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ON D I F F E R E N C E SETS 
OF SETS OF POSITIVE I N T E G E R S 

M A R T I N M Á Č A J * — MILAN P A Š T É K A * * 

— T I B O R Š A L Á T * — M A R E K ŽABKA* 

(Communicated by Stanislav Jakubec) 

A B S T R A C T . The relation between densities of sets A C N = {1, 2 , . . . n , . . . } 
and their difference sets is studied in this paper. Further, using dyadic values of 
sets A C N, some properties of difference bases of various types are investigated 
here. 

Introduct ion and notation 

The concept of a difference set (distance set) of a set was introduced and 
studied originally for sets of real numbers (cf. [15]). If A, B C K. (or A, B C N), 
then we put 

D(A,B) = {x-y: x E A , y E B} . 

If A = B , then we write D(A) instead of D(A,A). 
In [15] a fundamental result for difference sets of sets of real numbers is 

proved. 

/ / A d is a set of positive Lebesgue measure, then the set D(A) 
contains an interval of the form (—77, rj), rj > 0. 

This result was extended in various directions (see e.g. [5], [6], [8], [9], 
[11], [14])-

Difference sets D(A) for A C N are investigated in [13]. It was proved here 
that if the upper asymptotic density of a set A c N is greater than \, then 
each integer z can be expressed in infinitely many ways in the form z — x — 7/, 
where x,y e A. 

The study of difference sets A C N suggested the introduction of several 
types of difference bases (cf. [3], [16]). These bases will be studied in the second 
section of the paper. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 11B05, 11B13. 
K e y w o r d s : asymptotic density, uniform density, difference set. 
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As usual we put for A C N: 

A(n) = card({l, 2 , . . . , n} n A) , 

_(A) = lim inf - - - ^ , d(A) = lim sup —---
n-+oo n n->oo 71 

(the lower and upper asymptotic density of A). If _(A) = d(A), then we set 

d(A) = _(A) = d(A), d(A) = lim -----
n—>oo IT, 

(cf. [10; p. 70-71]). Observe that all these numbers belong to the interval [0,1]. 
We recall the concept of uniform density of a set A C N. For integers t, s, 

t > 0, s > 1, we put 
A(t + l,t + s) = card([* + 1, * + 5] n A) . 

Further 

a = lim inf A(t + l,t + s), cr5 = l imsupA(t + l , t + s). 
*-+°° t->oo 

Then there exist 

CY _ (X 
u(A) = lim — , ӣ(A) = lim — 

s—>oo ő s—>oo 8 

If _(A) = u(A), then we put 

u(A) = _(A) = u(A), 

and 'u(A) is called the uniform density of A (cf. [2]). 
For every A C N we have 

u(A) < d(A) < d(A) < u(A), (1) 

and these numbers belong to [0,1] (cf. [2]). 
If n £ N, then interval (0,1] can be expressed as a union of intervals 

4fe) = ( ^ " . - ^ i ] . 0<fc<2"-l 
(so called the intervals of the n t h order). 

To every iffl , a finite sequence 

£ l 5 £2> • • • J £ n v ' 

00 

of 0's and l ' s corresponds in such a way that if x £ iffl , x = ^ c-2--7 (non-
J = I 

terminating dyadic expansion of x) , then c- = £• ( j = 1,2, . . . ,rc). We say 

briefly that iW is associated with the sequence (2). 
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If A C N is an infinite set and 

A = {ax < a2 < • • • < an < . . . } , 

then we put 
oo 

e(A) = J > - a « e [0,1]. 
n = l 

The number Q(A) is called the dyadic value of the set A. (Dualwert der Menge 
A, cf. [17]). This number can be written also in the form 

oo 

n = l 

where en is the characteristic function of the set A. (i.e. en = 1 if n G A and 
en = 0 otherwise.) 

Denote by U the class of all infinite subsets of N. Then Q: U —> (0,1], (Q(A) 
is defined before) is a one-to-one mapping of U onto (0,1]. 

For S C U we set Q(S) = {Q(A) : A G S}. The set Q(S) C (0,1] can be 
regarded as a means for "measuring" the magnitude of the class S. 

