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MULTIFUNCTIONS IN A N O N - M E T R I C SETTING 

DIEGO AVERNA 1 

(Communicated by Ladislav Misik) 

AI3STRACT. In this paper, the existence of a regularization of multifunctions 
<£: T —>• Z and F: T x X —» Y is s tated if T is a topological measurable space, 
and A ,̂ Y and Z are topological spaces with a countable base (Theorems 1 and 
3). Utilizing S a i n t e - B e u v e ' s selection theorem ([6]), uniqueness theorems 
(Theorems 2 and 4) are also derived. The obtained results generalize those of 
Rzezuchowski in [51. 

1. Introduction 

Scorza-Dragoni type theorems for multifunctions F: TxX —> Y of Caratheo-
dory type are useful for the study of the set of solutions of Cauchy problems 
associated with the differential inclusion 

xe F(t,x). (1) 

This occurs because the separated regularity of F with respect to t and x 
(i.e. the Caratheodory type property) implies (through the Scorza-Dragoni type 
theorem) an almost regularity with respect to (t,x). 

For example, if T =: [0, 1], X = Y = M, F: T x X -> Y has closed values, 
F( • , x) is weakly measurable, and F(I, •) is continuous, then for each e > 0 
there exists a closed set C£ C [0,1], whose Lebesgue measure is > 1 — e, such 
that F\Q is lower semicontinuous and has closed graph. 

A tool for the study of the set of solutions of (1) when F is not of Caratheo­
dory type can be the "regularization" of F. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28B20, 54C60. Secondary 26E25. 
K e y w o r d s : Multifunctions, Regularization, Measurability, Semicontinuity. 
1 This research was supported by 60% MURST. 
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Roughly speaking, a regularizat ion of F is a mult ifunction C7: T x X — V 
which has t he following propert ies : 

i i) G(t,x) C F ( t , x ) , 

i2) q(t) e F(t,p(t)) = .-> O(i) G G(t.p(t)) whenever p: T -> A" and 

q: T —> F are measurable functions, 

plus some Scorza-Dragoni type property. 

In vir tue of the propert ies i[) and i 2 ) , t he set of solutions of (1) is the same 
as t h a t of 

x e G(t,x). (2) 

Existence and uniqueness theorems for regularizations G of cer tain muk i -

functions F have been given in [1], [4], [5]. 

In par t icular , Rzezuchowski proved in [5] an existence theorem for regular­
izations of a given closed-valued multifunction F : T x X ---> Y such that F(t.- > 
has closed graph when T is a locally compact metr ic space endowed with a 
Borek a -finite, regular and complete measure /j. and A' and Y are separable 
metr ic spaces (|5; Theorem 1]). A uniqueness theorem was also presented when 
X and Y are even complete ([5; Theorem 4j). 

The aim of this paper is essentially to show that the Rzezuchowski existence 
and uniqueness theorems above remain still valid without assuming that I . 
X and Y are metric and wi thout s t rengthening of othei hypotheses; that is. 
existence and uniqueness theorems for regularizations proved here extend in a 
more general framework the results of [5j. 

The main idea for doing this, in existence theorems, is to replace the point-set 

dis tance function in the range-space (which plays a key role in I he Rzezuchowski 

existence proof) by a function c , taking only two values, which flags when two 

suitable sets, one coming from a basis of the topology of the range-space. U e 

other from the values of the multifunction, intersect. 

This idea has been tested also in a previous paper >e. concerning kusin and 
Scorza-Dragoni type theorems: some results of \IY\ are a k o useful here-. 

The extension in uniqueness theorems essentially carries out in vir tue of 
Saiiite-Beuve"s selection theorem. 

IMoreover, the results of this paper not only extend but also improve those of 
[5], establishing indeed further proper t ies for the regularization G. 
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2 . P r e l i m i n a r i e s 

Let S be a non-empty set and (Z, Tz) be a topological space. V(Z) (resp. 

C1(Z)) denotes the family of all subsets (resp. closed subsets) of Z , while B(Z) 

denotes the Borel rr-algebra on Z. Let <I>: S —> Z be a mult i funct ion, i.e. a 

function from S into t h e family V(Z). If t he values of <3> are closed subsets 

of Z , we write $ : S —> C1(Z) . G r ( $ ) denotes t he g raph of $ , i.e. the set 

{(.s. z) G S x Z : 2 G <->(«)} • If £ C S , we call ^ j ^ ; t he restr ict ion of $ to F. 

