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ON 7- AND 8-DECOMPOSABLE FINITE GROUPS 

A L I R E Z A ASHRAFI* — W U J I E SHI** 

(Communicated by Pavol Zlatos) 

ABSTRACT. Let G be a finite group and J\fG denote the set of all non-
trivial proper normal subgroups of G. An element K of J\fG is said to be 
n-decomposable if K is a union of n distinct conjugacy classes of G. G is called 
n-decomposable, if J\fG ^ 0 and every element of J\fG is n-decomposable. In this 
paper, we will completely describe all 7- and 8-decomposable finite groups . 

1. Introduction and preliminaries 

Let G be a finite group and let MG be the set of all non-trivial proper normal 
subgroups of G. An element K of NG is said to be n-decomposable if K is a 
union of n distinct conjugacy classes of G. If AfG / 0 and every element of MG 

is n-decomposable, then we say that G is n-decomposable. 
In [1], [2] and [3], the first author characterize the structure of n-decomposable 

finite groups for n < 6. In this paper we continue this problem and characterize 
the non-perfect 7- and 8-decomposable finite groups. To this end some deeper 
results in the field of the quantitative structure of finite groups are needed. For 
the motivation of this problem and background material the reader is encouraged 
to consult [5] [6], [10], [18] [21] and their references. 

Let C be a group. Denote by ^e{G) the set of all orders of elements 
in G. Following W u j i e S h i [21], a finite group G is called EPO-group if 
every non-identity element of G has prime order. In [20], W u j i e S h i and 
W e n z e Y a n g discussed finite EPO-groups and got an interesting result: 

THEOREM 1.1. ( W u j i e S h i and W e n z e Y a n g , [20]) The characteristic 
property of A5 is: 

(1) the order of the group contains at least three different prime factors, 
(2) the order of every non-identity element in the group is a prime. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 20E34, 20D10. 
K e y w o r d s : conjugacy class, n-decomposable group. 
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COROLLARY 1.2. If G is a non-abelian finite simple group and the order of 
every non-identity element of G is prime, then G is isomorphic to A5 . 

Let G be a finite simple group and set TT(G) = [p : p is a prime and p \ \G\} . 
Following D. G o r e n s t e i n , a finite simple group G is called a K3-group if 
\TT(G) | = 3. For the sake of completeness we mention below the following theorem 
of H e r z o g on the structure of simple K3 -groups. 

THEOREM 1.3. ( H e r z o g , [13]) If G is a simple Ks-group, then G is 
isomorphic to one of the simple groups A5, A6, U3(3), U4(2), PSL(2,7). 
PSL(2,8) . PSL(2,17) anJPSL(3 ,3) . 

Throughout this paper, as usual, G' denotes the derived subgroup of G. 
Z(G) is the center of G, xG, x G G, denotes the conjugacy class of G with the 
representative x, and G is called n o n - p e r f e c t if G' ^ G. Also, ip(G) denotes 
the number of composite integers of TT€(G). All groups considered are assumed 
to be finite. Our notation is standard and taken mainly from [8] and [14], 

2. Main results 

Suppose n is a positive integer such that there are non-abelian simple groups 
A and B, not necessarily different, with exactly n conjugacy classes and G — 
A x B. Then G is a perfect n-decomposable finite group. Thus, there are 
n-decomposable perfect finite groups. However, the investigation of such finite 
groups does not seem to be simple. Hence, in this paper we restrict our attention 
to the non-perfect finite group. 

LEMMA 2 .1 . Let G be a 7- or 8 -decomposable non-solvable non-perfect finite 
group. Then G' is simple. 

