ T()) € ¥} x B(Z2).
Put A = projT(Gr((\IlLA\IlgﬂT _TO)); thus A € Y7 by Sainte-Beuve’s pro-
jection theorem, and A C T — Ty.

Define I': T — Z by putting

T = { (U aWy)(t) if tE€A,

Z iftegA.

Gr(I') = Gr((\lllalllz)hﬂ _TO) U (T - A)x Z) € B% x B(Z); thus, by
Saint-Beuve’s selection theorem [6; Theorem 3|, there exists a Y7-measurable
selection 6 of T'. By 1), 6(t) € ®(t) a.e. in A, thus by ~5), 6(t) € ¥, (t)NV,(t)
a.c. in AL Tt follows that p*(A) = 0.

2) By Lemma 2, ~4) implies ~}). So the conclusion follows by 1).

3) W, and W, are Xk-weakly measurable. In fact, for i = 1,2 and for each
k€ N there exists a closed set Cr C T with u(T — Cy) < 1/k such that
v

A C C4}). Hence, for W € 77, we have ¥, (W) = U(‘I’ile_(VV)) U N, where
7 ,

(', 1s lower semicontinuous, thus Y, -weakly measurable (X, = {A € X :

j(N)=0,s0 ¥, (W) eXr.
Then, thanks to [2; Theorem 2.4] (see also [2; Remarks 2.1 and 2.4]), we have
that Gr(W¥,), Gr(V¥;) € % x B(Z); thus the conclusion follows again by 1). O

The following Theorem 3 is the two-variables version of Theorem 1.

THEOREM 3. Let X and Y be two second-countable topological spaces and
DcCcTxX.

If F: D — CUY) is a multifunction such that there is a Ty € Yp with
w(Ty) = 0 such that Gr(F(t7 . )) is closed in Dy XY for each t € projp(D)—Ty,
then there exists a multifunction G: D — CI(Y') such that:

i) Gr(G(t,- )) is closed in Dy x Y for each t € projp(D);

1) G(t,x) C F(t,z) for each (t,x) € D;

iy) for each A € X%, for each X%-weakly measurable multifunction
Q: A =Y, and for each ¥%.-measurable function p: A — X such
that (t,p(t)) € D and Q(t) C F(t,p(t)) a.e. in A, there holds
Q(t) C G(t,p(t)) a.e. in A;

i3) for each € > 0 there exists a closed set Ce C T with u(T — C.) < ¢
such that Gr(G’lD N (C. x X)) is closed in D XY ;

i,1) GI‘(G) S (ZT X B(X X Y))ll) <Y -
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Moreover, if we assume that Y 1is also a Suslin space and that B(T x Y ) =
B(T) x B(Y), then

i5) for each A € X%, for each ¥3.-measurable function p: A — X with

(t,p(t)) € D a.e. in A, and for each € > 0 there exists a closed sct

C. ¢ T with W(T — C.) < e such that G('*P(')HAOC_. is lower

semicontinuous.

Finally, if X and Y are also two Suslin spaces and D € X5 x B(X). then

i) foreach A € ¥% and for each multifunction H: DO(AX X)) — Y with
Gr(H) € £% x B(X xY) such that H(t,x) C F(t..r) for almost all
t € projp(D) N A and for each x € Dy, there holds H(t.x) C G(t..r)
for almost all t € projp(D)N A and for each x € D, .

Proof. First suppose D = T x X . Consider the multifunction &: T —
ClI(X xY) defined by

(1) — Gr(F(t,-)) iftelT —T,.
U] ifteTy,.

By Theorem 1, there exists a multifunction ¥: T — CHNX x Y satisfving
Y1)y ¥2)s ¥3)s va) and ~g). We claim that the multifunction G;: T'x X — CliY7)
defined by G(t,r) = (\Il(‘t))r is the required multifunction.

In fact, it is easily seen that G verifies iy), i;). i3) and iy).

G verifies i2). Let A € X%, Q: A — Y be a Ei-weakly measurable muil-
tifunction and p: A — X be a Yi-measurable function such that Qif+
F(if,,p(/)) a.e. in A. The multifunction ©: A — X x Y defined by Ot =
{p(t)y) + vy € Q(t)} is Yr-weakly measurable because for 17 £ 7y and
Very, O (UxV)=p HU)NQ (V) e ¥4 . Moreover. O(f) C ®{f) ae. in 2.
thus by 72). O(t) C ¥(t) a.e. in A, from which it follows that Q(f) < G{t. p(t))
a.e. in A.

G verifies i5). Let A € £% and p: A — X be a Xp-measurable function.
Extend p to the ¥j-measurable function p: T'— X defined by putting

t if te A
(1) = { p(t) i

constant.  if 1 &€ A

If we show that G (- .[)H) is Xh-weakly measurable. then by [3: Theoren 1.
it follows that for each ¢ > 0 there exists a closed set C'. < 1" with 7 —C")

such that G(-,p(+)) iCE . and thus also G{( -, p(-)) iA (- s lower semicontin-
uous.
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To prove this, it suffices to show that for each € > 0 there exists a closed set
(. C T with u(T —C.) < € such that Gr(G(~,1§(-)) Ce) is closed in T xY . In
fact. this last condition being verified, by Lemma 2 there exists T, € X7 with
1(Ty) = 0 such that Gr(G(-,p(-)) lT _ T()) € X7 x B(Y); so, from the equality

G(p() (V) = pij(Gr(G(.,p(.))[T ‘TO) N (T - Ty) x V)) U N, where

N C Ty, and by Sainte-Beuve’s projection theorem, it follows that G( . ,]3(~)) is

Yi-weakly measurable.

