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ABSTRACT. The notion of a proper hypersubstitution of a variety V was in-
troduced by J. Ptonka [Proper and inner hypersubstitutions of varieties. In:
Summer School on General Algebra and Ordered Sets 1994. Proceedings of the
International Conference, Palacky University, Olomouc, 1994, pp. 106-115]. Let
V be a variety of a type 7. A hypersubstitution 7 of type 7 is called a proper
hypersubstitution of V if for every identity ¢ = 1 satisfied in V the identity
n(e) = n(y) is satisfied in V as well. In this paper, we consider proper hyper-
substitutions of the uniformation and of the biregularization of a variety V. A
special role in our work is played by hypersubstitutions which are regular, full
and regular. We give various sufficient conditions under which a hypersubstitution
7 is a proper hypersubstitution of the uniformation and of the biregularization
of a variety V. We determine all proper hypersubstitutions of the uniformation
and of the biregularization of the variety of lattices and of the variety of Boolean
algebras.

Introduction

The idea of a hypersubstitution was introduced by W. Taylor [18]. This
notion was explicitly defined by E. Graczynska and D. Schweigert [6]
(see also E. Graczynska [4]) and it was largely used for studying hyperiden-
tities. A hypersubstitution is in fact a kind of so called semi-weak endomorphism
(see [7] or [3]) of an algebra of terms which assigns variables to variables and
terms to terms (see Section 1). Mappings which preserve identities play a cru-
cial role for algebraists, and therefore J. Ptonka [13] considered the following
problem.

Let V be a variety of a given type. Which hypersubstitution n have the

following property: for every identity ¢ = 1 from Id(V) the identity n(y) =
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n(y) belongs to Id(V'), where Id(V') denotes the set of all identities satisfied
in V. He called such hypersubstitution a proper hypersubstitution of V .

J. Ptonka [13] characterized proper hypersubstitutions of the varieties of
lattices, of Boolean algebras and of their regularizations. In [16], [17], proper
hypersubstitutions of some other generalizations of those varieties were exam-
ined. In [15], proper hypersubstitutions of the join of independent varieties were
studied.

1. Preliminaries

Let us begin with the definition of a hypersubstitution. Here we quote this
concept defined by E. Graczyriska and D. Schweigert [6] (see also [4])
with a slight modification from [11]. Let 7: F' — N be a type of algebras, where
F is a set of fundamental operation symbols and N is the set of positive integers.
For a term ¢ of type 7 let Var(y) denote the set of all variables occurring in .
We denote by F(y) the set of all fundamental operation symbols in . Writing

(T, ,mim_l) instead of ¢ we shall mean that Var(y) C {z, ,...,z; _ }.
For f € F we call the term f(xo,...,:cr(f)_l) a fundamental term. Let @7
denote the set of all terms of type 7 on variables z,,...,z,,... (k < w).

A mapping n: @7 — @7 is called a hypersubstitution of type T, or briefly, a
hypersubstitution if n satisfies the following three conditions:

(H1) It assigns to every fundamental term f(a:o,...,:pT(f)_l) a term

‘Pf,f(mw - '?Ir(f)—l) and 7(f(zo, -- "m-r(f)-l)) = ‘Pf,r(%v = "x‘r(f)~l)'
(H2) n(z,) =z, for every variable z,, 0 <k < w.
(H3) If f € F and Por - Pr(f)—1 € PLs then

n(f(@o, - -- "Pr(f)~1)) = ‘Pf,r(ﬂ(%)» e vn(‘PT(f)—l)) :

By Hyp(7), we denote the set of all hypersubstitutions of type 7.

Let V' be a variety of type 7. Following [1] for an identity ¢ ~ v of type
7, we write V = o = ¢ if ¢ =1 belongs to Id(V), and we write V }£ ¢ =~ 9
otherwise.

Recall that a hypersubstitution 7 of type 7 is called a proper hypersubsti-
tution of V if for every ¢ ~ ¢ from Id(V) we have V = n(p) = n(y). A
hypersubstitution 1 of type 7 is called an inner hypersubstitution of V (see
[13]) if for every f € F, V = f(zo,...,wf(f)_l) ~ n(f(a:o,...,mT(f)_l)). For
general properties of proper and of inner hypersubstitutions, we refer to [13]. We
denote by P(V), P,(V) the set of all proper, of all inner hypersubstitutions of
V', respectively. A variety V of type 7 is said to be unary if 7(F) = {1}. A va-
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riety V of type 7 is called idempotent if all fundamental operations in algebras
of it are idempotent.

