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THE BOCHNER 
AND THE MONOTONE INTEGRALS 

WITH RESPECT TO A NUCLEAR-VALUED 
FINITELY ADDITIVE MEASURE 

M A R I A CRISTINA ISIDORI — 

ANNA MARTELLOTTI — ANNA R I T A SAMBUCINI 

(Communicated by Miloslav Duchon) 

ABSTRACT. The comparison obtained in [Isidori, M. C—Marte l lo t t i , A.— 
Sambucini, A. R.: Integration with respect to orthogonally scattered measures, 
Math. Slovaca. 48 (1998), 253-269] is extended to the case of nuclear spaces 
making use of their representation as a projective limit of a family of Hilbert 
spaces. 

1. Introduction 

In many applications of mathematical analysis locally convex topological 
vector spaces are too general tools: a very useful specialization is represented 
by nuclear spaces; on the other hand, most of the examples of locally convex 
topological vector spaces, which are important for the applications, are nuclear 
spaces. 

One consideration for which the concept of nuclear space has great impor
tance is that the mere hypothesis of completeness allows to represent them as 
projective limit of Hilbert spaces, thus permitting the use of the inner product in 
each projection. Different kinds of integrations with respect to a Hilbert-valued 
finitely additive measure m have been already studied in [3], and compared with 
the integral with respect to a particular orthogonally scattered dilation of m. 

The main idea of this paper is to use the projective limit structure of a 
complete nuclear space E, in order to define and compare different concepts of 
integrability with respect to a finitely additive measure m ranging on E. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28A70. 
K e y w o r d s : nuclear space, projective limit, monotone integral. 

Lavoro svolto nelP ambito dello G.N.A.F.A. del C N . R . 
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In fact we show that, in the countably additive case, the Bochner integrability 
with respect to m coincides with the Bochner integrability with respect to each 
projection of m, and the same is true for the monotone integral (Theorems 3.8 
and 3.10). 

Hence the comparison between these two concepts obtained in [3] for Hilbert-
valued measures transfers to the case of an E-valued measure. 

We then introduce the orthogonally scattered dilation of m , and again apply 
the results in [3] to obtain their analogous in E. Finally we consider the case of 
a finitely additive E-valued measure. 

2. Preliminar ies 

Throughout the sequel m: S —> E will denote a bounded countably additive 
measure and E a complete nuclear space. 

THEOREM 2 . 1 . ([5]) Every complete locally convex space E is isomorphic to 
a projective limit of a family of Banach spaces; this family can be chosen so that 
its cardinality equals the cardinality of a given 0-neighbourhood base in E. 

We remember that in [5] if {Ua : a G / } is a basis of convex and circled 
neighbourhoods of 0 in E and if pa is the gauge of Ua, we can form the 
projective limit E = pjl(F7a, # a *) where Ea = Ev is a complete Banach space 
and ga/3 is a continuous linear map of Ep into EQ defined by gap ([x]p) = [x]a , 
for every a < /?, where [x]a denotes the equivalence class of the element x with 
respect to k e r p a . In the particular case when E is nuclear, the family Ua can 
be chosen so that each Ea is Hilbert. 

For other notations and results concerning nuclear spaces we refer to [4]. We 
denote by ma: £ -» Ea the bounded countably additive measure defined by 
ma(B) = [m(B)]a for every a e I and for every B G E . 

We refer to [3] for the notations and definitions relative to each ma. In 
particular, | |m a | | denotes the usual semivariation. 

Note that, since m is bounded, each | |m a | | is bounded as well, and for a < (3 
one easily obtains that \\m II < llmJI. 

Our aim is to compare the m-integrability, the (~) -integrability with re
spect to m and the (~) -integrability with respect to m with the same kinds of 
integrability with respect to each ma. 
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3. The m -integral and the monotone integral 

DEFINITION 3 .1 . Let / : ft -» R be a measurable function. Then / is 
m -integrable if and only if there exists a sequence of simple functions (fn)n 

which 11mQ11-converges to / , for every a £ I and such that ( f fn dm) is 
\ F / n 

Cauchy in E for every F G £ . In this case we set 

/ / d m = n1^o/ /»dm-

We denote by Ll(m) the space of m-integrable functions. 

