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SUBSERIES IN BANACH SPACES 

B. K. LAHIRI* — PRATULANANDA DAS** 

(Communicated by Lubica Hold) 

ABSTRACT. We prove several theorems on subseries of an infinite series in Ba-
nach spaces along with an analogue of Gel'fand's theorem on the s t ructure of a 
certain set. 

1. Introduction 

Investigations on subseries of an infinite series of real terms have found promi­
nent positions in the literature during the last several decades. We may quote 
some of the references such as [1], [2], [3], [6], [8], [10], [12], [13], where some 
other references could be found. However, for vector series, the study has been 
mainly concentrated on conditionally and unconditionally convergent series and 
their rearrangements ([5], [9]) except the book [4] where the idea of subseries 
convergent in a normal linear space can be found. 

In this paper, considering the idea of subseries-convergence ([4; p. 78]), we 
prove several theorems on subseries of a vector series including an analogue of 
Gel'fand's theorem on the compactness of a certain set. 

2. Basic definitions and notations 

Throughout X stands for a Banach space and sets are always subsets of 
X. The symbols R and N stand for the set of real numbers and the set of 
positive integers respectively. We shall follow the definition of a series in X, its 
convergence etc. as given in [9]. In particular, we state from [9] the following 
definitions. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 40A05. 
K e y w o r d s : subseries, subseries-convergence, perfectly convergence. 
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oo 

DEFINITION A . A series Y x{ in X is said to be absolutely convergent if 
i = i 

oo 

E \\xi\\ < o o . 
i=\ 

oo 
DEFINITION B . A series ^ a:• in X is said to be unconditionally convergent 

i=\ 
if it converges for any rearrangement of its terms. 

It is known ([9; Theorem 1.3.1]) that for an unconditionally convergent series, 
all its rearrangements have the same sum. However, in X , unconditional comver-
gence does not generally imply absolute convergence, but absolute convergence 
always implies unconditional convergence. If X is of finite dimension, then these 
two concepts coincide ([9; Theorem 1.3.3]). 

oo 

By Y xi w e shall always mean an infinite series in X and this will be brit fly 
i = i 

written by Ylxi- By {s{} we shall mean a sequence of elements ei where ex — 0 
or 1 and for an infinite number of i, e • — 1. 

3. Subseries-convergence of a series 

We first consider the following definition. 

DEFINITION 1. ([4; p. 78]) A series Yxi ls s a ' d to be subseries convergent 
if the series J2 eixi converges for any choice of coefficients ei = 0 or 1, where 
e. =_• 1 for infinity of i. 

Clearly Y£ixi ls a subseries of Yxi- Subseries-convergence implies comer-
gence ([4; p. 78]) but the converse is not true as shown by the following example 

EXAMPLE 1. In C[0,1], we consider the series 

^(-ir1 f = ^- f+ f - f+ •••' xe c&!]' 
which is clearly convergent. Taking cx — 0 when i is even and 1 when ? i 
odd we get X ^ f = x -f ^ + f + . . . which is not convergent. So the se k 
E ( — l ) z - 1 f is not subseries-convergent. 

The following theorem gives a relation between subseries-convergence anc 
unconditional convergence. The theorem is already known ([4; p 78]), and pro\c 
for the first time in [11]. But because of its intrinsic interest and wide scope foi 
application, we construct a proof for easy access. 
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THEOREM 1. A series Y,x{ is unconditionally convergent if and only if it is 
sub series-convergent. 

P r o o f . Suppose first that ]T x{ is not subseries-convergent. Then there is 
a sequence {e j such that Yl£ixi ls n o t convergent. By Cauchy's criterion, there 
is a S > 0 and an infinite sequence of indices nx < tx < n2 < t2 < n3 < £3 < ... 
such that 

£ ЄX- >s (1) 

for ,7 = 1,2,.... Clearly n- can be so selected that n- — tj__1 > 2 for j = 2,3,. . . 
and also we can assume that nx > 2. 

Let A be the collection of all those terms x{ of Ylxi f°T which i G [n^tA 
and such that the corresponding ei = 1, and A° be the collection of the re­
maining terms of Ylxi which do not belong to A. for j = 1,2,... , where for 
the series ]T s ^ , e{ is said to correspond to x{ in the term e i x i . 

The terms of the series occurring in the collections A° and A ., j = 1,2,... , 
are separately ordered as per order of increasing their indices. We now form a 
rearranged series of ^ x{ according to the following plan. 