In what follows X(M) (for M C R) stands for the Lebesgue measure of M , 
and dim M for the Hausdorff dimension of M. 

This paper consists of two sections. In the first one we will deal with the 
relation between the densities of sets of positive integers and properties of related 
difference sets. Among other things, we improve the result of W. S i e r p i n s k i 
(cf. [13]). In the second section we will investigate the properties of some types 
of difference bases of the set N and Z (the set of all integers) and related sets 
Q(S) . S being the class of all difference bases of a given type. 

1. Densities of sets of positive integers 
and properties of related difference sets 

In [1] the following result is proved: 

THEOREM B . Let A, B C N. Suppose that one of the following conditions is 
satisfied: 

(a) d{A)>\,d{B)>\, 

(b) d{A)>\, d{B)>\. 

Then, for every z G Z . there exist infinitely many pairs (x,y) G A x B such 
that z = x — y. 

We improve the previous theorem and prove that it is the best in some sense 
(see Remark after Theorem 1.1). 
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THEOREM 1.1. Let A,BcN satisfy one of the following conditions: 

(i) d(A)+i(B) >1, 
(ii) d(A) + d(B) >1. 

Then for every z e 7L there exist infinitely many pairs (x,y) e A x B such that 
z — x — y. 

P r o o f . Suppose that (i) holds. Then 

1 - d(B) < d(A), 

and so we can choose numbers tx, t2 such that 

1 - d(B) <tx<t2< d(A). (3) 

We proceed indirectly. Assume that there is a z E Z such that only for a finite 
number of pairs (a, b) E A x B we have z = a — b. Then there exists a b0 E B 
such that 

(VbeB)(b>b0 => b + z$A). (4) 

Let n > b0, b0 < b < n , b E B. Then b + z £ A by (4). The number of such b's 
is B(n) — B(b0). A simple estimation yields 

A(n + \z\) < n + \z\ - (B(n) - B(b0)) . (5) 

Further by (3) we get d(B) > 1 — ^ . From this it follows that there exists an 
n1 E N such that 

(\/n)(n>ni => 2M.>l-tl). (6) 

On the other hand (see (3)), d(A) > t2. This yields that an n2 can be chosen 
in such a way that 

f kl + 6 o l /^ 
n2 > max< n1? _ • > (7) 

and simultaneously 

^^- > h . (7') 

Since n2 > nx, we get from (6) 

> ! - * ! • (7") 
B(n2) 

Summing (7;) , (7") we obtain 

A(n2) + B(n2) > n2(l + t 2 - tx). (8) 
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By a simple estimation we can obtain from (5) 

A(n2) < A(n2 + \z\) <n2 + \z\ - B(n2) + b0 , 

thus 

A(n2) + B(n2)<n2 + \z\+b0. (9) 

From (8), (9) we have 

2 t —t 
l2 LX 

contrary to (7). 

The case (ii) can be proved similarly. • 

Remark. Theorem 1.1 is the best possible in the sense that the equality 

d(A) + d(B) = l 

is in general not sufficient for every z G Z to be expressed in the form z = x — y 
for infinitely many pairs (x, y) G A x B. To see it, we can choose 

A = B = {2,4,...,2k,...}. 

Then d(A) + d(B) = 1 and no odd number can be expressed in the mentioned 
form. 

In [13], the following result is proved: 

THEOREM S. If A C N and 2(A) > \ , then, for every z G Z . there exist 
infinitely many pairs (x,y) G A x A such that z = x — y. 

We will improve this result by replacing d by u (see (1)). 

THEOREM 1.2. If A C N and u(A) > \ , then for every z G Z there exist 
infinitely many pairs (x,y) G A x A such that z = x — y. 

P r o o f . We prove the equivalent statement: If A does not have the property 
mentioned in Theorem 1.2, then u(A) < \ . Hence, suppose that there is a n l G N 
and only a finite number of pairs (x,y) G A x A such that I = x — y. Then there 
exists an n0 G N such that, for m > n0, at most one of the numbers m , m + l 
belongs to A. 