In order to define the (~) -integral, we shall need a definition by seminorm 
which is an extension of that studied in [1], to a -finite measure spaces. 

DEFINITION 3.2. Let (Y, B,fi) be a complete a -finite measure space with 
respect to positive measure fi. A function ip: ft -> E is said to be measurable by 
seminorm if and only if for every a £ I there exist a /i-null set fl% C ft and a 
sequence of simple functions (ipn)n which satisfies lim Pa([*p(x)]a — <pn(x)) =0 
for every x G ft — ft%. 

DEFINITION 3.3. A function ip measurable by seminorm is said to be inte
grable by seminorm if and only if 

1) for every a G / there exists a sequence of simple Bochner /i -integrable 
functions (^pn)n such that Pa(<Pn — [<p]a) is /x-integrable and 

lim / " p в ( ^ - Ш d / i = 0; 
n - ю o J 

2) for every F G B with \i(F) < oo there exists yF G E such that for every 
a G I 

n ^ P « ( / < d / i - [ ^ ) = 0 -

In this case we set 

ip dfi = : 2/F , 

F 

/ > 

PROPOSITION 3.4. Le£ / : ft -> [0,+co) be a measurable function. Then the 
function (p: [0,+co) —•> E defined by (p(t) = m(f > t) is measurable by semi-
norm, with respect to the ordinary Lebesgue measure /x on [0, +oo) . 
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P r o o f . For every a E I the function t i-> ma(f > t) is measurable 
([2; p. 291]) and so, for every y G E, ([y]a \ cpa) is measurable. The func
tion <pa takes values in Ea which is a separable Hilbert space and thus by [1; 
Theorem 2.2] it is totally measurable. • 

DEFINITION 3.5. A measurable function / : Q -> Rg~ is said to be (^)-inte-
grable with respect to m if and only if the following conditions hold: 

1) for every B G S the function ipB(t) = m(f • 1B > t) is integrable by 
seminorm in ([0, +oo),#,/i), where fj, is the Lebesgue measure; 

2) for every a € I there exists Fa G L1 ([0, +oo), 5, //) such that pa (<pB(t)) 
< Fa(t) for every B G E and for every t G [0, +oo), where (pa (t) = 
ma(f-lB>t). 

f: Q -> R is (~)-integrable with respect to m if and only if /+ and / ~ are 
(~) -integrable in the above sense. 

We denote by Ll(m) the space of (~) -integrable functions. 

DEFINITION 3.6. A function / : fl -> R is said to be (~)-integrable with 
respect to m if and only if | |m a | |2(/ > t) is Lebesgue integrable for every 
a el. 

We denote by Ll(m) the space of (~) -integrable functions. 

Note that by definition the (~)-integrability with respect to m is equivalent 
to the (~)-integrability with respect to ma for every a e I. 

DEFINITION 3.7. For every a e I, E+ a is the o--algebra generated by E and 
all llm

Ql|-null se ts-

THEOREM 3.8. Let f: ft —> R be a measurable function. Then f is m-inte
grable if and only if f is ma -integrable for every a € I. 

P r o o f . Assume first that / is m-integrable. Let a e I and let V* = 
[x : pa(x) < e} £ UQ be fixed. Let (fn)n be a defining sequence for / . Since 

( I fn ^m) ls Cauchy, for every V G UQ there exists n G N such that for 
V & / n F _ 
every r,s > n 

frdm- J fsdm) GF; 
F 

hence, for r, s suitable large 

/ / , * » ) 

Э a ( / / r d m - / Л d m ) < £ . 
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Reducing fr and fa to the same decomposition we obtain 

Pa(T,(a-CkMAk)]<e. 

Thus we have 
.*=! 

J fт d m a ~ J f, ámc Ê(«-«)"»в(Л) 
fc=l Ea 

= PafÉ(€ 
\k = l 

Í-ЙK(4) <£-
We now prove the converse. Assume / is ma -integrable for every a G J. Then 

for every a G J there exists a sequence of simple functions (/n )n converging 

in mQ -measure to / , such that ( / / n dma J is Cauchy in Ea. We first prove 

that iff dmaJ is in E, namely 

9aAj f dmA = J / K 
for every a < /?. Obviously / / dm^ = lim / / £ dm^. Since f£ ||m^||-con-

• n—•oo # 

verges to / , / is E,,, ̂ -measurable. 

