
Mathematica Slovaca

János T. Tóth; László Zsilinszky
On a typical property of functions

Mathematica Slovaca, Vol. 45 (1995), No. 2, 121--127

Persistent URL: http://dml.cz/dmlcz/136642

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136642
http://project.dml.cz


Mathematica 
Slovaca 

©1995 

Math . Slovaca, 4 5 (1995) , No. 2 , 1 2 1 - 1 2 7 siovak A?adÍ£fy o f s c i ^ í e s 

ON A TYPICAL PROPERTY OF FUNCTIONS 

JANOS T. T O T H — LASZLO ZSILINSZKY 

(Communicated by Ladislav Misik) 

A B S T R A C T . Let s be the space of all real sequences endowed with the Frechet 

metric g. Consider the space T of all functions / : R —* R with the uniform 

topo logy Denote by U the class of all functions / £ T for which the set 

\ {a>i}i £ <s; Y2f(ai) converges > is cr-superporous in (s,g). Then U is residual 
^ i * 

in T, both hi and T\IA are dense-in-itself and IA is a Baire space in the relative 
topo logy 

In troduc t ion 

Let (s, g) be the metric space of all real sequences with the Frechet metric 

0 0 I , I 

g(a, b) = J2 2~l • —— l-— , where a = {a{}i, b = {bi}i e s . 
^ l + \ai-bi\ 

Denote by B(a, r) the open ball centred at a E s with radius r > 0 in (5, £>). 
Let £ C s , a E s and r > 0. Define 

7(a, r, JS7) = sup{r ' > 0 ; 3a'Es 5 ( a ; , r r) C 5 ( a , r) \ £?} . 

We say that E is porous at a if 

hm sup > 0 . 

Further, the set E C s is said to be superporous at a E s (see [7], [8]), if EU F 
is porous at a whenever F C s is porous at a. We say that E is superporous 
if it is superporous at each of its points, further E is cr-superporous if it is a 
countable union of superporous sets. 

Denote by Q the set of all rational numbers, by XM the characteristic func
tion o f M c R , and by R the set R U {±00}. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 26A21, 40A05, 54E52. 
K e y w o r d s : Sequence space, Superporosity, Baire space. 
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It is known that the set of all real sequences {ai}i such that ~Z,ai converges 
i 

constitutes a meager set in (s, g) ([2], [6]). It is not hard to generalize this result 
realizing that the set 

A(f) = | {a i} i £ 5 ; ^2f(ai) convergesj 
i 

is meager in (5, g) for every nonvanishing continuous function / : R —> R. In fact, 
these sets are even "poorer" since, as we will show, A(f) is cr-superporous for a 
broad class of functions / . More precisely, if U stands for the class of all functions 
/ : R —> R (not necessarily continuous) for which A(f) is cr-superporous in s, 
then U constitutes a residual set in the space (T, d) of all real functions of one 

real variable with the sup-metric d(f,g) = min< 1, sup | / (x ) — g(x)\ >, where 

f^g^T. Besides, we will investigate various topological properties of A(f) in 
(s, g) and of U in (F,d). 

P r o p e r t i e s of A(f) 

First we examine the density of A(f). 

THEOREM 1. The set A(f) is either empty or dense in (s, g). 

P r o o f . Suppose A(f) ^ 0 and {&;}* G A(f). Let a = {a^i G s and e > 0. 
Choose j G N such that 2~j < e. Put Q = â  for i < j , and c{ = b{ for i > j . 
Then evidently c = {ci}i £ A(f) and g(a, c) < e. • 

Define the following sets for / G T and p, q G N: 

Apq(f) = {{ai}ies] \/m,n>q,m<n | / ( a m + 1 ) + • • • + f(an)\ < ^ } . 

LEMMA 1. Suppose a > 0 and x0 G R. Let f0(x) = maxjo , 2 \x - x0\ \, 

x G R. Then Apq(f0) is superporous for every p,q G N. 

P r o o f . Let a G Apq(f0). Suppose F C s is an arbitrary set porous at a. 
Then we have a number /3 > 0 such that for all n > c/ there exist r n , rn such 
that /3rn < rn < rn < 2~n and af <E s for which 

5 ( ^ , 0 cB(a,rn)\F. (1) 

Denote m n -= minjfc G N; 2~fc < rn} and 6n = 2 " m n . Then we have 

r' 
mn> q and rn > en > -^. (2) 
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Define b G s as follows: 

bi=a[ if i 7̂  ran + 1, 

z 0 if a ^ n + 1 £ (x0- f, x0 + f ) , 

x0 + f if a ^ n + 1 G (x0 - f, x0 + f ) . 