K. Denecke and M. Reichel [2] proved the following.

RESULT 1.1. ([2]) Let V' be a variety of type 7. Then FPy(V) = P(V) = Hyp()
if and only if the variety V is idempotent and unary, or V 1is trivial (i.e.,
VEz~y).

We need some notions from [13]. Let ¢(z,,...,z,,_;) be a term of type 7.
A term p(z,...,z,, ;) is called (z,...,z,,_;)-symmetrical in V if V =
O(Tp s 5Ty ) = p(zg, ..., T,,_;) for every permutation (kg,..., &k, _;) of
indices 0,...,m — 1.

We need the following.

LEMMA 1.2. ([13]) Let V be a variety of type 7, let f € F and let n € P(V).
If f(xo,...,a:T(f)_l) is (mo,...,Ir(f)_l)-symmetrical in V, then n(f(z, ...
.. 7x-r(f)——l)) is (zg, ... ,:I:T(f)_l)—symmetrical inV.

Let V be a variety of type 7. A term ¢(z,...,z,,_;) will be called weakly
idempotent in V if V = p(p(z,...,z),z,...,2) = ¢(z,...,z). From (H3) and
(H2), we obtain the following.

LEMMA 1.3. Let V be a variety of type 7, let f € F, and let n € P(V).
If f(zg,... ,.’IIT(f)_l) is weakly idempotent in V , then n(f(z,, - .- ,IT(”WI)) is
weakly idempotent in V.

Let p be a positive integer, let F (7) denote the set of all fundamental
terms f(z,...,z, ;) with 7(f) =p, and let S (V') denote the set of all terms
(IE .,wpkl) which are (z,.. .,zp;l)-symmetrical and weakly idempotent

in V. Combining Lemmas 1.2 with 1.3 we have the following.

PROPOSITION 1.4. Let V be a variety of type 7. If p >0, n € P(V), every
term from F (7) is (zg,- -+, Z,_1)-symmetrical and weakly 1dempotent in V,
then for every term f(zg,...,z,_,) from Fp(T) the term n(f(z:o,...,mp_l))
belongs to S (V).

Let V be a variety of type 7. Two terms ¢ and v of type 7 are called
V-equivalent if V |= ¢ ~ 1. Two hypersubstitutions 7, and 7, are called
V -equivalent if for every f € F, V k& 771(f<$0»---7$7(f)~1)) ~ 0y (f(zg, .-
...,.rT(f)_l)). Clearly, if n, and 7, are V-equivalent, then V = 7,(p) = n,(¢)
for every term ¢ of type 7. It is known from [13] that if n; and 7, are
V-equivalent, then 7, € P(V) if and only if n, € P(V), and so, to find all
proper hypersubstitutions of V', it is enough to choose one hypersubstitution
from each equivalence class of the relation “to be V-equivalent” and check if it
belongs to P(V') or not (see [13; Remark 1.1]).
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Let V be a variety of type 7. Let p denote the relation “to be V-equivalent”
defined on the set Hyp(7) of all hypersubstitutions of type 7, and p, = pN
(P(V))z, where (P(V))2 = P(V) x P(V), i.e., py, is the restriction of p to
P(V). We put p(V) = |P(V)/py,|. We shall say that two hypersubstitutions 7,
and 7, are essentially different if they are not V-equivalent. So p(V) is equal
to the maximal number of proper hypersubstitutions of V' such that every of
them are essentially different.

Throughout the paper, 7, denotes the type such that 7,: {+,-} — N, where
7o(+) = 75(-) = 2 and 7, the type such that 7,: {+,-,"} = N, where 7,(+) =
() =2, n,()=1.

In this paper, we shall use the following convention. Let V' be a variety of
type 7,. For n € Hyp(7,) we will write (V,7n,, B) instead of 1 is V-equivalent
to o € Hyp(r,) defined by o(z, + z,) = a, o(z, - x,) = B for some terms
a, [ of type 7,. Let V be a variety of type 7,. For n € Hyp(r;) we will
write (V,n,a,(8,7) instead of n is V-equivalent to o € Hyp(r;) defined by
o(zg+z,) =a, o(zy-z,) =B, o(zy) = for some terms «, 3, v of type 7.

We will say that an identity ¢ ~ ¢ excludes n from P(V), or briefly ezcludes
nif Vi@ and V§En(e) = ().

For a set ¥ of identities of type 7 we denote by Mod(X) the variety of type
7 defined by the set ¥. An identity ¢ = 1 of type 7 is called regular (see [8])
if Var(¢) = Var(y). For a variety V of type 7 let R(V) denote the set of all
regular identities from Id(V). We put Vi, = Mod(R(V)). The variety Vj is
called the regularization of V (see [14], cf. regular part of V of [5]).