So we have (|/ - ' / £ | > *) € E,>/3 C E , Q and thus ||mQ | |(|/ - fi\ > t) < 

I K J | | ( | / - /£l > *)• Therefore ft \\ma\\-converges to / . Since ( / / £ d m ^ 

is Cauchy in E0, for every e > 0 there exists n G N such that for every r,s >n 

^(/(/^-/^dmJ <£, 

and so (ff„ dma J is Cauchy in Ea. Thus / is ma -integrable and we obtain 

9aJjf^mp)=Jf^ma. 

The sequence on the left hand side converges to / / dma . Therefore we have 

9a,0 y J f dm,J = gaJt ( Jim | /£ dm^) = Jim ga3 [J fn dm0j 

= lim Jf^ma = Jfdma. 
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Thus ( i f dm) eE. ( / / d m Q ) 

We now prove that / is m-integrable. Since / is S-measurable, there exists 
a sequence of simple functions (fn)n converging to / almost everywhere and 
such that for every /? G /, J fn dm* converges to / / dm^. 

• • 
Therefore we have lim f / dm^ — lim f //f drn^ — \ f dmB. Since, as 

n-»oo P n—>oo J • 

one easily can see, ( J fn dm) is Cauchy in E for every F G E , the assertion 
\ F J n 

follows. • 

R e m a r k 3.9. Observe that the "if" implication is valid even when m is only 
finitely additive, while the "only if" part is true only when m is countably 
additive. 

THEOREM 3.10. Let / : fi -> R be a measurable function. Then f is (^)-in-
tegrable with respect to m if and only if f is (^) -integrable with respect to ma 

for every a E I. 

P r o o f . We first prove the assertion for non negative / . Assume first that 
/ is (~)-integrable with respect to m. The function <Da is measurable for every 
a E I and for every B G S. Fix a £ I and B G S . By hypothesis there 
exists a sequence (ipa B)n of simple Bochner integrable functions such that 

oo 

PaWa^B ~ Va] converges to 0 and lim JVa[Pa,B ~ ¥a] dlx -= 0. Therefore 

Pa Wa] IS Lebesgue integrable in [0, -foo]. Furthermore we have 

| | m j | ( / > t ) = sup | |m a(JB)| |= sup pa [ma(f • 1B > t)] < Fa(t) 
BC(f>t) BC(f>t) 

for every t G [0, -foo) and so t i-> | |m a | | ( / > t) is integrable in [0, oo) for every 
a G I. 

We now prove the converse. 
Assume / is (~) -integrable with respect to mQ for every a e I .By hypoth

esis the function t K> | |m a | | ( / > t) is Lebesgue integrable in [0,+co] for every 
a G I. So we have 

Pa [*£(*)] = \\ma(f • 1B > t)\\Ea < \\mj(f > t). 

Thus we set Fa(t) — | |mQ | | ( / > t). As (fa is measurable for every a G / , then 
ip is measurable by seminorm. 

oo oo 

Fix B G X . We obtain /pa[</?£] dkx < / | |m a | | ( / > t) dt. Since ipa is 
o o 

Bochner integrable, Pa[^f] is Lebesgue integrable. So (pa is Bochner inte
grable and therefore there exists a sequence of simple functions ((f^/?) such 
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oo 

that pa [(p^^B - <p%] converges to 0 li-a.e. and lim J pa [ipatB - (pB] d/j, = 0. 

Thus (paB is Bochner integrable. We have proved 1) of Definition 3.3 for (pB. 
To prove 2) of Definition 3.3 we must divide our proof into steps. Fix B G E. 

a) First case: F = (a, b). 
Let A = {u G ft : a < f(u) < b}. It is 

ma(lB • f • 1A> t) = ma(B n(f - 1A> t)) 

{ ma(AnB) t<a 

ma(Bn(t< f <b)) a<t<b 

0 t>b 

' ma(AnB) t < a 

= < ma [(B n (/ > t)) ~(Bn(f> b))] a<t<b 

0 t > b. 