P r o o f . Since G' is a maximal normal subgroup of G, \G : G'\ — p , p is 
prime, and G' is a minimal normal subgroup of G, which is not abelian. So G' 
is a direct product of k isomorphic non-abelian simple groups, say Hx,..., Hk . 
If k > 2 and H1 is not a i\T3-group, then \7re(H1 x H2)| > 11, which is a 
contradiction. Thus, G' is simple or Hl is a K3 -group. Suppose G' is not 
simple. Then, by Theorem 1.3, H1 is isomorphic to A5, A6, £/3(3), £/4(2), 
PSL(2, 7), PSL(2, 8), PSL(2,17) or PSL(3, 3). Using a simple calculation with 
GAP on element orders of these groups, we can see that Hx = A5 . Our main 
proof will consider a number of cases: 
Case 1. G is 7-decomposable. 
It is an easy fact that |7re((yl5)r) | = 8 for r > 3. Thus G' is simple or 
G' ^ A5 x A5. Suppose G' *- A5 x Ab. Since 7Te(G') = {1,2 ,3 ,5 ,6 ,10,15}, 
elements of the same order of G' must ]pe conjugate in G. On the other hand, 
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|Aut(G")| = 28800, which implies that p = 2 and |G| = 7200. But G' has 
exactly three conjugacy classes of elements of order 2 with lengths 15, 15 and 
225, respectively. This shows that 7200 must be divisible by 255, which is a 
contradiction. 

Case 2. G is 8-decomposable. 
Choose elements x, y and z of G' such that ord(x) = 2, ord(y) = 3 and 
ord(z) = 5. We first assume that G' = A5 x A5. Then there is at most one 
conjugacy class of G containing all of elements of G' with a prime order. Now 
a similar argument as in Case 1 leads to a contradiction. Thus G' = (Ab)

r for 
r > 3. Since |7re((-45)r) | = 8, the elements of order 2, as well as the elements 
of order 3, in G' must be conjugate in G. By a well-known result in character 
theory, since G' = A5 x A5 x • • • x Ab, every conjugacy class of G' is a direct 
product of the conjugacy classes of the group A5. But A5 has a unique conjugacy 
class of elements of order 2 with length 15, so G' has exactly ( r) = r conjugacy 
classes of elements of order 2 with length 15, (r) conjugacy classes of elements 
of order 2 with length 152 , ( r) conjugacy classes of elements of order 2 with 
length 153 , . . . and, (r) = 1 conjugacy classes of elements of order 2 with 
length 15 r . Therefore, 

|xG | = 15 Q + 152 Q + • • • + 15r (f) = 16r - 1 = 24r - 1. 

A similar argument shows that \yG\ = 2 1 r . This implies that for some integers 
u and v, we have: 

( 2 4 r - l ) ^ = 2 2 r - 3 r - 5 r - p , 

( 2 1 r - l ) U = 2 2 r - 3 r - 5 r - p . 

If p £ {2, 3, 5} , then G = (A5)
r x Zp, which is contradiction. For p = 2, 3, the 

first and second equation does not have an integer solution, respectively. Thus 
p = 5. Since 3 r | v, y = 3ry^ If y1 > 5, then (21 r - l)v > 2 2 r • 3 r • 5 r + 1 . 
Also, if yx = 2, then 2 • (21 r - 1) > 5 • 20 r for r > 19, and if y1 = 4, then 
4 • (21 r — 1) > 5 • 20r for r > 5. For other values of r , there is no solution for 
the second equation. This completes the proof. D 

LEMMA 2.2. Let G be a n -decomposable non-solvable non-perfect finite group 
and \AfG\ > 2. Then \J\fG\ = 2, n is a prime number and G = Z n x B. where 
B is a non-abelian simple group with exactly n conjugacy classes. 

P r o o f . Let A and B be elements of MG. Then by [1; Theorem 2], G = 
A x B. It is easy to see that A and B are simple groups. By [18; p. 88], A and 
B are the only proper non-trivial normal subgroups of G. So \NG\ = 2. If A 
and B are non-abelian simple groups, then G' = G, which is a contradiction. 
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Therefore, one of A or J?, say A, is abelian. Since A is simple, n is a piime 
number and A = Z?7, proving the lemma. 

Suppose LO(G') denotes the number of orbits of G' under the action of 
Aut(G') . In the following lemma, we showr that n is an upper bound for u G 
in the case that G is n-decomposable. In fact, we have: 

LEMMA 2.3. Let G be a n-decomposable non-solvable non-pei feet finite gio ip 
with the unique normal subgroup G'. Then G is isomorphic to a subgioup of 
Aut(G') . Moreover, if G' is simple, then n > ^J(G') . 