Consider the number A(m+ l , m + s) (s G N) of elements of A belonging to 
interval [m + 1, m + s]. Put s = 2kl + r , kGN, 0 < r < 2 / . We can decompose 
the sequence m + l , m + 2 , . . . , m + s into the pairs of sequences each having the 
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length / and a rest sequence as follows: 

m + 1,..., m + /; m + / + 1,..., m + 2/ the first pair , 
m + 2/ + 1,..., m + 3/; m + 3/ + 1,..., m + 4/ the second pair , 

: (10) 
m + (2fc - 2)/ + 1,..., m + (2fc - 1)/; 

the fcth pair, 
m + (2fc- l)/ + l , . . . , m + 2fc/ 
m + 2fcZ + 1,..., m + 2fcZ + r the rest sequence. 

If a number m + i (1 <i < I) belonging to the first sequence of the length Z 
belongs to A, then m + l + i (belonging to the second sequence of the length Z) 
does not belong to A, and conversely. Thus the number of elements of A be
longing to the first pair of sequences (10) does not exceed the number Z, i.e. 

Similarly 
A(m + l,m + 2ř) < Z. 

A(m + 2Z + l,m + 4í) < Z, 

A(m + (2fc - 2)ř + 1, m + 2fcZ) < ř, 

and trivially 
A(m + 2kl + 1, m + 2fcZ + r) < 21. 

Summing these inequalities we get A(m + 1, m + s) < fcZ + 2Z. Thus 

and so 

as = lim sup A(m + 1, m + s) < (fc + 2)Z, 
m—>oo 

__ _____ _ (k + ÌЏ 
s s ~ 2kl + r ' U i ; 

where 0 < r < 2 Z . I f s - > o o , then fc —> oo, and from (11) we obtain 

u(A) = lim -2-1 < 1 . 
s-s-oo S ~ Z 

The following example shows that the previous Theorem 1.2 is really an 
improvement of S z i e r p i n s k i ' s theorem from [13]. 
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oo 

EXAMPLE. Put A = [J {2k + 1,... ,2k + k}. Then it is easy to check that 
fc=i 

d(A) = 0. Hence Theorem of S i e r p i n s k i cannot be applied to A. But 
u(A) = 1 and so by Theorem 1.2 each z £ Z can be expressed in the form 
z = x — y for x,y £ A in infinitely many manners. 

In Theorem 1.2 we have applied the concept of uniform density of sets 4 c N . 
This fact evokes the question whether an analogous application of this concept 
would be possible also in Theorem 1.1. In what follows we will give an affirmative 
answer to this question. 

THEOREM 1.3. Let A , B c N satisfy one of the following conditions: 

(i) u(A) + u(B) > 1, 
(ii) u(A) + u(B) > 1. 

Then, for every z £ Z , there exist infinitely many pairs (x,y) £ A x B such 
that z = x — y. 

P r o o f . Suppose that (i) holds. Then l—u(B) < u(A). Choose two numbers 
tx, t2 such that 

l-u(B) <tx<t2 <u(A). (12) 

We proceed indirectly. Suppose that there is a z £ Z such that exists only a 
finite number of pairs (a, b) £ A x B with z = a — b. Then there is a b0 £ B 
such that 

( V b > b 0 ) ( b £ £ => b + z^A). (13) 

From this we obtain for every n > b0 + z 

A(n + 1, n + s) + B(n - z+ l,n- z + s) < s . (14) 

Further in virtue of (12) we have u(B) > l — t l . Hence 

(3 sB) (Vs > sB) (3 n(s)) (Vn > n(s)) (B(n + 1, n + s) > s(l - tx)) . (15) 

Further by (12) we have u(A) > t2. This yields 

(3 s A ) (Vs > 5 4 ) ( V m ) ( 3 n > m) (A(n + l , n + s) > st2) . (16) 

Choose 5 > max{sA , s^} and m > max{b0 + z, n(s) + z} . Then by (16) we get 
for a suitable n' > m 

A(n' + l , n ' + 5) > st2) B(n' - z + l , n ' - z + s) > s(l - tx). 