Throughout the paper, L denotes the variety of lattices of type 7,, and B
denotes the variety of Boolean algebras of type 7,.

The following result will be often used in the paper.

RESULT 1.5. ([13])
(i) mn € P(L) if and only if (L,n,zy +x,,xy-x,) or (L,n,zy z, x5 +x,).
(i) n € P(Lg) if and only if (Lp,n,zq+2,,2-%,) or (Lg,n, Ty 2, zo+1,)
or (Lp,m,xy 2,2y ;) or (Lp,n, x5+, 25 +2,).
(i) n € P(B) if and only if (B,n,xy + z,,z, - ,,2,) or (B,n,z, -z,
Ty + 1z, 2p).
(iv) m € P(Bg) if and only if (Bg,n,zy +2,,%, - &1,25) or (Bg,n, 4 24,
Ty +z,, ) or (Bg,n,%y-Ty,%y 2y,%,) or (Bg,n,zy+z,,5,+T,2,).

2. Some hypersubstitutions

A hypersubstitution 7 of type 7 is called a regular hypersubstitution (see
(11]) if for every f € F, Var(n(f(a:o,...,xr(f)_l))) = {$07-~-7x7(f)_1}~ We
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denote by RegHyp(7) the set of all regular hypersubstitutions of type 7. In the
sequel, we need the following.

LEMMA 2.1. ([13]) Let ¢ be a term of type 7. If n € RegHyp(7), then

Fine) = U Flf(zo-2.)4))) -

fEF(p)

A hypersubstitution n of type 7 will be called a full hypersubstitution if
U F(n(f(xo,...,a:T(f)_l))) = F. By FullHyp(7) we denote the set of all
fer

full hypersubstitutions of type 7. Let 7,4 be the hypersubstitution of type
7 defined by ni,(f(2gs 1%, 5)_1)) = f(:co,...,xT(f)_l) for every f € F.
K. Denecke and M. Reichel [2] proved that Hyp(r) = (Hyp(T),Oy”)id)

is a monoid, where o denotes the superposition. Let us put FRHyp(7) =
FullHyp(7) N RegHyp(7). We have:

PROPOSITION 2.2. FRHyp(7) is a submonoid of Hyp(7).

Proof. Obviously, n, is a full and regular hypersubstitution. Let n,,7, €
FRHyp(7). Then 5, o n, € RegHyp(r) because it is known from (11] that
RegHyp(7) is a submonoid of Hyp(7). In view of Lemma 2.1, we obtain

U Fln (no(f (290 2,05y 1)))) = F .-

fer

Thus 7, o7, € FullHyp(r). Similarly, we obtain that n, o7, € FullHyp(7).
Consequently, FRHyp(7) is closed under o. =

Remark. FullHyp(7) need not be a submonoid of Hyp(r). In fact, let us con-
sider the type 7, and let 7, € FullHyp(r,) be defined by n,(z, + ) = T,
Mm(To - 1) = x5 + (z, - z,). We see that n(n (g +2,)) = m(zg) = To>
m (m(zo - 2,)) = m (zo + (z, - xy)) =z, Thus, n, 0 ¢ FullHyp(7,)-
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3. Uniformations of varieties

An identity ¢ ~ 9 of type 7 is called uniform (see [9]) if F(p) = F(yp) = F or
F(p) = F(¢) # F and Var(y) = Var(¢). For example, the identity z,+z, T, ~
Ty + z, - , is uniform in L, however, it is not regular and it is not uniform
in B. For a variety V of type 7 we denote by U(V) the set of all uniform
identities from Id(V'). We put V;; = Mod(U(V)). The variety V;, will be called
the uniformation of V.

We need the following lemmas.

LEMMA 3.1. ([13]) If ¢ = 1 is a regular identity of type 7 and n € RegHyp(7),
then n(p) = n(¥) is a regular identity of type T and Var(n(yp)) = Var(p) =

Var() = Var(n())..

LEMMA 3.2. If ¢ ~ 1 is a uniform identity of type 7 and n € FRHyp(7),
then n(p) =~ n(v¥) is a uniform identity of type 7.