Then we get 

a_ 
EJ}_ ^ n(n> h\ _ o - m n - l l a m n + l ~ & m n + ll 9 - m n - l 4 _ <* ^n 
2 > ^ a ' 5 ^ - 2 l + | a m n + 1 -6 m n + 1 | - 2 T T f - 4 + 7 . - T 

and, by (2), we have 

a -£ > (̂a',6) > - f - • -£ > - + ^ -rn. (3) 2 ч 7 _ 4 + a 2 ~ 4(4 + a) 

' • e(a 

\Cтnn + l - Ьmn + l\ 

Put 8 = ——-— • g{a',b) and choose an arbitrary c G B{b,8). Then we get 

2 1 + lc mn + l °m„ + l | 
< g(c, 6) < 8, thus in view of (3) 

-mn + l °mn + ll < 

28 2 єn a 
єn ^ єn 2 4 + a a 

x 28 " x 2 є n a 4 ' 
є n є n 2 4 + a 

consequently, c m n + i G (x 0 — f̂, #o + x ) ( s e e ^ definition of 6 m n + i ) . 

Observe now that |/o(cm n +i) | > 1 > —, so 

ces\ Apq(f0). (4) 

Using (3), we have en - g(a',b) > %- > -r-j— • ^ f > <5, therefore B(b,S) C 

B(a',en) C B(a',r'n). In virtue of (4) and (1), there holds 

B(6,6) C B(a', r'n) \ Apq(f0) C B(a, rn) \ (F U Apq(f0)) . 

2 rJ 

It means that j(a,rn, F U Apq(f0)) > 6 > (jf^) • - f > ( 4 ^ ) f ^ n , 

thus 

r 7 ( f l , r , F U A M ( / 0 ) ) f g Ý /? n 
hmsup — > - — — ' T > 0 -

._n+ r ~ \4 + aJ 4 .0+ 

Therefore F U Apq{fo) is porous at a. D 
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THEOREM 2. Let / : R —> R be a function for which there exists x0 G R such 
that 

l imin f | / (x ) | > 0 . (5) 
X—>Xo 

Then A(f) is a-superporous in (s, g). 

P r o o f . First consider xo G R . Then by (5), there exist h > 0 and a > 0 
such that 

\f{x)\>h (6) 

for all x G (x0—2a, x0+2a). Let a G -A(/). By (6), the interval (x0—2a, x 0 + 2 a ) 
contains only a finite number of terms of a. Thereby a G -A(/o)? where f0 is 
defined in Lemma 1. Hence A(f) C A(f0). It suffices to observe that A(f0) = 
P | l jAPg(/o) and use Lemma 1. 
p Q 

If x0 = ±00, then, by (5), one can easily find x0€L R and a > 0 such that 
(6) is fulfilled for every x G (x0 — 2a, x0 + 2a ) , which converts this case to the 
previous one. • 

R e m a r k 1. It is worth noticing which classes of functions fulfil (5). Some 
examples follow: 

(i) Functions that are lower (upper) semicontinuous at an x0 G R such that 
f(xo) > 0 (f(x0) < 0). This can be inferred from the definition of semicontinu
ous functions and Theorem 2. 

(ii) Nonvanishing functions with closed graph (in the product topology - cf. 
[3], [4]). To show this, recall that each function / G T having closed graph is 
a Baire 1 function (cf. [3; Theorem 1']). Thus the set of its continuity points 
Cf is dense in R ([5; p. 235]). It means that every x G R is a limit of a 
sequence X{ G Cf (i G N). Thus, by [4; Theorem 1], f(x^) —> f(x) as i —> 00. 
Consequently, | / (#o) | > 0 for some x0 G Cf, since otherwise / = 0. Hence, we 
have liminf | / ( x ) | = \f(x0)\ > 0. 

X—•xo 

(iii) Nonvanishing, monotone functions. That is clear from Theorem 2 since, 
if / is nonvanishing and increasing (decreasing), then (5) holds for x0 = -foo 
(x0 — —00). • 

P rope r t i e s of U 

Introduce an auxiliary set 

U0 = {/ G T \ f satisfies (5) for some x0 G R } . 

We have 
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LEMMA 2. The set U0 is dense and open in (T^d), thus T\U0 is nowhere 
dense in (T, d). 

P r o o f . Choose / E U0. Then for some x0 E K there exists h > 0 and a 

neighbourhood J of xn such that (6) holds for each x E J . Put e0 = —. For 

every g E £ ( / , e0) we get that \g(x)\ > \f(x)\ - | / (x) - g(x)\ >h-eo = so>0 
for each x E J . Consequently _/ E Wo, thus ZYo is open in J7 . 