Summing these inequalities we get 

A(n' + 1, n' + s) + B(n' - z + 1, n' - z + s) > s . 

This contradicts (14). 
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Let (ii) holds. Let z G Z , then by the previous part we conclude that for 
—z there are infinitely many pairs (6, a) G B x A such that — z = b — a, i.e. 
z = a — 6. The proof is finished. • 

We finish this section with discussion about the assumptions of Theorem 1.1 
and 1.3 and by showing that these theorems are in fact incomparable. 

Choose A = B = { 2 , 4 , . . . , 2 n , . . . }. This shows that the strict inequalities 
in assumptions of Theorems 1.1, 1.3 cannot be replaced by the symbol > . 

It is easy to show that the lower densities in these theorems cannot be replaced 
by upper densities. We show this by the following example. 

EXAMPLE 1.1. Put 

oo 

A= |J{22 +1,...,22 -1} 

and 
oo 

U f 02fc + l n2k + 2 -. 

{22 + 1 , . . . , 2 2 - 1 } . 

fc=i 

Then 
i L > y I 
222fc+1 — 92 2 f c + 1 

as k -> oo. And so d(A) = 1. Similarly d(B) = 1, hence u(A) = u(B) = 1 
(see (1)). So wre get 

u(A) + u(B) = d(A) + d(B) = 2 > 1, 

but D(A,B) does not contain 1 , - 1 . 
The question arises whether the assumptions formulated in Theorems 1.1 

and 1.3 can be mixed. For instance suppose that 

u(A) + d(B) > 1 (a) 

or 
u(A) + d(B)> 1 (b) 

holds. We ask whether under (a) or (b) every z G Z can be expressed in the 
form z = a — b, a £ A, b G B infinitely many ways. 

In the case (b) we have (see (1)) d(A) + d(B) > 1, and so by Theorem 1.1 
the answer to our question is yes. 

In the case (a) the answer is no. Choose for instance the set A in such 
a way that its characteristic function XA ~ (£n) c a n e x P r e s s e d in the form 
XA = (0, 0fe,0, lk)cj?Li, where ak is the block a,a,...,a (k-times). 
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Further put XB = (°> l f e > 0 V)j£- i • T n e n lt i s e a s ^ t o c n e c k t n a t u(A) = 1, 
d(B) = \ , but 1, —1 do not belong to D(A,B). Hence in this case the answer 
is negative. 

The relation (1) does not enable to compare the condition 

u(A) + u(B) > 1 (a) 

from Theorem 1.3 with the condition 

d(A) + d(B)>l (b) 

from Theorem 1.1. We will construct a pair of sets A, B such that they satisfy 
(a) but not (b), and a pair of sets A, B such that they satisfy (b) but not (a). 

EXAMPLE 1.2. 

a) Choose A, B in such a way that XA = ((01)2 ( l l ) f c) f c = 1 and B is the 
set of all even numbers. Then d(A) + d(B) = 1, hence (b) is not satisfied, but 
u(A) + u(B) = 1 + \ , hence (a) is satisfied. 

b) Put now XA = ( ( 0 1 1 ) 2 V ) ~ x
 a n d XB = ( ( 0 1 ) 2 V ) ~ = 1 . Then u(A) + 

u(B) = 0 + \ < 1, hence (a) is not satisfied, but the condition (b) is satisfied 
since d(A) + d(B) = § + \ > 1. 

2. Metric and topological properties of dyadic values 

DEFINITION 2 .1 . 

a) A set A C N is called a difference basis for N if N C D(A). 

b) A set A C N is called a strong difference basis for N if for every n G N 
there exist infinitely many pairs (x,y) G A x A such that n = x — y. 

c) A set A C N is called a restricted difference basis for N if for every 
n G N there exists a pair (x, y) £ Ax A such that n = x — y and y < | . 