Thus we have 

b b 

J^dfi = Jma(f • 1B > t) d/i = Jma[B n (f > t)] d/i 
F a a 

b b 

= Jma[Bn(lA-f>t)] dfi + Jma[Bn(f>b)] dfi 

a a 

a b 

= jma(AHB) d^ + Jma[Bn(lA • f > t)] dfi 
0 a 

b a 

+ fma[Bn(f>b)] d/i- fma(AnB) d/x 

a 0 

+ oo 

= J rna[B n(lA •/><)] dn 
o 

+ m j B n ( / > b)] • (b - a) - ma(A n B) • a. 

We set <pi,o(b) = m J B n ( / > b)] • T h e n w e h a v e 

fvl d M = / / d m a + V + B ( i ) - ( f t - o ) - m a ( > l n B ) - f l . 

Л П Ű 
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By the boundedness of / and [2; Theorem 3.2] J f dmQ = J f dm Q . If we 
AПB AПB 

set ip%(ť) = (fa<в(t))a, then <p+ (t) e E; putting 

Уғ=\ I f d m a ) +<p%(Ь)-{Ь-a)-m(AПB)-a 

'AnB 

we have proved that J ya d/x = [?/F]Q. 
P 

b) Second case: F = Ulan> &n[ is an open set of finite measure. 
n 

Set An = {a; G fi : an < /(u;) < 6 n}. Then, from a), it follows that 

bn an 

| v>£d/z = J f dma + <p+tB(bn)-(bn-an)- J ma(AnnB) dfi. 

an AnnB 0 

bn 

We want to prove that X) / ^a d/x converges in £ Q . 
n on 

Since / / dmQ is a countable additive measure the series Yl I f dmQ 
AnnB n >4nnfl 

converges in JSQ. Moreover it holds 

+oo 

/ fdma= J <p£*nB(t) dM 
AnnB 

an bn 

= Jma(AnnB)dn + Jma[Bn(f-lAn>t)} dji, 

and so we have 

an °n 

J ma(AnnB)dix = - J ma[Bn(f •lAn>ť)}dn+ J f dma . (1) 
AnnB 

[ On -| 

J rna[Bn(f • lAn > £)] d/x is absolutely convergent. In 
fact we have 

bn 

Jma[BП(f-lЛn>t)}dџ <IKH(í l ) - (6 n -a„) 
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and so we obtain 
bn 

<IK||(fî)./i(i-)<+oo. £ fma[Bn(f.iAn>t)]dn 

Therefore from (1), the series "T" / ma(AnC\B) d/x converges in Ea. It remains 
n 0 

to prove the convergence of the series J2 vt^K)' (K - an) • Indeed 
n 

\kiB(bn)-(bn-an)\\<(bn-an).\\ma[Bn(f>bn)]\\<\\mam).(bn-an), 
and so we have 

E I K B ( U • (bn - an)\\ < (bn - an) • \\ma [ f ln(/> 6n)] || 
n 

<IKH(n)-M-P)<+oo. 
bn 

Therefore the series ~] J ^ d// converges in Ea. 
n an 

If we set 

Xn = [ J fdm«] +^(U'(6n-0-^nnB)-an, 
M n n B '<* 

bn 

we obtain j tpa d/i = [^„]a. Now we want to prove that the series J2xn ls 

an n 
absolutely convergent in E, namely that the series J2Pa(

xn) IS convergent for 
n 

every a G / . In fact it is 
/ bn v bn 

P a ( ^ ) = P a ( [ * » U = P a ( / v a , ( * ) d M ) < / l K | | [ B n ( / > t ) ] d / i 

and so we obtain 
Orг 

£ P a Ю < £ / * | K | | [ Б П ( / > ř ) ] d / i 
n n / 

a n 

= / l K | | [ Б П ( / > ř ) ] d / x 
ғ 
+00 

<• / l K | | ( B П ( / > í ) ) d д < + o o . 
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Let Xp be the sum of the series Ylxn - Then we have f ipa(t) d/x = [xp]a for 
n F 