Proof. Let F(¢) = F(¢) # F and Var(p) = Var(¢). Then, since n €
RegHyp(7), by Lemma 2.1, we get

Fin@)= U F(f(zor2,5)-1)))

fEF(p)

= U FOl(f(zgr---r2,5y-1)) = F ().

feF(y)

Moreover, according to Lemma 3.1, we have Var(n(y)) = Var(n(¢)). Now,
assume that F(yp) = F(y) = F. Note that n € FRHyp(7). Hence, using
Lemma 2.1, we obtain

F(a(e) = U F(f (o 2.5-1))) = U FO(f (w00 2o (py-1))) = F

fEF (o) fer
= U Flf(zor--r25-1))) = U FO(F (2o 520(5)-1))
fEF feEF(y)
= F(n(¥)) -
This completes the proof. O

PROPOSITION 3.3. Let V be a variety of type 7. If 1 € FRHyp(7) and
ne€ P(V), then ne P(Vy).

Proof. Let ¢ ~ 1 belong to U(V). Then ¢ = ¢ belongs to Id(V),
and since n € P(V), we get V | n(p) ~ n(y). However, the assumptions
of Lemma 3.2 are satisfied, and hence, the identity 7(yp) = n(¢) is uniform.
Consequently, V;; = n(¢) = n(v), and so the proof is completed. a
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Consider the following 12 terms:
Toy To + Tgy To~ Tgy Tyt To Ty, Tyy Ty + Ty, Ty Ty Ty Ty Ty, (3.1)
To + Ty, (Tg + 1) - (Tg + 1), Tg - Ty, T2y + 35 Ty -
Let us put
Ly={zy+z,, (zg+2z,) (zg+2,)},
Ly={zq ), g 2 + 352, }.
THEOREM 3.4. Let Ly be the uniformation of the variety L of lattices. Then
n € P(Ly) if and only if (L, n,a,B), where (a,B) € (Ly X Ly) U(L, % L,).

Proof.

( == ) First note that every binary term ¢(z, ;) of type 7, is L;-equivalent
to one of the terms (3.1). According to Proposition 1.4, if n € P(L), then
(Ly,n,a,B), where a,8 € L; U L,. This follows from the fact that among
the terms (3.1) only the terms from L, U L, are (z,,)-symmetrical and
weakly idempotent in Ly, . Further, if (a,3) € L3 U L2 (where L? = L, x L,,
i = 1,2), then n ¢ P(Ly). In fact, it is enough to observe that the identity
Ty + Ty T, R xy+ -z, excludes n from P(Ly). For example, let us take
a=zx,+z,, B = (ry+2z)- (z,+z,). We have L, = n(z, + z, - z;) ~
zo+ (g +z,) (zy+ ;) and Ly En(zy + 2o - T) = 2o+ (o +24) - (Tg + 24).
But L} zy+ (zg+ ;) - (x5 +2,) = 2y + (2o +20) - (2, +Z,) and consequently,
Ly g+ (g + ) (2 +2,) Ry + (g + ) - (Ty + ) -

(<=) Let (Ly,n,a,B), where (o, 8) € (L x Ly)U(Ly x Ly). Then, in view
of Result 1.5 (i), we conclude that n € P(L). Further, we see that n € FRHyp(7).
Hence, by Proposition 3.3, n € P(L;) as required. O

COROLLARY 3.5. P(L;) = P(L).

Proof. Since P(L) C FRHyp(7,), we see that P(L) C P(L;) follows
from Proposition 3.3. On the other hand, assume that L |= ¢ ~ . Combining
Result 1.5(i) and Theorem 3.4 we conclude that, if n € P(L;,), then there existg
n* € P(L) such that n and n* are L-equivalent. Hence, we have L = n(¢) ~
n*(¢) = n*(¥) = n(v). Finally, n € P(L), and so we proved the statement. [

To prove the next theorem, we need a simple but technical lemma.

LEMMA 3.6. Let ¢ be a term of type 7, with Var(p) = {z,...,z,,_1}- Then
we have:

(i) If (B,n,a,a,7), where (a,7) € {(az:O + z,, 2y + 2p), (T - Ty, T :c(,)},

then
v if "€ F(p),

BEnlp)~{ zgo+-tz, , if a=zy+z, "¢ F(p),
Ty Ty f a=xzy-2, "¢ Fp).
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(it) If (B,m, e, B, 2,), where (e, B) € {(zq + 21,70 + 7). (2 + 20y, g + 4),
(g - 21,20 - 2(), (24 - T, T - acl)}, then