If U' C Z , we pu t $ - ( I V ) = {s£ S : $ ( » n W ^ 0} and $+(W) = {.s G S : 
(l>(s) c VL} . We have t h e fundamenta l relat ions $~( IV ) = S - $ + ( Z - IV) = 

p r o j s (Clr ($)D (S x IV)) , where p r o j s denotes t he project ion m a p of S x Z onto 

.S\ and for each family {Wn : a G .A} C F>(Z), $ " ( IJ W a ) = U $ ~ W v ) -

If <I>i.3>2. 5 —> Z are two mult i funct ions, we denote by $ i A $ 2 the symmet r ic 
difference multifunction., t h a t is t he mult i funct ion defined by ($]A$2)( 'S ' ) — 
<I>I(.S)A4>2(.S) for each s G S. 

If (S.TS) is a topological space, we say t h a t <I> is lower (resp. upper) semi-

cont inuous at ,s'o G S if for each W G Tz such t h a t so G 3 > - ( W ) (resp. 

s'o e; <1> + ( IV ) ) there exists an open ne ighbourhood I of s{) such t h a t / C Q~(W) 

(resp. I c $ + ( I V ) ) . We say t h a t $ is lower (resp. upper ) semicont inuous if it 

is lower (resp. upper) semicont inuous at every s G S. or equivalently, if for 

each IV G T/ the set $~(W) (resp. <£+(IV)) is open in S. We say tha t <I> is 

cont inuous if it is s imultaneously lower and upper semicont inuous. 

If (S. Ts.fi) is a. measure space, wre denote by Ts the completion of Ts with 

respect to // and with //* the complet ion measure . (£ , Xt; ,//*) is a complete 

measure space. Recall t h a t E G Ts if and only if there exist E\En G Ts such 

that /•;' C E C E" and fi(E') = f?(E) = fi(E"). 

If X is a O"-a.lgebra of subsets of S, we say t h a t <£ is X-weakly measurable 

(resp. X-measurable) [resp. T-B measurable] if for each W G TZ (resp. IV G 

C\(Z) ) [resp. W G B(Z)} <I>(IV) G X 5 . 

The definitions of lower and upper semicontinuity for real valued functions 
and those of measurabil i ty and continuity for functions with values in a topo­
logical space are the usual ones. 

If (S.T) is a topological space. (S,T) is a measurable space, and E C S. 

then T/ -•-- T\y and X/,; — T\jr denote respectively the induced topology and 

the induced rr-algebra on E. If E C S ) and F has the induced topology, then 

->"l-si|F " B(E). If E G X, then E|j<; - {̂ 4 G X : .4 C £ } ; so we speak 

oi X-weak measurabil i ty (resp. E-measurabi l i ty) of a mult ifunction (resi.. :unc­

tion) instead of Xjy„'-weak measurabil i ty (resp. X|^;-measural>iiity) wir never 

the multifunction (resp. function) is defined on E. 



DIEGO AVERNA 

If 5 is a structured space, and we want a structure on E C S when it is 
not specified, we refer to the induced structure; i.e., if S is a topological (resp. 
measurable) space, then E is a topological (resp. measurable) space with the 
induced topology (resp. rr-algebra). 

If S and S' are two sets and E C S x S', then for s E 5 , Es = <|V E S' : 

(s,sf) E E] denotes the s-section of E, and for s' E S', FV = {s E 5 : 

(s, s') E F?} denotes the s'-section of F. 

If S and S' are two structured spaces, and we want a structure on S x S' 
when it is not specified, we refer to the product structure; i.e., if S and S' 
are topological (resp. measurable) spaces, then S x S' is a topological (resp. 
measurable) space with the p>roduct topology (resp. product rr-algebra). We 
notice that if S and S" are topological spaces, in general, B(S) x B(S') C 
B(S x S"), and the inclusion can be proper; B(S) x B(S') — B(S x S') if. for 
example, S and S' are second-countable topological spaces or Suslin spaces. 