We add all the terms of Ax as per order followed by the first term from A°. 
Next we add with this all the terms of A2 in order followed by the second term 
from A° and so on. Using (1) and Cauchy criterion, this rearranged series of 
]T x{ does not converge. This shows that ^ x{ is not unconditionally convergent. 

Conversely suppose that Ylxi ls n ° t unconditionally convergent. So there 
exists a rearranged series ^ xn. which is not convergent. By Cauchy's criterion, 
there is a S > 0 such that if k G N is given, there is t G N, t> k, such that 

Iл 
i=k 

So for k — kx, there is tx > k1 such that 

h 

Y,Xni 
i=k\ 

>s. 

>s. 

(2) 

(3) 

Let Aj = {n{ : i = kx, hx+l,.. .,tx}. Clearly positive integers m 1 and rx 

can be found such that 

Ax C {1,2,...,m-^} c {ni>n2,...,nri}. 

Let k2 = r1 -f 1. Then by (2) there exists t2 > k2 such that 

XX. > * . (4) 
i=ko 
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L t ^ = {ni : i = &2> A;2+l,..., £2}. There exist positive integers ra2 > rrij 
and r2 >\ such that 

A2 C {m1 + l ,m 1 -F2 , . . . ,m 2 } C { n 1 , n 2 J . . . > n r i J n r i + l J . . . , n r a } . 

Let k3 -= r2 + 1. There exists ^3 > &3 such that 

E * * >*• (5) 
i=k3 

Let A3 = {n{ : i = fc3, fc3-f-l,... , ^ 3 } . Proceeding in this way we obtain a 
disjoint non-void sequence of sets Ax, A2, A3 . . . of positive integers. We arrange 
the members in A • (j = 1,2,...) by indexes and define 2^ ekxk in the way that 
ek = 1 if k G A • for some j , and ek = 0 if k does not belong to any A. . Using 
(3), (4) etc. and Cauchy criterion, this subseries is not convergent. So the series 
^2 %i 1s n° t subseries-convergent. This proves the theorem. • 

Note 1. A series Ylxi ls said to be perfectly convergent ([9; p. 7]) if the series 
^2 &ixi converges for any choice of coefficients a{ — ± 1 . 

It is known ([9; Theorem 1.3.2]) that a series converges unconditionally if and 
only if it converges perfectly. Further it has been stated ([9; Exercise 1.3.3]) that 
in the definition of perfect convergence, the sequence {a{} may be replaced by a 
sequence {0J, 9i G T, where T is a bounded set of complex numbers containing 
at least two points. But the details are not available and so Theorem 1 is justified. 

Note 2. In a finite dimensional Banach space, absolute convergence is equiv­
alent to unconditional convergence and in view of Theorem 1, absolute con­
vergence and subseries-convergence are equivalent. In other words in a finite 
dimensional Banach space a series is absolutely convergent if and only if all its 
subseries are convergent. 

4. Subseries-convergence and absolute convergence 

In the next three theorems we find the relation between subseries-convergence 
and absolute convergence. 

THEOREM 2. If a series ^2 xi is absolutely convergent, then it is subseries-
convergent. 

P r o o f . Because absolute convergence implies unconditional convergence 
([9; p. 7]), the theorem follows from Theorem 1 (see also [4; p. 78]). • 

However the converse is not true as shown by the following example. 
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E X A M P L E 2 . ([9; Example 1.3.1]) Let X = i2 and x{ = ( 0 , 0 , . . . , 1/i, 0 , . . . ) , 
where the non-zero coordinate is in the zth place. Then J2 xi converges to the 
element ( l , ^, | , . . . ) of i2 and for any choice of { e j , ^ eixi clearly converges 
to an element of i2. However, 

£iм = E7 = 0 ° ' 
and so £] xi does n o t converge absolutely. 

In fact, for an infinite dimensional Banach space X , we have: 

THEOREM 3. Each infinite dimensional Banach space contains a subseries-
convergent series which is not absolutely convergent. 

P r o o f . For the proof of Theorem 3 we note first the following theorem of 
Dvoretzy Rogers ([9; Theorem 3.1.1]). 

THEOREM. Let X be an infinite dimensional Banach space and {a{} a se-
oo 

quence of positive numbers satisfying the condition ^ c?{ < oo. Then X con-
i=l 

tains a sequence {x{} of vectors such that ||o;i|| = a{, i = 1, 2 , . . . ; and the series 
^2 xi converges unconditionally. 