B n(p) ~
a if +€F(p), a€{zy+z0,2 25};
B if ~€F(p), BE{zyg+znzo 20}
o+t Z'fazxo'Jfady -¢F((p) 0T,3=:E0+.”C1, +¢F(90)§
Ty T ifa=zy-z, - ¢F(p) or B=xy-z,, +¢ F(p).
(111) If (Bﬂ?,a,%’Y); U}here (av’Y) € {(1:0 +‘T1’$0 +I€))!(‘r0 '1171,5130 "Eé))}!
then
v if -€ F(p) or '€ F(p),
B|=77(<P)“ o+ -+, ifa:$0+x1, F((p)_C_{—}-},
Ty e Ty if a=xz,-z,F(p) C {+}.
(IV) If (B,”I,%ﬁﬂ); where (/877) € {(.’IJO +xl’$0 +$,0)’($0 ‘:El"’l“O : .’)36)},
then
v if +€F(p) or' € F(p),

B n(p) = Tyt Ty if B=zo+z), Flp) C{},
Ty T if B=z5-z;, F(e)C{}.

(v) If (B,n,a,a,a:o), where a € {Io + wéﬁxo ’ :E(I)}: then B = n(p) ~
for every ¢ such that F(p) C {'}, Var(y) = {z,}, and B = n(p)
otherwise.

(VI) If (Bﬂ?,a,a,a), where a E {xO + 1:6’1:0 : 1136}/, then B # 77(80> ~ o fO'I‘
every ¢ with F(p) #0.

Proof. We use induction with respect to the complexity of ¢. If ¢ is a
fundamental term, then the statement is clear for each of the conditions (i) - (iv).

(i) We prove only this for (a,7) = (2o + %,y + () because the proof for
(,7) = (zg - z;,T, - ) is analogous. Let ¢ = ¢, + ¢, for some terms ©o»
¢, of type 7,. If ' € F(y¢), then without loss of generality, we can assume that
"€ F(p,). Then, by the inductive assumption, we have

Ty,
~a

B = n(e) = nlpy + ¢1) = nlp,) +1(ey) = 2o + 24+ 1(p;) = 2o + 2. (3.2)
If " ¢ F(p), then we can assume that Var(p,) = {zi--vz;_ }, Var(p,) =
{zj,---,zj,_ }, where ig,...,4,_1, 4o, J;_3 €{0,...,m —1}. According to
the inductive assumption, we conclude that

B = n(p) = n(eg + ¢1) = n(py) +1(e;)
~Rr+-t, etz NI+t

Jt—1

(3.3)

m—1"
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Similarly, we deal with ¢ = ¢, - ¢,. Further, let ¢ = (¢,)’. Then B |=n(p) =
"7((900)’) ~ 1(p,) + (77(300)), ATy + .

(ii) Let (B,n,qa,B,x,). First, let (o, B8) = (zy+,, 25+ (). If o = @y, for
some terms ¢, ; of type 7, then, by the inductive assumption, B = n(p) ~
n(py-p1) = n(goo)+(n(<p0))l ~xy+a;. Let o = @y+¢,. If - € F(p), then with-
out loss of generality, we can assume that - € F(g,). By the inductive assump-
tion, we get (3.2) as required. If - ¢ F(y), then we can assume that Var(p,) =
(s vy, ), Var(py) = {z;,...,z;, |}, where iq,...,i,_1,50,..,J,_; €
{0,...,m—1}. Just as in (i), we obtain (3.3). Let v = (¢,)’. Then we use the in-
ductive assumption. If - € F(y,), then B = n(v) = n((¢,)') = n(p,) =~ z,+}.
If - ¢ F(p,), then B = n(p) =~ n((¢,)) = n(p,) = x5+ -+ +z,,_, because
Var(y,) = Var(y). The remaining (a, ) € {(z, - z,,z, - ), (zo + T4, Tx + T,),
(2o T, Ty - T,)} are handled in the same way.

Proofs of (iii) and (iv) are similar to that of (ii).

(v) We prove only this for a = z;, + zj; because the proof for a = z - z is
similar. Assume that ¢ = (¢,)’. Then, by the inductive assumption, we have

z, if Flp) € {7},

T, + z, otherwise.

