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(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. In this paper we develop a theory of companion d-algebras in 
sufficient detail to demonstrate considerable parallelism with the theor}t of 
BCK-algebras as well as obtaining a collection of results of a novel type. In
cluded among the lat ter are results on certain natural posets associated with 
companion d-algebras as well as constructions on B i n ( X ) , the collection of bi
nary operations on the set X, which permit construction of new companion 
d-algebras from companion d-algebras X also in natural ways. 
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1. Introduction 

Y. I m a i and K. I s e k i introduced two classes of abstract algebras: BCK-al
gebras and HC7I -algebras ([Is], [IsTa]). It is known that the class of BCK -alge
bras is a proper subclass of the class of BCI-algebras. In [HL1], [HL2] Q. P. H u 
and X. Li introduced a wide class of abstract algebras: BCH-algebras. They 
have shown that the class of BCI -algebras is a proper subclass of the class 
of I?C7II-algebras. BCK-algebras also have some connections with other ar
eas: A. D v u r e c e n s k i j and M. G. G r a z i a n o [DvGr], C. S. H o o [Hoo], 
J. M. F o n t , A. J. R o d r i g e z and A. T o r r e n s [FRT], D. M u n d i c i 
[Mun] proved that MV-algebras are categorically equivalent to bounded com
mutative BCK -algebras, and J. M e n g [Me] proved that implicative commu
tative semigroups are equivalent to a class of BCK -algebras. J. N e g g e r s 
and H. S. K i m introduced the notion of d-algebras which is another useful 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F35. 
K e y w o r d s : BCK-algebra, d/d*-algebra, companion, BCK/d-ideal, 0-subalgebra, dsu con
dition, complete, transitivity, pogroupoid. 
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generalization of BCK-algebras, and then investigated several relations be
tween d-algebras and BCK -algebras as well as several other relations between 
d-algebras and oriented digraphs ([NK3]). After that some further aspects were 
studied ([LK], [NJK], [JNK]). As a generalization of BCK-algebras d-algebras 
are obtained by deleting identities. Given one of these deleted identities a related 
identities are constructed by replacing one of the terms involving the original 
operation by an identical term involving a second (companion) operation, thus 
producing the notion of companion d-algebra which (precisely) generalizes the 
notion of BCK-algebra and is such that not every d-algebra is one of these. In 
this paper we develop a theory of companion d-algebras in sufficient detail to 
demonstrate considerable parallelism with the theory of B CK -algebras as well 
as obtaining a collection of results of a novel type. Included among the latter 
are results on certain natural posets associated with companion d-algebras as 
well as constructions on Bin(X), the collection of binary operations on the set 
X, which permit construction of new companion d-algebras from companion 
d-algebras X also in natural ways. 

2. Companion d-algebras 

A d-algebra ([NK3]) is a non-empty set X with a constant 0 and a binan 
operation "*" satisfying the following axioms: 

(I) x * x = 0, 
(II) 0 * x = 0, 

(III) x * y = 0 and y * x = 0 imply x — y 

for all x, y in X. 
A HCIv"-algebra is a d-algebra (X;*,0) satisfying the following additional 

axioms: 

(IV) ((x * y) * (x * z)) * (z * y) = 0, 
(V) (x * (x * y)) * y = 0 

for all x, y, z in X. 
A ECif-algebra (X\ *,0) is said to have a condition (S) ([MeJu]) if 

A(a, b) := {x E X : x * a < b} has a greatest element for any a,b £ X. 

DEFINITION 2 .1 . Let (A";*,0) be a d-algebra. Define a binary operation • 
on X by 

(VI) ((x(Dy) *z ) *H = 0 
for any x,H E N, which is called a subcompanion operation of A". A subcom-
panion operation 0 is said to be a companion operation of A" if 

(VII) if (z * x) * y = 0, then z * (x O y) = 0 for any x, H, z E X. 
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Example 2.2. Let X := {0,1, 2, 3} be a set with the following tables: 

* 0 1 2 3 0 1 2 3 

0 0 0 0 0 0 0 1 3 3 

1 1 0 0 0 1 1 1 3 3 

2 2 2 0 0 2 2 2 3 3 

3 2 2 2 0 3 3 3 3 3 

Then (X; *, 0) is a d-algebra, which is not a BCK/B CI -algebra, and the binary 
operation 0 defined above is a companion operation on X. 