Moreover, when in the sequel we deal with the product of three sets 5 . Sf. 
and S" , we always identify S x (S' x S") with S x S' x S" , even if the structure 
is essentially that of S x (S' x S"). So, for example, if E5 and Hs'xS" a r e 

O--algebras on S and S' x S" respectively, when we say that E C 5 x S' x S" 
lies in E s x T,s>xs" , we mean that { (s, (&•', s")) E 5 x (S' x S") : (.s, s'. .s'') G F} 
<G E5 x S5/X5" • 

As in [7], we say that a topological space is Polish if it is separable and 
metrizable by a complete metric, Suslin if it is Hausdorff and a continuous image 
of a Polish space. 

3. Regularization of closed-valued multifunctions 

We begin with the following proposition in measure theory. 

LEMMA 1. Let (F, TJT) be a measurable space, and fi be a a-finite measure 
on E71. 

For each subset E of T there exists M E S71 such that: 

a i ) MCE; 
(12) for each L C E^ such that L - E E E^ and fi*(L - E) = 0. then-

holds / x * ( L - M ) - 0 . 

P r o o f . We prove Lemma 1 for ^(T) < +00 because it is obvious how to 
extend it to the cr-finite case. 

Let a = sup{/L(A) : A E E T , A C E) < +00 . Then there exists a sequence 

(An)n of sets in E T such that, for each n E N, An C E and fi(An) > ^ - 1/H • 

The set M = IJ An is the requested set. 
n 
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In fact, obviously, M G E T and satisfies a\). 

Moreover, let L G E T be such that L - E G E T and fi*(L - E) = 0; then 

(L - M) nE=(L- M) - (L - E) G ££ and fi*((L - M) n E) = /_*(_ - M). 

Obviously, ((L - M) fl £") U M G £ £ ; so let L' G E T be such that L' C 

((L - A /) n £ ) u A / and //(I/) = A**(((£ - M) n £ ) U M) . We have L' C J_ 

and a > //(_') = ^(L - M) + fi(M) > a , from which fi*(L - M) = 0. Hence 

AI verifies 0.2). • 

We need, for the sequel, to reformulate Lemma 1 in terms of functions with 
only two values. 

COROLLARY 1. Let (T, E T ) be a measurable space, fi be a a-finite measure 
on E T , and let {0,1} be endowed with the discrete topology. 

If (f: T —> {0, 1} is a function, then there exists a YJT-measurable function 
r : T —•» {(), 1} such that: 

.rfi) 0 ( 0 < <f(t) for each teT; 
ih) for each ^T-measurable function i9: T —> {0,1} such that _ (£) < ip(t) 

a.e. in T, there holds \9(t) < i/j(t) a.e. in T. 

From now on, unless otherwise stated, (T,TT) is a topological space, E T is 
a T-algebra of subsets of T such that Tr C E T (equivalently B(T) C E T ) , // 
is a T-finite measure on E T such that for every A G E T and every e > 0 there 
exists a closed set C£ C A with JJL(A — C£) < e. Obviously, E T and fi* have 
also these properties. 

LEMMA 2. Let Z be a topological space and B(T x Z) = B(T) x B(Z). 

Let _*: T —> Z be a multifunction such that for each e > 0 there exists a 

closed set Ce C T with fi(T - C£) < e such that Gr(\_ | c ) is closed in a 

Ef x B(Z) -measurable set Vt which contains Gr( _*). 

TT r̂c ibere exists T0 G E T u'iIb fi(T0) = 0 s_c/i £/W G r ( _ r | T _ T ) G 

E*̂  x S ( Z ) . 

P r o o f. For each k G N there exists a closed set Ck C T with fi(T-Ck) < 

i/k such that Gr(_ / |C f c) = G r ( $ | c ) n f t , where G r ( * | C ) denotes the closure 

of Gr(*|C i f e) in T x Z . B u t B(TxZ) = B(T)xB(Z), so G r ( * | c J G E^x/_(zT). 

Put T0 = nCT-Cfc); then M(T0) - 0 and G r ( ^ | T _ T ( ) ) = UGr(*|C f c) G 

S f x B ( Z ) . ' D 

WTe need also the following proposition, whose proof we give for completeness. 
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LEMMA 3. Let Z be a Suslin space. If ^: T —> Z is a multifunction such that 
Gr(^) E S T x B(Z), then for every e > 0 there exists a closed set CE C T u/7h 
fi(T - Ce) < £ such that fy\(j is lower semicontinuous. 