B k= n() = n((0)) ~ n(y) ~ {

Now, let ¢ = @, +p,. We see that B = n(p) = n(py+¢,) = n(p,) + (n(goo))’ ~
z, + ;. The term ¢ = @, - ¢, is handled in the same way. Thus the proof of

(v) is completed.
(vi) Trivial. a

Let us put

U, = {(zg-z)) - (x, - 21), (o + )" + (2 + 1), 7 xp+ 2y - 27},

Uy = {z}, =)+ zp, T - To» To+ To - T},

Us = {xg, To+ T, To Tor (T0)'s To+To- 2o, To+(2)'s o (25)', To+ o 20},
U, = {z, + ), (x5 5), (2o +zp) - (xo+ ()},

Ug = {mo g, (2o + T)", (zg - z0) + (2 - wé)} :

THEOREM 3.7. Let By be the uniformation of the variety B of Boolean
algebras. Then n € P(By) if and only if n is a full hypersubstitution with

(BUvnaa’ﬁ)’Y)y where (aHB”Y) E ((Ul X U2)U (UZ X Ul)) X U5 or (a,ﬂ,'y) €
(U, x Ug) U(Uy x U U (Uy x U) U(Uy x Up) UUZUUZ) x Ug or (o, 8,7) €
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(U, x Ug) U(Uy x Uy)) UWUEUUZ) x U, or (a,B,7) € (Uy x Uy) U (U, x U,) U
U2UU?) x Ug.

Proof.
( = ) : In view of the arguments used in the first part of the proof of
Theorem 3.4, we can infer that if n € P(By,), then (By,n, a,8,7), where o, § €

4
U U;. Thus n € RegHyp(7,). First we exclude all hypersubstitutions which are
i=1

not full. Let n ¢ FullHyp(7,), i.e., if (By,n,a,08,7), then F(a) U F(8)U F(v)
# F. Let us take the following identity

To+ Ty Ty R T+ Ty - Ty - (3.4)

Clearly, this identity is uniform in B, but is not regular. By Lemma 2.1, we
have F(n(z, + - 2})) = F(a) U F(B) U F(y) # F and F(n(z, + x, - z()) =
F(a)UF(B)UF(y) # F.In view of Lemma 3.1, Var(n(z,+xy-z})) = {24, 2, },
Var(n(zy+z,-z))) = {z,}. Hence, the identity n(z,+z,-2}) = n(z,+z,-z;) is
not uniform in B and consequently, n ¢ P(B;;). Assume that n € FullHyp(r,)
and (By,n, @, B,7). If (o, 8) € (U;UU;) x Uy U ((U,uU,) xU3)U(Uy x Up)U
(U; x U,), then the identity

Lo+ Ty Ty R Ty (T + ) (3.5)

excludes n from P(By). Further, it is not difficult to observe that every unary
8
term g(z,) of type 7, must be By-equivalent to one of terms from |J U,. If

1=5
(a,B8) € (U x Uy) U (Uy x U;), then we have to exclude three possibilities:
veUs, vye€U,, vyeUg. If v €Ug, then the “biregular” de Morgan law (the
term “biregular” de Morgan law is justified by the next section), namely,

(g +z,) (2 + ;) = xy - 27 + T - T

excludes 7. If v € U, U Uy, then to prove that n ¢ P(By,) it is enough to take
the identity

T+ xo - Ty = () + x4 - T -
Let (a,B) € U?. Then we have to deal with three possibilities: v € Uy, v € Ug,
v € Ug. First, note that the identity

(xg + x4 - z0) & 2( + T4 - T (3.6)
excludes n if v € U; UUg. If v € Uy, then it is not difficult to check that the
identity

(@ + 2o - ;) ~ 25+ 2, - Tg (3.7)
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excludes 7. Similarly, we deal with (o, 3,7) € U2 x (Ug U Uz U U,). Further,
let (a,8) € U; x U;. Then we have to consider two cases: if v € U, then the
identity (3.6) excludes n, and if v € Uy, then the identity

(zg - z) = Ty, - T (3.8)

excludes 7. For (a, 8) € Uy x U, it is enough to take the identity (z,- (mo—i—xo)),
~zg - (z, + zg) for v € Uy, and the identity

(zg +z,) =z + (3.9)