A d-algebra X is said to be a companion d-algebra if it has a companion 
operation. 

PROPOSITION 2.3. Let (X; *,0) be a d-algebra. If X has a companion opera
tion 0 . then it is unique. 

P r o o f . Assume the binary operations Qx and 0 2 are companion opera
tions on X. Then ((x Q{y) * x) * y = 0 for any x, y G X (i = 1, 2). By (VII) 
we obtain 

(xQiy)*(xQ2y) = 0. (1) 

Interchange Qx with ©2 . Then 

(x 0 2 y) * (x ©x y) = 0. (2) 

By (III) we obtain Qx = ©2 . Hence the operation © is unique. • 

Example 2.4. Every BCK-algebra with condition (S) is a companion d-algebra. 

Example 2.2 is a companion d-algebra which is not a BCK/BCI-algebra. 
This means that a companion d-algebra is a generalization of a BCK/BCI -al
gebra with condition (S). 

PROPOSITION 2.5. Let (X;* ,©,0) be a companion d-algebra. Then for any 
x,y,z G X. Hje /mve 

(i) if x * 2 = 0. tten x * (z © H) = 0. 
(ii) x * (xQy) = 0. 

(iii) rr © 0 = # . 

9E 



P. J. ALLEN — HEE SIK KIM — J. NEGGERS 

P r o o f . 
(i) Since ( x * z ) * y = 0 * y = 0 ,by (VII), x * (z © y) = 0. 
(ii) Put z := x in (i). 
(iii) We claim that if x * 0 = 0, then x = 0. In fact, since 0 * x = 0, by (III) 

we have x = 0. Since X is a companion d-algebra, ((x © 0) * x) * 0 = 0 and so 
(x © 0) * x = 0. If we put y := 0 in (ii), then x * (x © 0) = 0. By (III) we have 
x © 0 = x . D 

THEOREM 2.6. Let (X;*,©,0) be a companion d-algebra. Let o be a binary 
operation on X such that 

(x * y) * z = x * (y o z). (3) 

Then X is a companion d-algebra and o is exactly the operation 0 . 

P r o o f . By applying (3) and (I), we have 

((x o y) * x) * y = (x o y) * (x o y) [by (3)] 

= 0. [by (I)] 

proving the condition (VI). Let z G X with (z * x) * y = 0. Then by (3), 
z * (x o y) = (z * x) * y = 0, proving the condition (VII). Hence o is a companion 
operation, which is unique by Proposition 2.3. D 

Given a d-algebra (X; * ,0) , we define a partial binary relation < by x < y 
x * y = 0, where x , i / E l . 

PROPOSITION 2.7. If (X;*,©,0) is a bounded companion d-algebra, i.e., 
there is an element 1 G X such that x * 1 = 0 for any x G X, then x © 1 = 1 
for any x G X. 

P r o o f . Since u * x < 1 for any u G X, (u * x) * 1 = 0. By applying (VII) 
we have u < x © 1, for any u G X, which implies 1 = x © 1. D 

A d-algebra (X; *, 0) is said to be positive implicative if (x * y) * z = (x * z) * 
(y * z) for any x,y,z G X. 

PROPOSITION 2.8. Let (X;*,©,0) be a companion d-algebra. 

(i) 0 < x © y, x < x © y, for any x, y G X, 
(ii) if X is positive implicative, then y < x © y for any x,y G X . 

P r o o f . 
(i) Since ( 0 * x ) * y = 0, 0 < x © y . From ( x * x ) * y = 0 * y = 0 ,we obtain 

x < x © y . 
(ii) Since X is positive implicative, (?/*x)*y = (y*y)*(x*y) = 0*(x*y) = 0 

and hence y < x © y. D 
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THEOREM 2.9. Let (X;* ,0 ,O) be a companion d-algebra. Assume that x * 0 
= x for any x G X . 