(cf. [3]) 

The concept of a difference basis enables us to formulate Theorem 1.2 as 
follows: 

PROPOSITION 2 . 1 . If A C N and u(A) > \ , then A is a strong difference 
basis for N. 
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Remark. Proposition 2.1 gives only a sufficient condition for a set A C N to 
be a strong difference basis for N. There exist difference bases for N with zero 
densities. Take e.g. an arbitrarily slowly increasing sequence 

a1 < a2 < • • • < an < ... 

of positive integers, a n + 1 — an > 1, n = 1,2,. . . , and put 

A = { a p ^ + 1 , a2, a 2 + 2 , . . . , ak, ak+k,... } 

(cf. [16]). A little modification of the construction of A gives an example of a 
strong difference basis for N with the asymptotic density 0. 

In what follows, we denote by V, V*, V0 the class of all difference bases, 
strong difference bases and restricted difference bases for N, respectively. In this 
section, we will deal with the investigation of "the magnitude" of sets Q(V) , 
Q(V*), Q(V0). According the magnitude of these sets, we can judge about the 
magnitude of related classes V, P * , V0 , respectively. 

Since V* C V and V0 C V, we have 

Q(V*)CQ(V), Q(V0)CQ(V). (18) 

In the first place, we will deal with the magnitude of the previous sets from the 
metric point of view. For this purpose we shall use the Lebesgue measure A, 
Hausdorff dimension and the concept of the Baire's categories of sets. For this 
notions we refer to the classical monographs on the structure of real axis. Remark 
that the Hausdorff dimension is usually used as a means for classification of sets 
of Lebesgue measure 0 (cf. e.g. [19]). In the following the interval (0,1] will be 
recognized as a metric space with Euclidean metric 

THEOREM 2.1. We have \{Q(V*)) = 1 . 

Then (18) yields: 

COROLLARY. We have X(Q(V)) = 1 . 

P r o o f of T h e o r e m 2 . 1 . Denote by N^ the set of all dyadicaly nor
mal numbers of the interval (0,1]. Let bx,..., bk, (k > 1) be a sequence of 0's 

oo 

and l ' s . Such a sequence will be called a block. Let x £ N^ , x = Yl £(^)2~ J 

j = i 
be the non-terminating dyadic expansion of x. Put Xn = ex(x),..., en(x). For 
an arbitrary block Bk with k terms, denote by N(Bk,Xn) the number of oc
currence of the block Bk in Xn. Then 

Mm " ' * ' • * - > = 1 
7J,->-oo n 2k 
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(cf. [10; p . 193]). From this we see that each block Bk occurs in the infinite 
sequence sl(x)1..., £n(x), • • • infinitely many times. Put 

V2 = {AeU: Q(A)€N{2)}. 

We show that 

V2 C V* . (19) 

Let A e X>2, m > 1 . Consider the block B = 1 1 . . . 1 consisting of m + 1 
oo 

ones. If x = Q(A) = ~~ c-2~i is the dyadic expansion of Q(A) (i.e. ck = 1 if 
3 = 1 

k e A and c A ; = 0 i f k G N \ A ) , then the block B occurs in the sequence 
c2, c 2 , . . . , c • , . . . infinitely many times. Hence there exists a sequence of positive 
integers ix < i2 < • • • < i • < ... such that c i - + r = 1 for r = 1 , . . . , m + 1, and 
,7 = 1 ,2 , . . . . But then the numbers ij+r for r = 1 , . . . , m + 1, and j = 1,2, . . . 
belong to A, and according to equality 

m = i- + m + 1 - (i- + 1), 

we see that the number m can be expressed as a difference of two numbers from 
A in infinite number of ways. From this A e V* follows. So the inclusion (19) 
is established. The theorem follows from it immediately with regard to the fact 
that X(N^) = 1 (cf. [10; p . 193]). • 

The previous theorem shows that "almost" all infinite subsets of N are strong 
difference bases for N. In what follows we shall see that also from the topological 
point of view the class V* can be considered a very rich class of subsets of N. 