for v € Ug. If (o, B) € (U, xU,)U(UyxU,), then we have again two possibilities:
v € Ug, v € Uy, for which we proceed in the same way as above for v € U;,
v € Ug, respectively. We complete the proof by noting that if (a,8,7) € U32 X
(UsuUg) or (a,B8,7) € UZ x (Ug UU,), then the identity (3.9) excludes 7.
(<= : Assume that n € FullHyp(r,) and (By,n, a,8,7), where (a, 8,7) is
identical as in the statement. Clearly, n € RegHyp(ry). If (a,8,7) € ((U; x U,)
U (U, x U;)) x Uy, then combining Result 1.5(iii) with Proposition 3.3, we get
that n € P(By). Let (a,8,7) € (U x U,) U (U3 x Uy), and let By, |= ¢ ~ 1.
First, note that F(p) = F(¢). If © € F(p), then B = n(p) = v ~ n(¥) by
Lemma 3.6(i). If ' ¢ F(¢p), then we can assume that Var(¢) = {z,,...,z,,_,} =
Var(¢). Again applying Lemma 3.6 (i), we obtain B |= 7(y) = zy+---+z,_, ~
n@®) if (o, B,7) € U x Uy, and B En(p) = zy-... x,,_, =~n() if (o, B,7) €
U3 x Ug. Since n € FRHyp(r,), we use Lemma 3.2 to both cases and we get
that an identity 7(¢) ~ n(¥) is uniform in B. Thus By E n(p) =~ n().
Consequently, 7 € P(By). Similarly, if (o, 8,7) € ((U; x U;) U (Uy x Up) U
(UyxUy)U(U, xU,)UUZUUZ) xUg or (a,B,7) € (U xUs)U(U; x U, )UUZ) x U,
or (a,8,7) € (U, x Uy) U (U, x Uy) UUZ) x Ug, then applying Lemmas 3.6
and 3.2 we conclude that n € P(By). Thus the proof is completed. a

Remarks.

1. One can find simpler excluding identities, but here we use these above since
they are convenient for further considerations, e.g., in the proof of Theorem 4.5.

2. Theorem 3.7 shows that it can happen that Py(V) € P(Vy), and conse-
quently, P(V) & P(V,;) because of Py(V) C P(V) (see [13; (1.iv)]). In fact, let
us take n € Hyp(r;) defined by n(zy + z,) = 2o +z,, n(zy - ;) = (zf, +z})',
n(zy) = zi. Clearly, n € Py(B), and thus n € P(B) (n € P(B) also follows
from Result 1.5(iii)). Let us consider the identity (3.7). Then n((z+z,-z,)") =
(zg + (zf + z’l)’)’ and n(z) + z, - z) = z} + (z} + (z})')’. Hence, the iden-
tity n((zy + 24 - z,)") = n(zh + =4 - Ty) is not uniform in B, and consequently,

n ¢ P(BU)'
COROLLARY 3.8. p(L,) =8, p(By) = 964.
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4. Biregularizations of varieties

An identity ¢ = v of type 7 is called biregular (see [9]) if F(¢) = F(¢)
and Var(y) = Var(¢). For example, the identity =, + z, - 2} ~ z;, + z; - 7]
is biregular in B, however, the identity z, + z, - z; = z, + =, - 2] is regular
but not biregular. For a variety V of type 7 we denote by B(V') the set of all
biregular identities from Id(V). We put Vg = Mod(B(V)). The variety Vj is
called the biregularization of V (see [12]). Observe that Vg = (V,)p = (Vp)y
(see [10]), and so it means that operators U and R commute. The proof of the
next lemma is analogous to the second part of the proof of Lemma 3.2.

LEMMA 4.1. (cf. [13]) If ¢ =~ 1 is a biregular identity of type 7 and n €
RegHyp(7), then n(¢) =~ n(y) is a biregular identity of type 7.

We need the following.

PROPOSITION 4.2. Let V' be a variety of type 7. Then we have:
(i) If n € RegHyp(7) and n € P(V), then n € P(Vy).
(ii) If n € RegHyp(7) and n € P(Vy), then n € P(Vg).
(iii) If n € RegHyp(7) and n € P(Vy), then n € P(Vg).

Proof.

(i) was proved in [13].

(ii) Substitute V' by V;; and apply (i).

(iii) Similarly to the proof of Proposition 3.3, but using Lemma 4.1 we get
the statement. O

Let us consider the following two terms:
Tyt T T, T, + x0T (4.1)

THEOREM 4.3. Let Ly be the bireqularization of the variety L of lattices.
Then n € P(Lg) if and only if (Lg,n,a,B), where (o, 8) € (L, U L,)?.

Proof.

(=) : First note that every binary term q(z(,z,) of type 7, is L g-equiv-
alent to one of the terms (3.1) or (4.1) (see [12]). Arguing analogously as in
the proof of Theorem 3.4 we get that, if n € P(Lp), then (Lg,7n,q, ), where
(o, B) € (Ll U L2)2~

(<=): Assume that (Lg,n,a,p), where (a,8) € (L, U L,)?. Then, from
Result 1.5(ii), it follows that n € P(Ly). But n € RegHyp(7,). So, in view of
Proposition 4.2 (iii), we have 1 € P(Ly) as required. O
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COROLLARY 4.4. P(Lg) = P(Ly).