(i) X is positive implicative, 
(ii) if x < y, then x Qy = y, 

(iii) x 0 x = x for any x, y G X . 

Then (i) ==-> (ii) =4> (iii). 

P r o o f . 
(i) = > (ii). If x < u, then 

0 = ((x 0 y) * x) * y 

= [(x Qy) *y]* (x * y) [X: positive implicative] 

= [(x 0 y) * y] * 0 [x * y = 0] 

= (x 0 y) * y, [x * 0 = x] 

which means that xQy < y. By applying Proposition 2.8-(ii), we have xQy = y. 

(ii) = > (iii). Let y := x in (ii). • 

DEFINITION 2.10. ([NJK]) Let (X; *,0) be a d-algebra and 0 ^ I C X . 7 is 
called a d-subalgebra of X if x * y G / whenever x G / and y £ I. I is called a 
BCK -ideal of X if it satisfies: 

(A>) 0 ( E / > 
(Dx) x *y G / and y G 7 imply x G / . 

/ is called a d-ideal of X if it satisfies (Dx) and 

(D2) x G / and y G X imply x * H G / , i.e., 7 * X C / . 

DEFINITION 2.11. Let (X; *, 0 ,0 ) be a companion d-algebra and B / J C l . 
I is called a Q-subalgebra if x 0 H G / for any x,y G I. 

In Example 2.2, the set Ix := {0,1} is a 0-subalgebra of X , while I2 : = 
{0,1, 2} is not a 0-subalgebra of X . 

THEOREM 2.12. Let (X; *, 0 , 0) be a companion d-algebra. If I is a BCK-ideal 
of X, then I is a 0 -subalgebra of X. 

P r o o f . I f X is a companion d-algebra, then ((x 0 y) * x) * y = 0 G / for 
any x,H G / . Since I is a BCK -ideal of X and y G i", (xQy)*x e I. Moreover, 
since x G / , we obtain x 0 H G J, proving the theorem. • 

The converse of Theorem 2.12 need not be true in general. For example, 
J := {0,1, 3} is a 0-subalgebra of X , but not a BCK-ideal of X , since 2 * 3 
= 0 G J , 3 G J , but 2 0 J in Example 2.2. 
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PROPOSITION 2.13. Let (X;* ,0 ,O) be a companion d-algebra and let I be 
a BCK -ideal of X . If x OH G I, then x G I where x, y G X". 

P r o o f . By Proposition 2.5-(ii), X * ( X 0 ? / ) = O G / . Since x • y G I and I 
is a BCK-ideal of X , we have x G / . D 

COROLLARY 2.14. Let (X;* ,0 ,O) be a companion d-algebra and let I be a 
BCK -ideal of X . IfxQy = yQx£l, then x,H G I where x,H G Xr. 

COROLLARY 2.15. Let (X;* ,0 ,O) be a companion d-algebra and let I be a 
BCK -ideal of X . Then x G I <̂ => x 0 x G I. 

P r o o f . It follows immediately from Theorem 2.12 and Proposition 2.13. 
D 

3. dsu condition 

In a d-algebra X , the identity (x * y) * x = 0 does not hold in general. 

DEFINITION 3.1. ([NJK]) A d-algebra X is called a d* -algebra if it satisfies 
the identity (x * y) * x = 0 for all x, y G X . 

Clearly, a BCK -algebra is a d*-algebra, but the converse need not be true. 

Example 3.2. Let X := {0 ,1 ,2 , . . . } and let the binary operation * be defined 
as follows: 

0 if x < H, 
x * y ЧÏ otherwise. 

Then (X, *,0) is a d-algebra which is not a BCK-algebra (see [NK3, Exam
ple 2.8]). We can easily see that (X, *,0) is a d*-algebra. 

THEOREM 3.3. ([NJK]) In a d* -algebra, every BCK-ideal is a d-ideal. 

The following corollary is obvious. 

COROLLARY 3.4. ([NJK]) In a d*-algebra, every BCK-ideal is a d-subalgebra. 