For S C U we put C S = U\S. Since the mapping Q = U -> (0,1] is injective, 
we have Q(CS) = (0, 1]\Q(S). Hence the sets Q(CV*) = (Q,1]\Q(V*), Q(CV) = 
(0, 1]\Q(V) are null-sets by Theorem 2.1, i.e. X(g(CV*)) = 0 = X(Q(CV)) . This 
fact evokes the question about the Hausdorff dimensions of these sets. We will 
give only some partial results in this direction. 

oo 

Denote by Vk the class of all sets AcN with keD(A). Then V = f| Vk. 
k=i 

By de Morgan's rule, we obtain 

CO 

CD=(JC2V (20) 
k = l 

B o d o V o l k m a n in [20] studied the Hausdorff dimension of the sets given by 
the #-adic expansion of its elements. Remark that x e Q(VX) if and only if the 
block 11 does not occur in the dyadic expansion of x , thus directly from [20; 
p . 259, Satz 1]) Theorem 2.2 follows. 
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T H E O R E M 2.2. dim^(C©1) = log2(l + >/5) - 1. 

Remark. Observe that log2(l + \ / 5 ) — 1 < 1. 
Using Theorem 2.2 we can determine dimD (CP) . Let Vk, CVk have the 

previous meaning. Hence 

CVk = {AeU: k£D(A)}, Jk = l , 2 , . . . . 

CO 

Thus if x = YJ c z 2 _ i belongs to g(CVk), then c- = 1 =-> c-+/e = 0, i = 
i = l 

1,2 , . . . . If ^ is an interval of the n th order, associated to a sequence 

e l> • ' • ->en ' 

then z^) contains an element from g(CVk) if and only if 

e{ = l => si+k = 0, i = l,...,n-k. (21) 

Denote by Jk the set of all intervals with the property (21), and denote by 

Pn
k) the number of these intervals. Remark that Jk is a 2~n covering of the set 

g(CVk). The number Pnk denote the number of the sequences 

£1» ' * ' '£kn 

satisfying (21) (where n := nk). Every this sequence consists from the blocks 

^ l ' ^ l + A;' • * * ' £ l + (n- l ) /c ' 

£ 2 ' £ 2+A; ' ' ' ' ' £ 2 + ( n - l ) / c ' 

EkiEk+ki ' • • ' £A:+(n-l) /c ' 

where each line is a sequence satisfying (21) for k = 1 and we have k lines. 
Put Pn = Pn^ , thus each line can be selected by Pn ways, thus we have the 
following result. 

LEMMA 2.1. For k > 1 there holds Pn
k
k) = Pn

k">. 

We now deduce a recurrent relation for Pn. Observe that Pn+1 can be ex
pressed as a sum of two numbers. The first of them is the number of the sequences 

El-> * * * ' £ n ' ^ ' 

where e1,...,en runs over all the sequences (21) for k = 1. This number is Pn. 
The second number is the number of such sequences 

Eli • • • J ^ n ' ^ n + l 
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in which en+l = 1, thus en = 0, and so the number of these sequences is Pn_1. 
Hence 

Pn+1=Pn+Pn-n ri>2. (22) 

Thus Pn is the well-known Fibonacci sequence, and we have (see [4] or [18]) 

Since the second summand on the right-hand side converges to 0 as n —r oo, we 
see that 

--«(M)-
Lemma 2.1 now yields 

and so we can prove the following theorem. 

T H E O R E M 2.3. We have 

a) dimg(CVk) <log2( l + \/5) - 1 , A; = 1,2,... . 
b) dim^(CP) = log2(l + y/E) - 1 . 

P r o o f . Remark that the part b) we obtain from well-known inequality 
dimg(C V) < sup dimg(CVk). 

k=l,2,... 

Thus it suffices to prove the part a). Clearly g(CVk) C Jk
n. Let rj > 0. 

Choose n such that 2~nk < rj. Then Jnk is an 77-cover of the set g(CVk). 
Hence, by definition of the a-dimensional Hausdorff measure, n^ (see [19]) we 
have 

tf\Q{CVk)) < K ( l ± ^ \ .JL- = K.2»k^+Ss)-^, (25) 

where K is a positive constant from (24). 
The inequality (25) holds for each n G N with 2~nk < rj. Thus by n -> 00 

we get 

tf](e(cvk))=o (26) 
provided that 

log2(l + V 5 ) - K a . (26') 
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So from the equality (26) we have 

^(g(CVk)) = \im+^(e(CVk)) = 0 

for a satisfying (26'). Then, by the definition of the Hausdorff dimension, we 
get 

dime(CX>fc) < l o g 2 ( l + ^ ) - 1 . 