P r o o f . Define a: G -> Aut(G") by a(g) = Tg: G' -> G', where Tg(a 
gag~l for all a G G'. It is obvious that a is well defined. We show that a is 
one-to-one. Suppose a(g) = IQI, where g is a non-identity element of G Then 
G' C CG(g) and so CG(g) < G. If G' = CG(g), then g G Z(CG(g)) = Z(G' . 
But G' is the unique normal subgroup of G, so Z(G') = G'. Hence G ; is 
abelian and G is solvable, a contradiction. Thus g G Z(G). Since G' is unique 
and G is non-abelian, G' = Z(G). This leads to a contradiction Therefore rv 
is one-to-one and G is isomorphic to a subgroup of Aut(G') . Now it is easy to 
see that for every elements a, b G G', aG — bG if and only if a and b lie in t i e 
same orbit under the action of G, proving the lemma. • 

Suppose T is the set of all groups L2(q), where q = pm, p. m are primes 
and S is the set of all groups L2(p), where p is prime. In the following lemma, 
we investigate the 7- and 8-decomposable finite groups with G' G T U S. 

LEMMA 2.4. Suppose G is a 7- or 8-decomposable finite group with G' G 
TuS. Then G ^ P S L ( 2 , 2 7 ) : 3 , Aut(PSL(2,11)) or Vut(PSL(2, 13)) . 

P r o o f . Let G be a 7- or 8-decomposable finite group with G' G T. If 
2 | q. then by Lemma 2.3 and a theorem of K o h l , [17; Theoiem 2.5]. n > 
UJ(G') > UJ(G') = 3 + ^ ^ . This shows that m = 2,3 and so G' = A- or 
PSL(2,8), which contradicts Table I. Next we assume that q is an odd intone \ 
In this case, by the previously mentioned theoiem of K oh 1 

1 + [J^ if m - 2 , 

2 771 

and so, by Lemma 2.3 and Table I, G' = PSL(2,27). Finally, we assume th< t 
G' G S. Then by the K o h l ' s results, p is odd and UJ(G') = ^ . This shows 
that p = 11,13 and G ^ Aut(PSL(2,11)) or Aut(PSL(2,13)). which concludes 
the lemma. • 
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THEOREM 2.5. Let G be a non-perfect 7-decomposable finite group. Then 
G is isomorphic to an abelian group of order 49. Aut(PSL(2,11)) , 1^7 x A6, 
Aut(Sz(8)) or a Frobemus group of order \pr(pr — 1), p > 5 is prime, and r 
is a positive integer, such that the kernel of G is elementary abelian of order pr 

and its complement is cyclic. 

P r o o f . We first assume that G is solvable. If G is abelian, then it is clear 
that G is an abelian group of order 49, as desired. Suppose G is non-abelian. 
Then \G : G'\ = (/, where q is prime. Since G' is a minimal normal subgroup 
of G, G' is an elementary abelian subgroup of order, say pr. Thus, \G\ — prq. 
Since G is not abelian, q ^ p and CG(x) — G1 for any x G G', x ^ 1. 
Therefore, G is a Frobenius group with kernel G1. Since G' is abelian, by [15; 
p. 1160, Theorem 5.1], n—1 = [ T | - . This implies that pr — 1 = 6(7, as desired. 

Next we assume that G is non-solvable. If \AfG\ = 2, then by Lemma 2.2, 
G ~ Z 7 x A6. So, wre can restrict our investigation to the case that G1 is the 
unique normal subgroup of G, which is simple by Lemma 2.1. It is clear that 
TT(G')| < 6. If \TT(G')\ = 6, then G' is an EPO-group and by Corollary 1.2, 