For companion d-algebras the condition (x * y) * (x • y) = 0 is also one 
which is not unusual, since in 'usual' circumstances we expect the difference to 
be smaller than the usual (dsu condition). 

DEFINITION 3.5. Let (X;* ,0 ,O) be a companion d-algebra. X" is said to 
have a dsu condition if 

(x * y) * (x 0 y) = 0 4) 

for any x,y G X . 
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PROPOSITION 3.6. Let (X;* ,0 ,O) be a companion d-algebra having the dsu 
condition. If I is a BCK -ideal of X . then it is a d-subalgebra of X. 

P r o o f . By Theorem 2.12, x 0 y G / for any x,H G I. Since X has the 
dsu condition, (x * y) * (x 0 y) = 0 G I and I is a BCK-ideal of X , we obtain 
x * y G J. D 

Let (X; *, 0) be a d-algebra and x G X . Define x * X := {x * a : a E A"}. 
A" is said to be edge ([NK3]) if for any x in X , x * X = {x, 0} . 

LEMMA 3.7. ([NJK]) 7/ (X; *, 0) is a edge d-algebra, then (x * (x * y)) * H = 0 
and x * 0 = x for any x, y G X . 

THEOREM 3.8. Fe£ (X;* ,0 ,O) be a companion edge d*-algebra. If 

(z * (x 0 y)) * ((z * x) * H) = 0, (5) 

then X has a dsu condition. 

P r o o f . Let z := x * y in (5). Then 

0 = ((x * y) * (x 0 y)) * (((x * y) * x) * y) 

= ((x * 2/) * (x 0 2/)) * (0 * y) [X: eT-algebra] 

= ((x * y) * (x 0 2/)) * 0 

= ((x * y) * (x 0 2/)), [X: edge] 

proving the theorem. D 

PROPOSITION 3.9. Let (X;* ,0 ,O) be a companion edge d-algebra. If 

(z * (x 0 y)) * ((x * z) * y) = 0, (6) 

lben X bas a c?5it condition. 

P r o o f . Let z := x * y in (6). Then by Lemma 3.7 

0 = ((x * y) * (x 0 2/)) * ((# * (x * 2/)) * y) 

= ((x * y) * (x 0 2/)) * 0 

= ((x*H) * ( x 0 2/)), 

proving the proposition. D 

4. Completeness 

A companion d-algebra (X; *,0,O) is said to be complete if for any x G X , 
there exists an x* in X such that x 0 x* = x. Note that such an x* need not 
be unique. For such an example, we find 2 0 0 = 2 0 1 = 2, 3 0 1 = 3 0 2 = 3 
in Example 2.2. 
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PROPOSITION 4 . 1 . Let (X;* ,0 ,O) be a companion d-algebra. If we define a 
partial binary relation <C by 

x < y 4-=> (x 0 z) * (y 0 z) = 0 for all z e X, (7) 

then <C is reflexive and anti-symmetric. 

P r o o f . Clearly, <C is reflexive. If x C y, t / C x , then (x 0 z) * (y 0 z) = 
0 = (y Q z) * (x Q z) for any z e X. By applying (III) we have 

xQz = yQz (8) 

for any z G X. Since X is complete, there exist x*,y* £ X such that x = x 0 x * , 
y =z yQy*. If we let z := x* and z := y* in (8), respectively, then x = xQx* = 
yQx*, 3/ = yQy* = xQy*. Thus by Proposition 2.5-(ii), x*y = x*(xQy*) = 0 
and y*x = y*(yQ x*) = 0 and hence x = y, proving the proposition. D 

For any BCK/BCI-algebras the following transitivity condition holds: 

if x * y = 0 and y * z = 0, then x * z = 0 (9) 

(see [MeJu, Theorem 1.2-(b)]). This condition does not hold in d-algebra in 
general. 

Example 4.2. Let X := {0, a, b, c} be a set with the following tables: 

* 0 a b c 

0 0 0 0 0 

o a 0 0 a 

b b b 0 0 

c c c a 0 

Then (X;*,0) is a d-algebra, which is not a BCK/BCI -algebra (see [NJK]), 
and a * b = 0 = 6 * c , but a * c = a 7̂  0. 