P r o o f . Let g be a continuous function from a Polish space Z' onto Z . 
Define the multifunction * ' : T -^ Zf by putting ^ ( l ) = g-l(^{t)) for all 
/ E T . 

We claim that Gr(^ ; ) E S T X # ( Z ; ) . Indeed, it is easily seen that ( l T </ ) : 
T x Z' -> T x Z , defined by (1 T ,O ) (M') = (t,a(27)) for all (f. z') E T x Z ' . is 
continuous, and ( l T , a ) _ 1 ( 0 ) E S T x /S(Z') for each Vt C E T x B(Z). Thus the 
claim follows from the fact that Gr(# ' ) = ( 1 T , g)'1 (Gr(*)) . 

By S a i n t e - B e u v e ' s projection theorem [6; Theorem 4]. ^ ' is 

E^-23-measurable since * '~(W") = p ro j T (Gr (* ' )n (TxK T ' ) ) for each W' C Z ' . 

Hence, a fortiori, ~*f is S^-weakly measurable. 

Now, by Theorem 1 of [3], for every e > 0 there exists a closed set C\ C T 

with /x(T — C£) < 6 such that ^ ' | c is lower semicontinuous. 

Since g is surjective, *(*) = #(*'(*)) for every l E 7 \ and so "'"(IV) = 

^ / - ( g _ 1 ( W ) ) for each IV C Z ; thus ^|^» is lower semicontinuous. • 

As in [3], if B,B' C Z , we define 

f 1 if B r B' / 0 . 
o(B.B')= , ' v ' ; 1 0 if 13 C IT = 0 . 

The following theorem is the key result of this paper. 

THEOREM 1. Let Z be a second-countable topological space and $ : T — Cl(Z') 
a multifunction. 

Then there exists a multifunction ty: T —» C1(Z) st/ch £ha£: 

71) *( t ) C $(£) /Or eac/i t E T ; 
72) / o r eac/i A E S T ana7 /Or each, T,^-weakly measurable multifunction 

9 : A -> Z sitch that B(t) C $( t) a.e. zn A , lher-e ho/ds 6(1) C * ( / . 
a. e. in A ; 

73) ./or each, £ > 0 lhere exists a closed set Ce C T wzih /i(7' — C£) < f 
such thai G r ( ^ | ^ ) is closed in T x Z ; 

74) Gr(tf) E £ T x B(Z). 

If, moreover, we assume that Z is also a Suslin space, then: 

75) for each e > 0 there exists a closed set Ce C T with j.i(T — CE) < £ 
such that ^\r< is lower semicontinuous; 
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7G) for each A E £ £ and for each multifunction 0 : A —> Z ivi£b< Gr(G) E 
S J x S(Z) sHcA rbar 6(r ) C $(r) a.e. in A, we have 6 ( r ) C tf(t) 
rt.e. in A . 

P r o o f . Let 03 = {Bn : n E N} be a countable basis for TZ • For each 
n £ N define ipn: T -> {0,1} by putting, for each r E T , <pn(1) = 6(J3n, $(*)) . 

By Corollary 1, there exists a E^-measurable function i[)n: T —> {0,1} such 
that: 

1) ipn(t) < <Pn(t) for each t eT; 
2) for each E^-measurable function $: T —» {0,1} such that $(£) < <£n(£) 

a.e. in T , we have i9(£) < V^M a e - m T . 

Let us define * : T -> C1(Z) by putting, for each 1 E T , 

*(r) = p ) { Z - 5 n : ^n(r)=0}. 

^ verifies 71). In fact, for each z E ^( r ) and each n E N such that (fn(t) — 
0, it follows that 2 E Z — i?n in virtue of 1). Thus we obtain z E $ ( r ) , taking 
into account that, $(t) being closed, $(r) = f]{Z - i?n : </?n(£) = 0 } . 

^ verifies 72). Let A E £**-. and ©: A —» Z be a E^-weakly measur­
able multifunction such that ©(£) C <&(£) a.e. in A . For each n E N define 
t)n: T -* {0,1} by putting: 

Mt) = íS{BnMt)) Í f ť G A ' 
' l 0 i f í é A . if t g A . 