G' — X , which is a contradiction. Suppose |7r(G')| = 3. Then by Theorem 1.3, 
G' is isomorphic to A5 , A6, U3(3), C/4(2), PSL(2,7), PSL(2,8), PSL(2,17) or 
PSL(3, 3) and by Lemma 2.3, G is isomorphic to a subgroup of Aut(G') . But, G' 
cannot be isomorphic to the groups Ab and PSL(2, 7) since these groups ha\e 
exactly five and six conjugacy classes, respectively. Suppose G' = A6. Since 
I Aut(.46) : ^4G| = 4 and G is a subgroup of Aut(A6) with prime index, G is iso­
morphic to 5 6 = A6.21,A6.22 or A6.23, in ATLAS notation. [9]. But by Table I, 
such a group is 5- or 6-decomposable, which is a contradiction. On the other 
hand, by this table, L2(8) is a 5-decomposable subgroup of Aut(L 2 (8)) , L.?(17) 
is a 10-decomposable subgroup of Aut(L2(17)) , L3(3) is a 9-decomposable sub-
g 'oup of Aut(L 3 (3)) , U3(3) is a 10-decomposable subgroup of Aut(t73(3)) and 
U{(2) is a 15-decomposable subgroup of Aut(U4(2)), also | Aut(G ;) : G'\ — p , 
p 2 ,3 , which are impossible. Thus ^(G 7 ) ! = 4 ,5 . In our main proof, we 
consider tw7o separate cases: 

Case J. KG')I = 5 . 
In this case tp(G') = 1 and by [22], G is isomorphic to PSL(2,g), q -
5,7 8,9,11,13,16, PSL(3,4), Sz(8), PSL(2,3 n ) , where ^ - and ^ - are 
primes, or PSL(2,2 n) , where 2n — 1 and ^ - ^ are primes. But, by a calcula­
tion, the orders of all of these groups have at most four prime divisors, which is 
a contradiction. 
Case 2. |TT(G')| = 4 . 
In this case ^(G1) = 1,2. We first assume that "ip(G') = 1. Apply the previ­
ously mentioned result of S h i and Y a n g . By Lemma 2.4, Table I and [9], 
|Aut(Sz(8)) : Sz(8)| = 3 and Aut(Sz(8)) is 7-decomposable. Also, by Table I, 
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Aut(PSL(2,11)) is another 7-decomposable group with ip(G') =.1. Next we 
suppose that ip(G') = 2. Applying [10; Theorem 2], [24; Theorem 2] and [7; 
Theorem 2], it is enough to investigate the simple groups PSL(2,g). Suppose 
G' = PSL(2, q), then by Lemma 2.4 and Table I, G is not 7-decomposable. This 
completes the proof. • 

THEOREM 2.6. Let G be a non-perfect 8-decomposable finite group. Then 
G is isomorphic to Aut(PSL(2,13)), PSL(2,27) : 3 . PSL(3,4) : 2 (including 
PSL(3,4).21 ; PSL(3,4).22 and PSL(3, 4).23) ; P S L ( 3 , 4 ) : 3 . S7 or a Frobenius 
group of order ^2 r (2 r — 1) . r is a positive integer, such that the kernel of G is 
elementary abelian of order T and its complement is cyclic. 

P r o o f . It is clear that such a group cannot be abelian. If G is a non-abelian 
solvable group, then using a similar argument as in Theorem 2.5, we can see that 
G is a Frobenius group of order \pr(pr — 1), p is odd prime and r is a positive 
integer. Suppose that G is non-solvable. Then by Lemmas 2.2 and 2.3, |JVG| = 1 
and G' is simple. Also, by Corollary 1.2, Theorem 1.3 and Table I, G' cannot 
be an EPO-group or a K3-group. So, 4 < |7r(G')| < 6. If \TV(G')\ = 6, then 
tp(G') = 1. But in this case, by [22] and [5], such a group has at most four prime 
divisors, which is a contradiction. In our main proof, we consider two separate 
cases: 