Thus, if a d-algebra satisfies the transitivity condition, then the natural order 
< given by x < y if and only if x * y = 0 is a partial order. 

PROPOSITION 4 .3 . Let (K ;* ,0 ,O) be a complete companion d-algebra. If X 
satisfies the transitivity condition, then (X\ <C) is a poset. 

PROPOSITION 4.4. Let (X ;* ,0 ,O) be a complete companion d-algebra. If 
x < y , then x < y in X. 

P r o o f . If x <^ y, then (x 0 a) * (y 0 a) — 0 for any a E X. This implies 
(x 0 0) * (y 0 0) = 0 and hence x * y = 0 by Proposition 2.5-(iii). D 

The converse of Proposition 4.4 need not be true in general. 
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Example 4.5. Let X := {0, a, b, c, d, 1} be a set with the following table: 

* 0 a b c d 1 

0 0 0 0 0 0 0 

a a 0 0 a 0 0 

b b a 0 b a 0 

c c c b 0 0 0 

d d c b a 0 0 

1 1 d b a a 0 

0 a b c d 1 

0 0 a b c d 1 

a a b b d 1 1 

b b b 1 b ö 1 

c c 1 1 c 1 1 

d d 1 1 d 1 1 

1 1 1 1 1 1 1 

Then (A"; *, 0 , 0) is a companion ri-algebra, which is not a BCK/BCI-algebra, 
since (c * b) * d = a ^ 0 = (c * b) * b. We know that a < b, but aO c = d and 
b 0 c = b, and rf and b are incomparable. Hence a <̂C b does not hold. 

The converse of Proposition 4.4 holds for BCK/BCI -algebras (see [Hu, 
.BCJ-algebras, p. 98, Theorem 8]). 

5. Pogroupoid and subcompanion operators 

In [Ne], J. N e g g e r s defined a groupoid S(-) to be a pogroupoid if 

(i) x-y <E {x,y}; 

(ii) x- (y-x) =y-x; 

(iii) (x-y)-(y-z) = (x-y)-z 

for all x,y,z G S. For a given pogroupoid S(-) he defined an associated partial 
order po(5) by x < y iff y • x = y and he then demonstrated that po(5) 
is a poset. On the one hand, for a given poset S(<) he also defined a binary 
operation on S by y • x = y if x < y, y • x = x otherwise, and proved that 
S(-) is a pogroupoid. Thus, denoting this pogroupoid by pogr(5), it may be 
shown that pogr(po(5)) = S(-) and po(pogr(5)) = S(<) provide a natural 
isomorphism between the category of pogroupoids and the category of posets. 

Given a poset P ( < ) it is A-free if there is no full-subposet A ( < ) of P ( < ) 
which is order isomorphic to the poset A(<). If Cn denotes a chain of length n 
and if n denotes an antichain of cardinal number n , while + denotes the disjoint 
union of posets, then the poset (C2 + i ) (or C2 + C1) has Hasse-diagram: 
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and may be represented as {p < q,p o r, q o r } , where a o b denotes the relation 
of not being comparable (i.e., a o b iff a < b and b < a are both false) (see 
[NK2]). J. N e g g e r s and H. S. K i m [NK1] proved that the pogroupoid S(-) 
is a semigroup if and only if S(-) = pogr(P) where P ( < ) is (C9 + l)-free as a 
poset. 

Given a d-algebra (A";*,0), we define a binary operation * on A" by 

x*y 

x*y = H, 

У 
X 

if x * y = 0, 

otherwise. 

The operation * described above is said to be a pogroupoid. Even though the 
derived digraph from a d-algebra may have no (C2 + l)-full subposet, its derived 
algebra (A, *) need not be a pogroupoid. 