Then, by using [3; Lemma 2. 3) (=>)], it follows that dn is E^-measurable; 
moreover, since O(r) C $(£) a.e. in A , i?n(t) < (fn(t) a.e. in T . Hence, by 2), 
tin(t) < 4>n(t) a.e. in T , and thus G(r) C *(r) a.e. in A . 

ty verifies 73). Fix £ > 0. By Lusin's theorem (see also [3; Lemma 1]) and 
by a standard argument which takes into account the countability of the family 
{07J. : n E N}, we can find a closed set C£ C T with a(T — CE) < e such 
that V-V»|c *s cor-tinuous for each n E N. We claim that GT(^/\Q ) is closed in 
T x Z . Indeed, if z0 g ^(t0), r0 E C e , then there is n E N such that ipn(t0) = 0 
and z0 E Bn. By the upper semicontinuity of ipn\(j a t ro > there exists an 
open neighbourhood 7 of ro such that ipn(t) = 0 for each r E J n C £ . Thus 

( ( / n C e ) " x B n ) n G r ( * | C e ) = 0 . 

* verifies 74). In fact, (T x Z) - Gr(tf) = U(^n H M ) x 5n) • 
n 

Finally, under the additional hypothesis on Z , 75) is a direct consequence of 
7.1), by Lemma 3, while 76) is a consequence of 72) because, using the equality 
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Q-(W) = p r o j T ( G r ( 6 ) n ( A x W)) for W G rz , it follows t ha t 0 is Ef -weak ly 
measurable by Sainte-Beuve's projec t ion theorem. D 

R e m a r k 1. Obviously 71) and 72) of Theorem 1 imply respectively the 

following: 

7 i ) * ( 0 C $ ( 0 a.e. in T ; 
72) for each A G E ^ and for each E^-measu rab le function 0: A — Z 

such that 0(t) G $(t) a.e. in A , there holds 0(t) G * ( 0 a.e. in A . 

Hence Theorem 1 ex tends and improves [5; Theorem 2]. in which 7^) . 70) and 
73) are proved when T is a locally compac t me tr ic space, /I is a Borel. cr-finite. 
regular and comple te measure on T , and Z is a separable metr ic space. 

Moreover, if (] is a E ^ x S ( Z ) - m e a s u r a b l e set, wi th G r ( * ) C 0 . then 73) 

of Theorem 1 implies the following: 

73) for each e > 0 there exists a closed set Cs C T with / t (T — C O < f 

such that Gr(ty\(j_) is closed in O . 

Now we prove the following uniqueness result , whose par t 1) ex tends 

[5: Theorem 5]. 

THEOREM 2. Let Z be a Suslin space and 3 > , # _ , ^ 2 : T — > Z be three multi-

functions. 

Let us consider the following properties for i = 1. 2 ; 

7 i ) * » ( 0 C * ( t ) a.e. m T ; 
2) /Or each- A G E ^ and, for each E^ -measurable function 0: A 7 

s_ch £hal 0(t) G $ ( 0 a-e. m A , ive hare 0 ( 0 G * . / (0 a.e. w A ; 

73) for some f) G E ^ x 6 ( Z ) w^h G r ( $ ) C Q , and for each s > 0 , lh^r 

exists a closed set C_ C T i/ji/h / i (T - CV) < £ .such /ha/ Gr (^_ |^^ ) 

is closed in 0 ; 

74) /.here is T0 G E T with fi(T0) = 0 .such lha/ G r ( * ? ; | r __ T ) e E f x£?(Z) ; 

75) for each e > 0 lhere exists a closed set CE C T w;i/h / / (T — Cs) < 5 

-sHch that ^i\rj is lower semicontinuous. 

Then: 

0 7 i 0 7_) a r i ^ 74) z rap^ -*-* * i ( 0 = * 2 ( 0 CLC- m T. 

2) 7/ B(TxZ) = B(T)xB(Z), /hen 7 l ) . 7 2 ) , ana7
 7 3 ) zmp/H /hai ^ ( f ) = 

* 2 ( 0 a-e. m T . 
3) i / Z is a/sO a second-countable topological space and ^C and ^ 2 

are closed-valued, then j[), 72) and 75) imply that ^i(t) — VV27) 
a.e. in T. 
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P r o o f . 

1) G r ( ( * 1 A * 2 ) | T _ . T ( ) ) = G r ( * 1 | T „ T o ) A G r ( * 2 | T _ r ( ) ) G E£ x B(Z). 