Proof. Since P(Lg) € RegHyp(7,), from Proposition 4.2(iii), we obtain
that P(Lg) € P(Lg). In order to prove the converse inclusion 2, let L, =
@ ~ 1, and let n € P(Ly). Then combining Result 1.5(ii) with Theorem 4.3 we
conclude that there exists 7, € P(Lp) such that n and 7, are Lp-equivalent.
So we have Ly |=n(p) = ny(p) = n,(4¥) ~ n(¢), what shows that n € P(Lp).

O

THEOREM 4.5. Let By be the biregularization of the variety B of Boolean
algebras. Then n € P(Bg) if and only if (Bg,n,a,B,7), where (a,B3,7) €
(U, x Uy)U(U, xUy)) x Uy or (e, 8,7) € (Uy x Uz) U (Uy x Up)U (U, x Uy) U
(U, x U)) UUZUUZUUFUUZ) x Ug or (a,B,7) € (U, x Uy) U (U x Uy) U
U20U2) x U, or (a,B,7) € (Uy x Uy) U (U, x Uy) UU2 UUZ) x Us.

Proof.
( = ) : Analogously as in the proof of Theorem 3.7 and using results of
Joel Berman [12; Section 2, Example 3], we conclude that if n € P(Bg),

4
then (Bg,n,a,0,7), where o, 3 € |J U;. First note that n € RegHyp(r,). To
i=1
complete the proof of this part, it is enough to repeat considerations from the
first part of the proof of Theorem 3.7 substituting B, by Bp. Therefore, let
(BB»U,O‘,B»V)~ If (o, 8) € ((Ul U U3) X U4) U ((Uz U U4) X Ug) U (U4 X Ul) U
(U, x U,), then the identity (3.5) excludes n from P(Bg). It is not difficult to
verify that every unary term g(z,) of type 7, must be Bp-equivalent to one

8

of the terms from |J U,. For (a,8) € (U; x U,) U (U, x U;) U (U; x Uy) U
i=5

(Uy; x U;)) U (U, x Uy)U (U, x U,) it is enough to repeat the arguments from

the proof of Theorem 3.7. If (a,8) € U, then we have to exclude only the case
when vy € U U Ug. This case is handled just as in the proof of Theorem 3.7, so
we omit this proof. Similarly, we treat n with (a, 3,7) € U2 x (U;UU,). To end
the proof of this part, it is enough to observe that, if (a, 8,7) € UZ x (U U Uy)
or (o, 8,7) € U x (Ug U U,), then the identity (3.9) excludes n from P(Bg).
(<= ): Let n € Hyp(r;) and (Bg,n,,3,7), where (a,(,7) is identical
as in the statement. Obviously, 7 € RegHyp(r,). If (a, 8,7) € (U U U2) x U,
then n € P(Bpg) by Proposition 4.2(iii). Further, comparing the statements of
Theorems 3.7 and 4.5 we see that they are much the same. Therefore, we need the
following fact: If n, € P(Bg) and 7n,, n, are Bp-equivalent, then 7, € P(Bpg).
In fact, first note that n, € RegHyp(;). Further, let By = ¢ ~ 9. Then
By E n,(¢) =~ n,() because 1, € P(Bpg). Since every biregular identity is
regular, we have Bp = n,(») = n,(¥). Because n,, 1, are Bp-equivalent, we
get By = ny(p) = ny(p) = m¥) = n5(¥). Moreover, in view of Lemma 4.1,
we obtain that the identity 772(<P) ~ 772(¢) is biregular, and so Bg E n,(p) ~
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1M5(¥). Finally, n, € P(Bpg). Combining Proposition 4.2(ii), (iii) with the fact
proved above we conclude that, if (a,B,7) € ((U1 x U,) U (U, x Ul)) x Ug or
(@, 8,7) € ((U; x Uy) U (U x U U(Uy x Uy U (U, x U)) UUZ U UZ) x Ug or
(@,8,7) € (U, x Up) U (U x U,) UUZUUZ) X U, or (a,8,7) € (U, x U,) U
Uy x Uy)UUZ U UR) x Ug, then n € P(Bg). Thus the proof is completed. [J

Remark. The fact from the proof of Theorem 4.5 can be generalized for arbi-
trary variety V' of type 7.

COROLLARY 4.6. p(Lj) =16, p(Bp) = 1458.

We collect in the figure below Corollaries 3.8 and 4.6. So we have the following
diagrams, which present numbers of essentially different proper hypersubstitu-
tions of varieties discussed in the paper.

p(Lg) =16
p(Lp) =4 p(Ly) =8
p(L) =2
p(Bg) = 1458
P(Bg) =4 p(By) = 964
p(B) =2
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