To show the density of U0 in .T7, choose / E J7 and £ > 0. Put J = (0,1). 

Define M = j x E R; either x E X \ J , or x E J and | / ( x ) | > - | | and 

M ' = R \ M. Define a function g = f • XM + j • XM> • Then | / (x) - g(x)\ = 

/ ( * ) - f | ' XM'W < ( | / ( x ) | + | ) • XM'(z) < f for all x E R. Further for 

x E J we have |_/(x)| = | / ( x ) | • XM(X) + - | • X M ' ( Z ) > - | > 0. Accordingly 

geU0nB(f,s). D 

Since (J7, d) is a complete metric space, the following theorem is meaningful: 

THEOREM 3. The set U is residual in (F,d). 

P r o o f . It is an easy consequence of Lemma 2 and the fact that U0 C U 
(see Theorem 2). • 

R e m a r k 2. In connection with the inclusion U0 C U notice that U0 ^ U. 
Indeed, we will show that XR\Q EU\U0. 

In favour of this, introduce the set A^(x) = { { a ^ E 5; a/~ = x} for every 
k E N, x E R. Choose a £ Ak(x) (k E N, x E K) and a set F C 5 which is 
porous at a. Then there exist (3 > 0, sequences r n , r ^ > 0 and af E s such that 
r n \ 0, (3rn < r'n < rn < 2 " / c + 1 and 

B(a',r'n)cB(a,rn)\F. (7) 

Define the sequence b = {bi}i E s as follows: 

bi = a'i if i ^ fc , 

if a'fc < x , 

Ь k = < 

? k - i r t 

-2 f c - V 
o k - V 

" • • + ! _ 2»-Гr.
 i f a ' ^ * ' 
n 

I 

Put 6 = -J*-. Then e(6,o') = <5, thus 

B(b,6)cB(a'Уn). (8) 
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Furthermore, if c G B(b,6), then %- > £>(b,c) > 2~k • i ' \ Cfe' , , so 
z 1 + \bk — Ck\ 

2 k - i r ' 
\bk ~~ck| < TTZT— • Therefore Ck ̂  x since, according to the definition of b, 

1 — 2 rf 

2 k - i r ' 
we have \bk — x\ > k_™ f . In view of (7), (8), it means that 

1 ~~ 2 rn 

5(6, (5) C J3(a', rJJ \ Ak(x) C B(a, rn) \ (F U Ak(x)) . 

Consequently, we get 7(0, r n , F U .Afc(a;)) > 5 > -^-rn. Hence 

r >y(a,r,FuAk(x)) ^ /3 ^ n 
lim sup — > — > 0 . 
r-+0+ ^ 2 

So we have proved that Ak(x) is superporous at a . It is now sufficient to observe 
that 

A(XR\Q) c\J(jAk(pn): 
k n 

where Q = { p i , . . . , p n , . . . }. D 

In virtue of Lemma 2, the set ZY (D U0) is dense in T and, evidently, U ^ T. 
Consequently, U is not closed in T, hence neither is a complete subspace of 
(T, d). Nevertheless, we have: 

THEOREM 4. The space (U,d) is a Baire space. 

P r o o f . By Lemma 2, U0 is open in the complete metric space (T, d), thus 
(U0,d) is a Baire space ([1; Proposition 1.14]). Furthermore, U0 is dense in U 
(see Lemma 2), hence (U,d) is a Baire space as well ([1; Proposition 1.15]). • 

THEOREM 5. Each point ofU (T\U) is a point of condensation ofU (T\U). 

P r o o f . Let 0 < e < 1. One can find a nonvanishing function / G U 
(f eT\U). Then f(x0) jt 0 for some x0 G R. Define fc = f + cf(x0) - X { , o } 

for each c > 0. We have A(f) = A(fc) (c > 0). Now, it is easy to check that 
fceB(f,e)nU (fceB(f,e)n(T\U)), fc ± f for every 0 < c < j y T ^ y • • 

R e m a r k 3. In the light of Theorems 3 - 5 , the set CI = (J A(f) would 
feu 

be worth studying. What we know is that U0 = (J A(f) is a-superporous 
feu0 

in s. To show this enumerate intervals with rational endpoints as 7 i , I2, - . - , 
further denote the midpoint of In by qn (n G N). Define the functions fn(x) — 
(l — \qn — x\) • Xin(

x) f° r x £ K. Now it suffices to notice that fn eU0 (n G N) 
0 0 

and U0 = (J -A(/n)- • 
n=l 
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