Example 5.1. Consider a d-algebra (A; *,0) with the following left table: 

* 0 a Ъ c * 0 a Ъ c 

0 0 0 0 0 0 0 a Ъ c 

a a 0 0 Ь a a a Ъ c 

Ь Ъ Ь 0 0 Ъ Ъ Ъ Ъ c 

c c c c c c c a c c 

Then (A";*,0) is a d-algebra, which is not a BCK/BCI-algebra. It is easy to 
see that its derived digraph has no (C2 + l)-full subposet, but (A";*) is not a 
pogroupoid, since (c*b)*a = c*a = a, while (c * b) * (b * a) c * b = c. 

PROPOSITION 5.2. Let (A; *,0) be a d* -algebra. Then ((x • H) * x) * H = 0 
/Or arzu x,H G A . 

P r o o f . It follows immediately from the definition of pogroupoid. • 
PROPOSITION 5.3. Let (A;*,0) be a d* -algebra. Assume (y * x) * y 0 
provided x * y = 0. Fben ((?/ * x) * x) * H = 0 for any x, y G A". 

P r o o f . If:r*H = 0, then y*x = H and hence ((y*x)*x)*y = (y*x)*y — 0. 
If x *?/ T*-" 0, then y*x = x and ((y*x) * x ) * H = ( x * x ) * H = 0*H = 0. proving 
the proposition. • 

There exists an example of non-d*-algebra satisfying (H * x) * H = 0 when 
x * H = 0. The d-algebra A in Example 5.1 is such an algebra, since (a*c) * a = 
b*a y£0. Propositions 5.2 and 5.3 hold for any BCK/BCI/BCH-algebras. The 
notion of a subcompanion operation is a generalized concept of Proposition 5.2. 
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PROPOSITION 5.4. Let (X;* ,0 ,O) be a companion d-algebra. If (X\*) is a 
pogroupoid, then (x • y) * (x 0 y) = 0 for any x, y G X. 

P r o o f . Since X is a d* -algebra, by Proposition 5.2, ((x*y) *x)*y = 0 for 
any x,y G X. Since 0 is a companion operation, by (VII), (x*y)*(xQy) = 0. 

D 

Let (X;* ,0 ,O) be a d-algebra. If we define x*y = 0, then * is a (trivial) 
subcompanion operation on X. 

Let (A";*,0) be a d-algebra and ô  be a binary operation on X (i = 1,2). 
Define a relation: 

<>i < o2 ^=> (a o1 y) *(xo2y)=0 

for any x,H G X . Then it is reflexive and anti-symmetric Let Bin(A) := {o : 
o binary operation on X}. Define a binary operation 0 on Bin(AT) by 

x(o1 0 o2)y := (x o1 y) * (x o2 y). 

Denote by o a , a G X, the binary operation x oa y := a for any x, y G X. 

THEOREM 5.5. If (X; *, 0) is a d-algebra, then (Bin(X), 0 , o0) is also a d-al
gebra and the mapping a i-> oa is an injection of (X; *, 0) into (Bin(X); 0 , oQ) 
which is a d-morphism. 

P r o o f . Clearly, Bin(X) satisfies the conditions (I) and (III). For any 
o G Bin(A") and for any x, y G X, x(oQ 0 o)y = (xoQy) * (xoy) = 0* (xoy) = 
0 = x oQ y, which means that oQ 0 o = oQ, proving that (Bin(X), 0 , oQ) 
is a d-algebra. We claim that o a * ob = oa^b for any a, b G X . In fact, 
x(o a * ob)y = (xoay)*(xoby) = a * b = x oa^b y for any x, y G X . If we define a 
map ip: X -> Bin(K) by ip(a) := o a , then cp(a*b) = oa^b = o a®o 5 = ip(a)®(p(b) 
for any a,b £ X, proving the theorem. D 

THEOREM 5.6. Let (X;* ,0 ,O) be a companion d-algebra. If we define a bi
nary operation • by 

x(ox • o2)y := (x o1 y) 0 (x o2 y) 

for any x, y G A", £ben (Bin(X); 0 , D, o) zs also a companion d-algebra contain
ing (X; *, 0 ,0 ) via the identification a i-> oa . 