Put A = p ro j T (Gr ( (* L A* 2 ) | t j _ j» ) ) ; thus A G £ T by Sainte-Beuve's pro­

jection theorem, and A C T — To . 

Define T: T —» Z by putting 

r ( * X A * 2 ) ( 0 if lGA, 
U I Z if * g A. 

Gr(r) = G r ( ( * i A * 2 ) | r - r 0 ) u ( ( T - A ) x z ) e S T x B(z); t h u s ^ 1}y 
Saint-Beuve's selection theorem [6; Theorem 3], there exists a ET-measurable 
selection 0 of T. By 7 l ) , 0(t) G $(£) a.e. in A , thus by 7 2 ) , 0(t) G # i (*)n* 2 (*) 
a.e. in A. It follows that M*(A) = 0. 

2) By Lemma 2, 73) implies 7 4 ) . So the conclusion follows by 1). 

3) ^ ] and ^ 2 are ST-weakly measurable. In fact, for i — 1,2 and for each 
A- G N there exists a closed set Ck C T with fj,(T - Ck) < 1/k such that 
^ v ^ is lower semicontinuous, thus Scfc-weakly measurable (X.cfc — {̂ 4 G E T : 

.4 C Ck}). Hence, for IV G Tz, we have % (W) = U ( * i | c . T ( W ' ) ) U N ' w h e r e 

fc 
//*(7V) = 0 , s o $ t:(RI) G E J . 

Then, thanks to [2; Theorem 2.4] (see also [2; Remarks 2.1 and 2.4]), we have 
that G r ( * ! ) , G r ( * 2 ) G HT x B(Z)\ thus the conclusion follows again by 1). • 

The following Theorem 3 is the two-variables version of Theorem 1. 

THEOREM 3. Let X and Y be two second-countable topological spaces and 
D C T x X. 

If F: D —-> Cl(y) is a multifunction such that there is a TQ G E T with 
//(7o) = 0 such that Gr (F(t, •)) is closed in DtxY for each t G projT(D) — 7o , 
then there exists a multifunction G: D —> Cl(y) such that: 

in) Gr((7(l, •)) is closed in Dt x Y for each t G projT(D) ; 
ii) G(i ,x) C F(t,x) for each (t,x) G D; 
-2) / o r each. A G E T , /Or each S T -weakly measurable multifunction 

Q: A —> Y, ana7 /Or each !ST-measurable function p: A —> X such 
that (t,p(t)) G D and Q(t) C F(t,p(t)) a.e. in A , there holds 

Q(t) C G(t,p(t)) a.e. in A; 
13) /Or each £ > 0 lhere exists a closed set C£ C T ?/Jilh //(T — Ce) < £ 

s?Ich lha£ GrfCJ JJ ^ / ^ ^ \ J is closed in D xY; 

U) Gv(G)e (ETxB(XxY))\DxY. 
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Moreover, if we assume that Y is also a Suslin space and that B(T x Y) — 
B(T) x B(Y). then 

15) for each A G E T . /Or eac/i ET-measurable function p: A —» A" i/Hlb. 
(t,p(t)) £ D a.e. in A , and for each e > 0 lb ere exists a closed yet 

C£ C I1 wtfi p(T - C£) < e such that G( • ,p(-)) | / \ p C- *s ' ° " r r 

semicontinuous. 
Finally, if X and Y are also two Suslin spaces and D G E T x 6 (A") . /bell 

i6) /Or eaeb, A G E T and for each multifunction H : D n ( A x A") —* 1' with 
Gv(H) G E^ x B(X x Y) sHcb fjbal H(t,x) C F(M') /o r fl/masf all 
t G projT(D) H A and for each x G D t , /bere ZioZds H(t.x) C G(/../•) 
/Or almost all t G projT(D) H A and /o r eacb x £ Dt . 

P r o o f . First suppose D — T x X . Consider the multifunction 4>: F —• 
C1(A x y ) defined by 

$ ( t ) = I G r ( F ( t ' " ) ) if t G T-T^ 
[ 0 if /; G T(). 

By Theorem 1, there exists a multifunction ty: T —> CI (A' x y ) satisfying 
71) 1 72) • 73), 7i) and 70). We claim that the multifunction G: T x X — Cl( \') 
defined by G(t,x) — (*(/)) is the required multifunction. 