Casel. \n(G')\ = 5. 
Since G is not EPO-group, ip(G') = 1,2. Also by Lemma 2.4 and [22], there 
is no group G with ^(G') = 1. Thus ip(G') = 2. By Table I, PSL(3,4) : 2, 
PSL(3,4) : 3 and Aut(PSL(2,13)) are solutions for our problem. So by [11; 
Theorem A], it is enough to investigate the cases that G' is isomorphic to the 
Suzuki group Sz(q) or a projective special linear group PSL(2, q) for some special 
values of q. By Lemma 2.4, if G' = PSL(2,p m ) , where p and m are primes, then 
G' =• PSL(2, 27), which is a contradiction. If G' = PSL(2,p), where p is a prime 
with p > 13, then by the previously mentioned theorem of K o h 1, we obtain a 
contradiction. Finally, assume that G' = Sz(q), where q = 2 2 m + 1 is such that 
each of q - 1, q - (2g)i + 1 and q + (2q)i + 1 is either a prime or a product 
of two distinct primes. By [17; Theorem 3.4], u(Sz(q)) = C J ( P S L ( 2 , q)) + 2 and 
by Lemma 2.3 and [17; Theorem 2.5], 8 > u(Sz(q)) = 2 + C J ( P S L ( 2 , q)) = 
5 + 2 2

2 ^ ~ 2 . This shows that G' = Sz(8) and by Table I, we get our final 
contradiction. 

Case 2. \TT(G')\ = 4. 
Using a tedious calculation for applying the [24; Theorem 2], [7; Theorem 2], [17; 
Theorem 2.5], Lemma 2.4 and Table I, we can see that G = Aut(PSL(2,13)) , 
PSL(2,27) : 3, PSL(3,4) : 2 or PSL(3,4) : 3, which completes the proof. • 
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Table I: The fusion maps of some simple groups into their automorphism groups. 

A 5-Classеs 
Fusion into 5 5 

l a 
1A 

2a 
2A 

Зa 
ЗA 

5a 
5A 

5b 
5A 

A6-Classеs 
Fusion into 5 6 

l a 
1A 

2a 
2A 

Зa 
ЗA 

Зb 
ЗB 

4a 
4A 

5a 
5A 

5b 
5A 

A 6-Classеs 
Fusion into A6-22 

l a 
1A 

2a 
2A 

Зa 
ЗA 

Зb 
ЗA 

4a 
4A 

5a 
5A 

5b 
5B 

A 6-Classеs 

Fusion into A6-23 

l a 
1A 

2a 
2A 

Зa 
ЗA 

Зb 
ЗA 

4a 
4A 

5a 
5A 

5b 
5A 

A 7-Classеs 
Fusion into S7 

l a 
1A 

2a 
2A 

Зa 
ЗA 

Зb 
ЗB 

4a 
4A 

5a 
5A 

6a 
6A 

7a 7b 
7A 7B 

PSL(2,7)-Classеs 

Fusion into Aut(PSL(2,7)) 

l a 

1A 

2a 

2A 

Зa 

ЗA 

4a 

4A 

7a 

7A 

7b 

7A 

PSL(2,8)-Classеs 

Fusion into Aut(PSL(2,8)) 

l a 

1A 

2a 

2A 

Зa 

ЗA 

7a 

7A 

7b 

7A 

7c 

7A 

9a 

9A 

9b 9c 

9A 9A 

PSL(2,11)-Classеs 

Fusion into Aut(PSL(2,11)) 

l a 

1A 

2a 

2A 

Зa 

ЗA 

5a 

5A 

5b 

5B 

6a 

6A 

11a 

11A 

11b 

11A 

PSL(2,13)-Classеs 

Fusion into Aut(PSL(2,13)) 

l a 

1A 

2a 

2A 

Зa 

ЗA 

6a 

6A 

7a 

7A 

7b 

7B 

7c 

7C 

13a 13b 

ІЗA ІЗA 

PSL(2,16)-Classеs 
Fusion into PSL(2,16).2 
PSL(2,16)-Classеs 
Fusion into PSL(2,16).2 

l a 
1A 
17a 
17B 

2a 
2A 
17b 
17A 

Зa 
ЗA 
17c 
17D 

5a 
5A 
17d 
17B 

5b 
5B 
17е 
17D 

15a 
15A 
17f 
17C 

15b 
15B 

17g 
17C 

15c 15d 
15A 15B 
17h 
17A 

PSL(2,19)-Classеs 

Fusion into Aut(PSL(2,19)) 