every a G I. Note that if a < /3 we obtain 

9a,0 f y Vf ^ J = ^./J^F-fl) = J ^a ^ ' 
F F 

c) Third case: F is a Borel set of finite measure. 
Fix a < (3 in I. By hypothesis for every e > 0 there exists 5 a(^) > 0 such that 
if /x(G) < <fa then 

yi|m a | |[.Bn(/>«)]d/i<e. (2) 
G 

Since // is a regular measure there exists an open set A, with F C A such that 

e M MA-EX inf 1^(1),^^ 
2-ii^iiyj 

Note that A is of finite measure. By (2) we obtain 

/iKIl[Bn(f> t)] dfi < § , y | | m / 3 | | [Bn(/> t)] dlx < — 
A-F A-F 

Therefore applying step b) to the open set A, it follows that 

11̂, a,ß> 

Pa 
j ipв dџ - gaß í / <pfj dџ j 
ғ ғ 

f<pвdџ-fџ>вdџ 
ғ 

f Vždџ 

I <Pa d/i - 9a,0 ( j fB d/íj 

a,/j( j ^t áA - 9a,0 í y v | dM 

< y Pa(vf) dM+PQ 0a,/j[ / vf dM 
,4-F L M-F 

< f \\ma || [B n (/> ť)] d/i +\\gQt(3\\-p0 f v|d/x 
л - ғ 

< % + \\9 2 - и ^ и j . , ^ ! = є. 
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In all three cases we set yF = ( f (p% dN 5 we have proven that VF 
\ F J a 

Є E. 

Furthermore 

lim pa Jf^a^-iyFL = Åv4/<«d^-/^dH 
L ғ ғ 

< lim fpa[џ>la-^}dџ 
n->oo y L » J 

F 
+00 

ïn^fPaKa-tâ^^0' 

So we have proved 2) of Definition 3.3 for <pB and therefore / is (~)-integrable 
with respect to m. ---

COROLLARY 3.11. Let m\ E —> E be an s-bounded finitely additive measure. 
Let f: Q —> R 6e a measurable function. Then f is (~) -integrable with respect 
to m if and only if f is (*) -integrable with respect to ma for every a G I. 

P r o o f . The proof substantially goes along the same lines as that of The
orem 3.10. The only difference lies in the proof of the convergence of the series 
E / / d m a - S i n c e / e Ll(ma)> by I2! Theorem 3.9] / G Ll(ma) and by [3; 
n AnnB 

Proposition 3.4], for every A G S , 

/ / àma = I f dm
a 

Һ(A) 

If An n Am = 0 for n ^ m then h(An) n h(Am) = 0 then 

£ //d^ = £ / / drn 

MAnHB) 
n AnnB 

converges in Ea because / / draQ is countably additive. 
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4. Orthogonally scattered dilations 
of a nuclear valued finitely additive measure 
and applications to compar ison of integrals 

DEFINITION 4 . 1 . Let ra: E —> E be an s-bounded finitely additive measure. 
fh: E —> E x Y[ Ha is an orthogonally scattered dilation of ra if, for every 

aei 
a G / , Va [Pra(fha)] = raa, where Pra is an orthogonal projection of Ea ®Ha 

onto a closed linear manifold M of Ea © Ha and Va: M -> £"a is a unitary 
isomorphism (surjective). The relationship between ma, m^ , F?a , Ea®Ha can 
be clearly seen trough the following commutative diagram: 

E - ^ - > £ 

•1 

THEOREM 4.2. Le£ / : H -> R be a measurable function, let m: Y, -> E 
be a bounded countably additive measure and let fh: E —r E x J"! Ha be an 

aGI 
orthogonally scattered dilation of m. F/ien / is fh -integrable if and only if f is 
fha -integrable, for every a G I. 