In fact, it is easily seen that G verifies in), i i ) . i;}) and i4) . 
G verifies 12). Let A G E T , Q: A —> Y be a ET-weakly measurable mul­

tifunction and p: A —> A7" be a ET-measurable function such that Q(M ;_ 
F(t,p(t)) a.e. in A. The multifunction B : A — A x 1' defined by G)(M -----
{(p(t),/j) : y G Q(t)} is ET-weakly measurable because fur V G T\ and 
V t r ^ e - ( C / x y ) = p - 1 ( C 7 ) n Q - ( y ) e S ^ . Moreover. 0 ( 0 C 4>(f) a.e. in A . 
thus by 72), 6(f) C *( / ) a.e. in A, from which it follows that Q(t) C G(t.p(t)) 

a.e. in A. 

G verifies i5) . Let A G E T and p: A —-> A be a ET-measurable function. 
Extend p to the ET-measurable function / : T —> X defined by putting 

[ constant if /, £ A . 

If we show that G( • -/>(•)) is ET-weakly measurable, then by [3: Theorem 1 
if follows that for each e > 0 there exists a closed set C£ C / with p(T -C- ) < 

such that G( • ;V('))\c£ > a n d t m i s a l s o G ( * '-°(')).A O C • 1S l u w e r semicontin 
nous. 

422 



REGULAR.ZATION OF CLOSED-VALUED MULTIFUNCTIONS . . . 

To prove this, it suffices to show that for each e > 0 there exists a closed set 
C, C T with fi(T - C£) < e such that Gr(G( • ,P(-)) \c ) i s closed in TxY. In 
fact, this last condition being verified, fry Lemma 2 there exists To £ S T with 
//(7o) = 0 such that Gr(G( • ,£(•)) | y _ y ) £ S T x B(Y); so, from the equality 

G(-.p(-))-(V) = p r o j T ( G r ( G ( - , p ( . ) ) | T _ T o ) n ((T - T0) x Y) ) U N , where 

N C Fo , and by Sainte-Ei>euve's projection theorem, it follows that G( •, p(-)) is 
ET-weakly measurable. 

So fix e > 0. By is) and using [3; Theorem 1], there exists a closed set 

( ' , C T with p(T -C£) <s such that Gr(G|c<£ x x)
 i s closed i n T x X x V , 

and / ) | ^ is continuous. Gr(G( • • £>(•)) \c~) ls closed in T xY. Indeed, if we take 

(/o,//u) 0 GY(G(-,P(-))\CJ1 t0 £ G£. then (t0,p(t0),y0) 0 G r ( G | C e x x) ; 

hence, by this and by the continuity of P\Q , there are two open neighbourhoods 

/ and V of f0 and y0 respectively such that, for t £ 7 D Ge and H £ V, 

(/,;/) 0 G r ( a ( - , p ( - ) ) | c e ) -
Finally, we prove i 6 ) . Define 0 : A —> X x Y by putting, for each t £ A , 

(-)(/) =- Gr(77(l, • ) ) . Gr(9) = Gr(77) £ S J x B(X x Y) . Moreover, G(t) C $(*) 
a.e. in A; then, by 76) (X x Y is Suslin), G(t) C * ( / ) a.e. in A, hence 
//(/ , .r) C G(t,x) for almost all f £ A and for each a; £ N. 

Now we sketch the proof when D C T x X. 

Define F: T x X -> C1(Y) by putting 

[ 0 if í eT 0 , 

re the closure is taken in X x Y. 

Civ(F(t, •)) = Gr(F(t, •)) for each t £ T — T0 , and taking into account that 

Gr(F ( / . • )) = Gr(F(t,-j)n(Dt x Y) for each t £ projT(D) - T 0 , then we obtain 

that F(t.x) = F(t,x) for aJl (t,x) £ D - (T0 x X ) . 

Let G: 7 x X —» Vr be as in the first part of the proof with respect to 7"; 
it is not difficult to verify that G = G\JJ is the required multifunction. • 

R e m a r k 2. Obviously ii) and i2) of Theorem 3 imply respectively the 
following 

\\) G(t,x) C F(t,x) for almost every t £ projT(7)) and for each x £ /)/,; 
i'>) for each A £ E T and for all ET-measurable functions q: A —> V and 

p: A —> K such that (t,p(t)) £ 7) and q(t) £ F(t,p(t)) a.e. in A. we 

have O(7) £ G(t,p(t)) a.e. in A . 
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Hence Theorem 3 ex tends and improves [5; Theorem 1], in which i^) , i2) and 
is) are proved when T is a locally compact metr ic space, /j is a Borel, rj-finite. 
regular and complete measure on T, X and Y are two separable metr ic spaces. 

