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(Communicated by Tibor Katriňák) 

A B S T R A C T . The group of (weak) zero-fixing isometries of a dually residuated 
lattice ordered semigroup is isomorphic to the group of zero-fixing isometries of 
an abelian lattice ordered group. 

An algebra A = (A; 0; +; —; A; V) of type (0; 2; 2; 2; 2) is a dually residuated 
lattice ordered semigroup (abbreviated, a DR£-semigroup) if the following holds 
([5; Definition 1], [3; Corollary 3] and [4; Corollary 3]): 

(i) (A; 0; +) is an abelian monoid, 
(ii) (A; A; V) is a lattice (the induced order is denoted by < ) , 

(iii) (x V y) + z = (x + z) V (y + z) for all x, y, z G A, 
(iv) (x — y) + y > x and if z + y > x, then z > x — y for all x,y,z 6 A, 
(v) [(x - y) V 0] + y < x V y for all x, y G A. 

In a DR^-semigroup A, a metric operation g is introduced (cf. [5; Theo­
rem 9]): 

g(x; y) = (x - y) V (y - x). 

A weak zero-fixing isometry of A is a mapping / : A —> A such that 

/ (0) = 0 and g(x; y) = g(f(x); f(y)) for all x,y e A 

(cf. [1; Preliminaries]). 
A surjective weak zero-fixing isometry is a zero-fixing isometry. 
In what follows, A stands for a DR/f-semigroup, In(A) stands for the lat­

tice ordered group of all invertible elements of A (cf. [6; Theorem 1.1]), Si(^4) 
stands for the DRf-semigroup of all singular elements of A (cf. [2; Definition 2, 
Theorem 8]) and / denotes a zero-fixing isometry of A. 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F05. 
Key w o r d s : zero-fixing isometry, weak zero-fixing isometry, dually residuated lattice ordered 
semigroup, lattice ordered group. 

123 



TOMAS KOVAft 

1. THEOREM, (cf. [2; Theorem 12]) A = In(A) x Si(A). 

2. THEOREM. In A, the notions of a zero-fixing isometry and a weak zero-
fixing isometry coincide. 

P r o o f . Due to [1; Theorem 3.12], any weak zero-fixing isometry is a semi­
group automorphism and hence a bijection. • 

3 . COROLLARY. Weak zero-fixing isometrics of A form a group (under the 
composition of mappings). 

4. LEMMA. The following holds: 

(i) if x e In(A). then f(x) G ln(A), 
(ii) ifyeSi(A), then f(y) = y, 

(iii) if x G In(A) and y G Si(A), then f(x + y) = f(x) + y. 

P r o o f . 
(i) Assume x G In(A). Due to [1; Theorem 3.12] we have 0 = / (0) = 

f(x -h (-x)) = f(x) + f(-x) and therefore f(x) G ln(A). 
(ii) Assume y G Si(A). Due to [2; Definition 2], [2; Lemma 4] and [5; 

Lemma 1] we have y = y V 0 = (y - 0) V (0 - y) = Q(y\ 0) = g(f(y); / (0)) = 
*?(/(y);0) = ( / ( y ) - 0 ) v ( 0 - / ( y ) ) - f(y)v(0-f(y)) and hence 0-f(y) < y. In 
view of [2; Theorem 7] in conjunction with [2; Lemma 10] we obtain 0 — f(y) < 0 
and [5; Lemma 7] implies f(y) > 0. Consequently, y = f(y) V (0 - / ( ? / ) ) = f(y). 

(iii) It follows from (ii) and [1; Theorem 3.12]. • 

5. THEOREM. The group of zero-fixing isometries of a dually residuated lattice 
ordered semigroup A is isomorphic to the group of zero-fixing isometries of an 
abelian lattice ordered group In (A). 

P r o o f . It follows directly from Theorem 1 and Lemma 4. • 
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