PSL(2,19)-Classеs 

Fusion into Aut(PSL(2,19)) 

l a 

1A 

10b 

10B 

2a 

2A 

19a 

19A 

Зa 

ЗA 

19b 

19A 

5a 

5A 

5b 

5B 

9a 

9A 

9b 

9B 

9c 10a 

9C 10A 

PSL(2,17)-Classеs 

Fusion into Aut(PSL(2,17)) 

PSL(2,17)-Classеs 

Fusion into Aut(PSL(2,17)) 

l a 

1A 

17a 

17A 

2a 

2A 

17b 

17A 

Зa 

ЗA 

4a 

4A 

8a 

8A 

8b 

8B 

9a 

9A 

9b 9c 

9B 9C 

PSL(2,27)-Classеs 
Fusion into PSL(2,27) : 2 
PSL(2,27)-Classеs 
Fusion into PSL(2,27) : 2 

l a 
1A 
13c 
ІЗC 

2a 
2A 
lЗd 
ІЗD 

Зa 
ЗA 
lЗе 
ІЗE 

Зb 
ЗA 
lЗf 
І З F 

7a 
7A 
14a 
14A 

7b 
7B 
14b 
14B 

7c 
7C 
14c 
14C 

13a 13b 
ІЗA ІЗB 
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Table I: (Continued) . 

PSL(2,27)-Classes l a 2a Зa Зb 7a 7b 7c 13a 13b 
Fusion into PSL(2,27) : 3 1A 2A ЗA ЗB 7A 7A 7A ІЗA ІЗA 
PSL(2,19)-Classes 13c lЗd lЗe lЗf 14a 14b 14c 
Fusion into PSL(2,27) : 3 ІЗA ІЗB ІЗB ІЗB 14A 14A 14A 

PSL(3,3)-Classes l a 2a Зa Зb 4a 6a 8a 8b 13a 

Fusion into Aut(PSL(3,3)) 1A 2A ЗA зв 4A 6A 8A 8A ІЗA 
PSL(3,3)-Cłasses 13b 13c lЗd 

Fusion into Aut(PSL(3,3)) ІЗA ІЗB ІЗB 

PSL(3,4)-Classes l a 2a Зa 4a 4b 4c 5a 5b 7a 
Fusion into PSL(3,4).2 1A 2A ЗA 4D 4A 4C 5A 5A 7A 
PSL(3,4)-Classes 7b 
Fusion into PSL(3,4).2 7A 

PSL(3,4)-Classes l a 2a Зa 4a 4b 4c 5a 5b 7a 
Fusion into PSL(3,4).3 1A 2A зc 4A 4A 4A 5A 5B 7A 
PSL(3,4)-Classes 7b 
Fusion into PSL(3,4).3 7B 

c73(3)-Classes l a 2a Зa Зb 4a 4b 4c 6a 7a 
Fusion into U3(3) : 2 1A 2A ЗA ЗB 4A 4A 4B 6A 7A 
c73(3)-Classes 7b 8a 8b 12a 12b 
Fusion into L73(3) : 2 7A 8A 8A 12A 12A 

c74(2)-Classes l a 2a 2b Зa Зb Зc Зd 4a 4b 
Fusion into C74(2) : 2 1A 2A 2B ЗA ЗA ЗB зc 4A 4B 
174(2)-Classes 5a 6a 6b 6c 6d 6e 6f 9a 9b 
Fusion into U4(2) : 2 5A 6A 6A 6B 6B 6C 6D 9A 9A 
c/^^-Classes 12a 12b 
Fusion into U4(2) : 2 12A 12A 

Sz(8)-Classes l a 2a 4a 4b 5a 7a 7b 7c 13a 

Fusion into Aut(Sz(8)) 1A 2A 4A 4B 5A 7A 7A 7A 13 A 
Sz(8)-Classes 13b 13c 

Fusion into Aut(Sz(8)) ІЗA ІЗA 

M 2 2 -Classes l a 2a Зa 4a 4b 5a 6a 7a 7b 

Fusion into A u t ( M 2 2 ) 1A 2A ЗA 4A 4B 5A 6A 7A 7B 
M 2 2 -Classes 8a 11a 11b 
Fusion into A u t ( M 2 2 ) 8A 11A 11B 
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