P r o o f . Since Â  is a companion d-algebra, x[((o1 • o2) 0 o1)o2]2/ = 
[{(xOj 2/) 0 (x o2 y)} * (x ox H)] * (x o2 y) = 0 for any x,y G X. Since the 
proof of (VII) is similar, we omit it. D 

PROPOSITION 5.7. If d-algebra (A;*,0) has the transitivity condition, then 
(Bin(A"), 0,oQ) has also the transitivity condition. 

P r o o f . Straightforward. D 
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PROPOSITION 5.8. Let (X;*,0) be a d-algebra. If o G Bin(A') is commuta
tive with x * (x oy) = 0 for all x, y G X . then (x * y) * (x o y) — 0 . 

P r o o f . For any x,y G X, either x *y = x or x * y = y. If x * y = x, 
then (x *y) * (x oy) = x * (x o y) = 0 . If x * H = y, since o is commutative, 
(x*y) * (x oy) = y * (x o y) = y * (y o x) = 0, proving the proposition. • 

A d-algebra (X; *,0) is said to be a d-chain if x * y 7= 0, then y * x = 0. 
x,y G X . 

Note that Bin(X) need not be a d-chain, even though X is a d-cham. 
Consider a BCK/BCI/'d-algebra A" := {0,a,b} with the following table: 

* 0 a b 

0 0 0 0 

a a 0 0 

b b a 0 

Then (X;*,0) is a d-chain. Define maps / : X —r X by / (0) = 6, / ( a ) = a, 
/(b) = 0, g: X -> X by a(0) = 0, g(a) = a, /(b) = b. If we define binan 
operations on X by x o , H :== / ( x ) , x o y := g(x), for all x G A", then 

" 4 ' ' b T=0 and (bo^0)*(bo /0) =g(b)*f(b) 
o * o , , showing that Bin(A" 

d-chain. 

( 0 o , a ) * ( 0 o a) = / (0)*a(0) = b*0 
6 * 0 = & / 0. Hence o , * o 

/ 9 
ïo,Ф is not a 

PROPOSITION 5.9. Let (A;*, 0,0) be a d-algebra and * be a pogro lipoid 
operation on X. Then X is a d-chain if and only if x * y = y * x for all 
x,y£X. 

P r o o f . Let X be a d-chain. If x * y = 0, then x*y = y*x = y.If 
x * y 7= 0, then y * x = 0, since A is a d-chain, and hence x*y = y*x = x 
Conversely, assume that there are x,y G A such that x*y^0j^y*x. Then 
y = x*y = y*x = x, a contradiction. • 

THEOREM 5.10. Let (A;*, 0 ,0) be a companion d-algebra. If the companion 
operation is the pogroupoid operation, then the algebra (X; *, 0) is a d-chain and 
companion operation is commutative. 

P r o o f . Assume that (A";*,0) is not a ct-chain. Then there are x,y G A" 
such that x*y / 0 7= y*x. This means that x*y = y and x*(x*y) = x*y 7= 0. B\ 
Proposition 2.5-(ii), we have 0 = x*(x®y) = x*(x*y), a contradiction. Hence, 
(X; *,0) is a d-chain. When (A'; *,0) is a d-chain, at least one of x * H, y * x 
is zero, and hence by definition of *, the companion operation is commutative. 

• 
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COROLLARY 5.11. Let (A;*, 0,0) be a companion d-algebra. If the compan
ion operation is the pogroupoid operation, then (A; *, 0) is a d* -algebra. 

P r o o f . By Theorem 5.10, the situation x*y ^ 0,y*x y£ 0 does not occur. 
If x * y = 0, then xOy = x*y = y and hence (y *x) * y = ((xOy) * x) * y = 0, 
(x*y)*x = 0*x = 0. The case y * x — 0 is the same case to the above case. 

• 
Consider the following example. Let A := {0, a, b, c] be a set with 

* 0 a b c 

0 0 0 0 0 

a a 0 b 0 

b b 0 0 a 

c c a 0 0 

Then (A r;*,0) is a rf-chain, but ( b * c ) * b = a * b = b^0, i.e., A is not 
a d* -algebra. Note that A is not a companion d-algebra, since a 0 c is not 
defined. 
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