Moreover, if Q is a £ T x B(X x Y)-measurable set wi th Gr (G) C 0 . then 

i3) in Theorem 3 implies the following: 

13) for each e > 0 there exists a closed set CE C T wi th /j(T - C£) < s 

such t h a t Gr f G\ JJ p (Q X X) ) *s C i ° s e d in ( D x Y) n fi . 

T h e following is a uniqueness theorem for the two-variables case; its par t 2) 

ex tends [5; Theorem 4]. 

T H E O R E M 4 . Let X be a topological space, Y be a Suslin space. D G 

E T x B(X), and F , G i , G2 ' D —>Y be three m.ultifunctions. 

Let as consider the following properties for i — 1 ,2 : 

i'l) Gt(t,x) C F(t,x) for almost every t G p r o j T ( D ) and for each x G Df : 
\2) for each A G £ T , /Or a?/ E T -measurable functions q: A — * y atjJ 

p : A - • N suca /bal ( t , p ( l ) ) G D ana7 O(t) G F(t,p(t)) a.e. in A . <re 

bare O(l) G Gl(t.p(i)) a.e. in A ; 

13) /Or some E T x £>(X x Y) -measurable set Q ivitb G r ( F ) C il. and for 

each s > 0 lbere exists a closed set C£ C I1 with p(T — C £ ) < s .si.e// 

riial Grf G^l r> n (c x X)) ™ c^ose(^ ? n ( ^ x 0̂ ^ ^ ; 

14) there is To G E T ujitb //(To) = 0 such that G r ( G ? | rjplVjn — T )x X)) 

G E*^ x B(X x y ) ; 

15) /Or eacb A G E T , /Or eacb E T -measurable function p : A —• A' ljvf/? 

(t,p(t)) G D a.e. m A . and for each s > 0 . lbere exists a closed set 

Ce C T ujitb (i(T — C£) < s such that G; ( • ,p(-)) | ^ p, ^_ zs ZOirer 

sem i CO ntinu o us. 

Then: 

1) If X is a Suslin space, then i^), i2) and if
4) imply that G\(t.x) = 

G2(t,x) for almost every t G p r o j T ( D ) and for each x G Df . 
2) / / X is a Suslin space and B(T x X x Y) = 13(70 x B(X x Y). 

then i[), i'2) and i^) imply that Gi(t,x) = G2(t.x) for almost every 
t G p r o j T ( D ) and for each x G Dt. 

3) If Y is also a second-countable topological space, and G\ and Go arc 

closed-valued, then %\), i!2) and i5) imply that for each A G E T and 

for each E T -measurable function p: A —> X with (t.p(t)) G D a.e. 

zn A . zl is Gi(t,p(t)) = G2(t,p(t)) a.e. in A . 
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S k e t c h of t h e p r o o f . First we prove the assertion 1) for D — 
T x A'. The multifunctions $, * i , ^ 2 • T —• X x Y defined respectively by 
*(/) = G r ( F ( V ) ) , * i ( 0 = Gr(G! (*,-)), arid tt2(*) = Gr(G2(*, •)) satisfy 1) 
of Theorem 2; then ^(f) = #2(£) a.e. in T, from which Gi(t,x) = G2(t,x) for 
almost every l <G T and for each x G X. 

The assertion 2) can he proved as above, taking into account 2) of Theo­
rem 2. 

To prove 3) when D — T x X , extend p to all of T by putting p(l) = 

constant outside of A . Then apply 3) of Theorem 2 to $(•) = F(- *p(-)) , 

*,(•) -= G i ( - , p ( - ) ) , and * 2 ( . ) = G 2 ( . , p ( - ) ) ; so we obtain # i ( t ) = # 2 ( 0 a.e. 

in F. Now return to the original p defined in A, so we obtain G\(t,p(t)) — 

G-2(t.p(t)) a.e. in A . 

For the general case D C T x X , extend P, Gi and G2 to all of T x X 
by putting their values empty outside of I9; then apply the already proved 
uniqueness theorem for the case D = T x X and finally return to D . • 
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