P r o o f . Let P a =pa+pa defined by Pa(x,y) = pa(x)-\-pa(y) be the norm 
of Ea x Ha, where pa and p a are the norms of Ea and Ha respectively. Let 
J7(I) = {n C I : 7T finite}. We define the seminorm Pn: f l (Ea x # a ) "* ^o" 

aGI 
by 

-^ ((*<*> S/Jae/) = ^ ^ a ^ J = J2b>a(Xa) + Pa(Va)]aeI • 
aE7r aG7r 

The product topology of J ] (J5a x Ha) is generated by the family of seminorms 
aei 

Pn, 7r G ̂ "(I). So, by Theorem 2.1, n (£a x Ha) is the projective limit of 
aei 

Banach spaces. 
The set T(I) is ordered by inclusion and directed, namely n < r <=> n C r, 

7T v 7TJ = 7r U/irl. So f| ( ^ a
 X ^ O I F , , = [(Xa'2/a)]p *s a Banach space and we 

aei 
have 

[(*«»»<*)] Pw = {(4^a) : PA(^Va) ~ (^,2/J) = °} • 
Then [(xa,ya)]p={(xa,ya)a + (ta,ila)a: VA G TT PA(fa) = 0, pA(i/a) = 0} . 
So we define m^ as follows: 

^r04)=R04)U 
= { K ( ^ W > - ) ) a + (£«,»/•«)»: VAGTT pA(U = 0, PA(r?a) = 0}. 
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By Theorem 3.8, we obtain Ll(m) = f] L1(mn). We have now to show that 
TTG^ I ) 

L1(m)= (\L\ma). 
aei 

Observe that if TX(I) = {{a} : a e 1}, then ^(1) C T(I) and hence 
P| L1(fhn) C p| L1(fhn). It is obvious that if TT e TX(I), say 7r = {a}, 

7TG^(I) 7TE^l( I) 

then L1 (m^) = L1 (ma), and therefore the inclusion L1 (TO) C f] L1 (ma) holds. 
aGI 

Conversely, if / G f| Ll(ma) then for every n C 7, n finite, it is / G 

0 L1(mn) = L1(mlI D 

Remark 4.3. Note that, by Remark 3.9, the inclusion L1(m) C H L1(ma) is 
aGI 

valid also when m is an s-bounded finitely additive measure. 

THEOREM 4.4. Let m: S -> E be a countably additive bounded measure. If 
for every a G I there exists ya G E such that 

!) KbJa I ma)\ is a control for ma, 

2) A\/\ i ? xT i 5 hounded, 

Men Jfte following implications hold: 

feL1(m) => feLx(m) ^=> feL\m) => fel1(m). 

P r o o f . It suffices to apply [3; Corollary 3.10], Theorem 3.8, Theorem 3.10, 
Theorem 4.2 and Definition 3.6. D 

We now shall extend the last result to the case of .E-valued finitely additive 
measures. 

Analogously to the proof of Proposition 4.2 of [3], the following lemma can 
be proved. 

LEMMA 4.5. Let m: S —> E be an s-bounded finitely additive measure, let m 
be its orthogonally scattered dilation and let f: £) -> R be a measurable function. 
Then f e L1(m) =* f G L\m). 

THEOREM 4.6. Let m: S -» E be an s-bounded finitely additive measure. If 
for every a e I there exists ya G E such that 

!) KbJa I ma)\ is a control for ma, 

2) — -——? - is bounded, 
d| < [ya]a I ma > I 
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then the following two chains of implications hold: 

4.6.A f eLl(m) => f eL\m) = > / G fl L\ma) 
aei 

<=> / € f]L1(ma) = Ll(m) => / € n ^ ( ^ ) <=> / ^ ' ( m ) . 
Q G 1 Q G 1 

4.6.B / € ^(m) ==> / € n L\rfQ => / € n I^KJ 
QG I QG1 

=̂> / e n i ' K ) = £'W => / e n ^ T O <=» feLHm). 
aei aei 

P r o o f . To prove 4.6.A it suffices to apply Lemma 4.5, Remark 3.9, [3; 
Theorem 3.9], Corollary 3.11, [3; Theorem 5.1] and Definition 3.6. 

4.6.B follows immediately from Remark 4.3, [3; Proposition 4.2], [3; The
orem 3.9], Corollary 3.11, [3; Theorem 5.1] and Definition 3.6. • 
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