So fix € > 0. By i3) and using [3; Theorem 1], there exists a closed set
(. ¢ T with u(T — C,) < = such that Gr(GlCE % x) isclosedin T x X x Y,

and p

(. 1s continuous. Gr(G(' [3())

Ca) is closed in T'x Y . Indeed, if we take
(fo.y0) & Gr(G(wﬁ('))iCE), to € Ce. then (to,p(to),y0) ¢ Gr(G C.x X):
hence, by this and by the continuity of ﬁlCE , there are two open neighbourhoods
[ and V of t, and yy respectively such that, for ¢t € INC. and y € V,
(o) & Gr(G(-50))] ) -

I'inally, we prove ig). Define ©: A — X x Y by putting, for each t € A,
o) = Gr(H(t,- ). Gr(©) = Gr(H) € ¥} x B(X xY). Moreover, O(t) C ®(t)
a.c. in A then, by ) (X x Y is Suslin), ©(t) € ¥(t) a.e. in A, hence
H(t.r) C G(t,r) for almost all ¢ € A and for each z € X .

Now we sketch the proof when D C T x X.

Define F: T'x X — CI(Y) by putting

Ft.2) (Gr(F(t,-))) . ifteT Ty,
.x) = ) !
1] if teTy,

where the closure is taken in X x Y.
(11'(];‘(1, . )) = m'__)s for each t € T — T}, and taking into account that
Gr(F(t.-)) = Gr(F(t.-))N(D; x Y) for each t € proj;(D) — Ty, then we obtain
that F(t.r) = F(t,2) for all (1,2) € D — (T, x X).
Let (i: T x X — Y be as in the first part of the proof with respect to jan
it is not difficult to verify that G = G

p is the required multifunction. O

Remark 2. Obviously i;) and i,) of Theorem 3 imply respectively the
foliowing
i) G(t.r) C F(t,x) for almost every t € projp(D) and for each x € 1);:
i,) for each A € ¥} and for all ¥%-measurable functions ¢g: A — 3" and
p: A — X such that (¢,p(t)) € D and q(t) € F(t,p(t)) ae. in A. we
have ¢(t) € G(t,p(t)) ae. in A.
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Hence Theorem 3 extends and improves [5; Theorem 1], in which i}). i5) and
i3) are proved when T is a locally compact metric space. u is a Borel. o-finite.
regular and complete measure on 7', X and Y are two separable metric spaces.

Moreover, if € is a ¥4 x B(X x Y)-measurable set with Gr(G) C Q. then
i3) in Theorem 3 implies the following:

i4) for each € > 0 there exists a closed set C. C T with pu(T - C.) < =
such that Gr(GIDm (C. x X)> is closed in (D x Y)NQ.

The following is a uniqueness theorem for the two-variables case; its part 2)
extends [5; Theorem 4].

THEOREM 4. Let X be a topological space, Y be a Suslin space. D &
S5 x B(X), and F,Gy,Gy: D —Y be three multifunctions.
Let us consider the following properties for i = 1,2:
) Gi(t.x) C F(t,x) for almost every t € projp(D) and for each r € D :
) for each A € X%, for all ¥%-measurable functions q: A — Y and
p: A — X such that (t,p(t)) € D and q(t) € F(t,p(t)) a.e. in X. we
have q(t) € G;(t.p(t)) a.e. in A;
it)  for some ¥3 x B(X x Y')-measurable set Q@ with Gr(F') C Q. and for
each € > 0 there exists a closed set C. C T with (T — C.) < = such

that Gr(G,,;,D N (C. x X)> is closed in (D xY)NQ;

1

S =S

1

1)) there is Ty € Ly with pu(Ty) =0 such that Gr(G,-
eXh xB(X xY):

i5) for each A € Y. for each Y5.-measurable function p: A — X with
(t,p(t)) € D a.e. in A, and for each = > 0, there exists a closed sct
C. ¢ T with (T —C.) < = such that Gi('~1’<'))1Aﬁ(',_ is lower
semicontinuous.

Then:

DN((T — :n,)x.\")>

1) If X is a Suslin space, then i), &) and @) imply that G,(t.2) =
G(t,x) for almost every t € projp(D) and for each x € D, .

2) If X is a Suslin space and B(1' x X x Y) = B(1') x B(X x Y.
then 7)), &) and 1) imply that G((t,z) = Gy(t,x) for almost cvery
t € projp(D) and for each x € Dy .

3) If Y is also a second-countable topological space, and Gy and G» are
closed-valued, then 1)), i) and i) imply that for each A € % and
for each Y.j.-measurable function p: A — X with (t.p(t)) € D a.c.

m A it is Gy (t,p(t)) = Gy(t,p(t)) a.e in A.
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Sketch of the proof. First we prove the assertion 1) for D =
T x X . The multifunctions ®, ¥, ¥y: T — X x Y defined respectively by
O(1) = Gr(F(t,-)), ¥1(t) = Gr(Gi(t,-)), and Vy(t) = Gr(Ga(t,-)) satisfy 1)
of Theorem 2; then W, (t) = Wy(t) a.e. in T, from which G;(¢,z) = G2(t,x) for
almost every t € T and for each x € X .

The assertion 2) can be proved as above, taking into account 2) of Theo-
rem 2.

To prove 3) when D = T x X, extend p to all of T by putting p(t) =
constant outside of A. Then apply 3) of Theorem 2 to ®(-) = F(-.,p(~)),
W) = Gi(-,p(-), and Wy(-) = Ga(-,p(+)); so we obtain Wy(t) = Wa(t) a.e.

in I". Now return to the original p defined in A, so we obtain G; (t,p(i)) =

Go(top(t)) ae in A.

FFor the general case D C T' x X, extend F, G; and Gy to all of T'x X
by putting their values empty outside of D; then apply the already proved
uniqueness theorem for the case D =T x X and finally return to D. d
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