In this theorem if we put a{ = \ , then this gives that any infinite dimensional 
Banach space contains a sequence of vectors {x{} such that Y^xi converges 
unconditionally but not absolutely. Theorem 3 now follows from Theorem 1, 

• 

5. Struc ture of subseries sums 

We now consider the nature of the set of sums of the subseries of a subseries-
convergent series. 

THEOREM 4. If Ylxi Z5 subseries convergent, then the collection S of the 
sums of all subseries ^2sixi forms a subset which is relatively compact (e{ = 1 
for infinity of i). 

P r o o f . We shall show that the set S is totally bounded in X. We claim 
that for a given e > 0, there is a positive integer n(e) such that 

H £ÍXÍ 
i=n(e) 

<e (6) 
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for any sequence {£{}, ei = 0 or 1. If this is not true, then there is a 5 > 0 for 

which we can find a sequence of indices n1 < n2 < . . . and sequences {q J } , 

j = 1,2, . . . , ({e\ 3 '} depends on n,) such that 

£ ^ > Ő for j r - 1 . 2 , . . . . 

Now choose r- > n- such that 

£ *ІJ)* ><5/2 for j = 1,2, 

Clearly we can assume that n • < r- < n + 1 for j = 1,2,... . We now construct 

a sequence {e\} where ej = e\3' if i belongs to [n.-,r-] for j = 1,2,... and 0 
otherwise. Then Y £;£; is a subseries of the given series which is not convergent, 
a contradiction. So our claim is true. 

n 
Let Sn (n fixed) be the collection of all finite sums of the form Y eixi f° r 

2 = 1 

all possible choices of e1,e2,... ,en where ei = 0 or 1. Then this collection is 
finite and because of (6), Sn forms a finite £-net for the set S. So S is totally 
bounded. Since X is complete, S is compact. This proves the theorem. • 

G e l ' f a n d ([7], see also [9; Theorem 1.3.4]) proved that if Yxi ls uncondi­
tionally convergent, then the set of all sums of the form Y aixi > where a • = 1 
or — 1, is compact. However, in our case (Theorem 4) the set S cannot be pro\ed 
to be compact. In fact, the following example shows that S need not be closed. 

EXAMPLE 3. Let X = t2 and x{= ( 0 , 0 , . . . , \, 0, . . . ) where the non-zero coor­
dinate is in the ith place as in Example 2. Then Yxi ls subseries-convergent. 
Now choose yn = Yei xi where £̂  = 0 for i = 1, 2 , . . . , n and 1 otherwise. 
Then {yn} is a sequence in S. Let y = Yeixi where ei — 0 for all i , i.e. y is 
the null element in £2. Then 

\\vn - y\\ = 1 5 Z £<in)xi - Yl e*xi 

= 1 Z ^ fc2 

5>î (n) 
X-

->0 as n —> oo . 
. k=n+1 

Since y ^ S, S is not closed. 

For finite sums, we obtain a similar theorem. 
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THEOREM 5. ([9; Example 1.3.5]) If ^2xt is subseries-convergent, then the 

S6t ( *\ 
G= I f > A : e{ = 0 or 1 for t = l , 2 , . . . , n , n G N ! 

is relatively compact. 

P r o o f . Suppose that Y2xi is subseries-convergent. Let e > 0 be given. As 
in Theorem 4, we can prove that there is a positive integer m = m(e) such that 

E £ÍXÍ 
i = m + l 

<є/2 (7) 

for every subseries YlEixi a n d every positive integer r > m. 
Now let 

T = | E ^ x - : e. = 0 or 1 for i = l,2,...,fc, k G {1,2,... ,m}}. 

Then T is a finite subset of G. Let a G G and a £T. Then a must be of the 
r 

form a = Y2 eixi-> r > m. So i=l 

a = Y.£ixi = l3+ E £ixi 
І=\ ѓ=m-f-l 

where 

/? = E £ A e Г -
i=\ 

By (7), | |a -/? | | = ]T ^ x ; <e/2<e. If however a G G but a £ G, then 
II z=m+l " 

there is a v G G such that ||a - u\\ < e/2 and so as above we can find a (3 G T 
such that ||/? - /v|| < e/2. Then ||a - _ < e. _ 

This shows that T is an £-net for G. Hence G is totally bounded. Since X 
is complete and G is closed, G is compact. This proves the theorem. • 
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