D 

We will now study the magnitude of the sets Q{V), Q{V*) and Q{VQ) from 
the topological point of view. 

The first result in this direction is the following theorem showing that the 
class V* is very rich also from the topological point of view. 

THEOREM 2.4. The set Q{V*) is residual in (0,1]. 

COROLLARY. The set Q{V) is residual in (0,1]. (See (18).) 

P r o o f of T h e o r e m 2.4. We shall prove that the set (0,1] \ Q{V*) is 
a set of the first Baire category in (0,1]. 

Denote by Sk, k G N, the class of all infinite sets A C N such that there is 
only a finite number of pairs (x, y) G A x A with k = x — y. Then we have 

(o,i]\e(P*) = Qe(5fc)-
fe=l 

Therefore it suffices to prove that each of the sets Q(Sk), k = 1,2, . . . , is a set of 
the first Baire category in (0,1]. Denote by Sk {n > 0) the class of all infinite 
sets A C N with the following property: For the number k there exist at most 
n pair (x, y) G A x A such that k = x — y. Then 

oo oo 

sk = U sk - ^ ) = U s{Sn
k) • 

n—\ n = l 

Thus, it suffices to show that each of the sets Q{Sk), n = 1,2, . . . , is a nowhere 
dense set in (0,1]. 

This fact will be proved in what follows using the following test of nowhere-
density: A set M C (0,1] is nowhere-dense in (0,1] if every non-empty interval 
i" C (0,1] contains an interval J C I such that J n M = 0 (cf. [7; p. 37]). 

Let / C (0,1] be an interval. Choose the numbers j , /, j G N, 0 < I < 2J: — 1 

in such a way that iy C I. Suppose that ij * is associated with the sequence 
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Construct the sequence 

£?, . . . , e9,1,0,0,. . . , 0,1,0,0, . . . , 0 , 1 , . . . , 0 ,0 , . . . , 0 ,1 . (27) 

This sequence contains n + 1 blocks 0,0, . . . , 0,1 each having k — 1 zeros and 
in the last place 1. The number of all terms of the sequence (27) is h = 
j + 1 + (n + l)k. Let i^] (0 < r < 2h - 1) be the interval of hih order 
which is associated with the sequence (27). If x G i£ , x = Q(A), then the 
numbers j+l,j+l+k,..., j + l + ( n + l ) k belong to _4. Thus the number k can 
be expressed in the form k = x — y, x,y e A, &t least in n + 1 ways. From this 
we see that %£' n £(<S£) = 0, and so £>(££) is a nowhere dense set in (0,1]. • 

The following result shows that the topological structure of the set Q(T>0) is 
wholly distinct from that of Q(D*). 

THEOREM 2.5. The set Q(V0) is a nowhere dense set in (0,1]. 

P r o o f . We shall use the same test as in the previous proof. Let I C (0,1] 
be an interval. Choose m, s (0 < s < 2m - 1) such that i[^ C I. Let i$ be 
associated with the sequence 

Construct the sequence 
- ! > • • • > c m 

e?,...,e^,O,0,...O - 7 7 1 ' 

having 2m terms. Let i2m be the interval of 2mth order associated with this 
sequence. 

Let Ae U, Q(A) e 4 m - Then 

m + i £ A, i = l,...,m. (28) 

We will show that the number m cannot be expressed in the form m = a — b, 
b< f, a,beA. 

Suppose in contrary that m = a — b, b < | , a,b G A. Then a simple 
estimation yields m > | , thus a < 2m. Since a > m, we have a = m + i, 
1 < i < m. But this is a contradiction to (28). Thus Q(T>0) n i2m = 0 and the 
assertion is proved. • 
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