Mathematica Slovaca

Andrzej Walendziak

On BF-algebras

Mathematica Slovaca, Vol. 57 (2007), No. 2, [119]--128

Persistent URL: http://dml.cz/dmlcz/136941

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON BF-ALGEBRAS

Andrzej Walendziak
(Communicated by Anatolij Dvurečenskij)

Abstract

In this paper we introduce the notion of $B F$-algebras, which is a generalization of B-algebras. We also introduce the notions of an ideal and a normal ideal in $B F$-algebras. We investigate the properties and characterizations of them.

(C) 2007
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

The concept of B-algebras was introduced by J. Neggers and H. S. Kim [6]. They defined a B-algebra as an algebra $(A ; *, 0)$ of type $(2,0)$ (i.e., a nonempty set A with a binary operation $*$ and a constant 0) satisfying the following axioms:

```
(B1) \(\quad x * x=0\),
(B2) \(x * 0=x\),
(B) \((x * y) * z=x *[z *(0 * y)]\).
```

In [4], Y. B. Jun, E. H. Roh, and H. S. Kim introduced $B H$-algebras, which are a generalization of $B C K / B C I / B$-algebras. An algebra $(A ; *, 0)$ of type $(2,0)$ is a $B H$-algebra if it obeys (B1), (B2), and
(BH) $\quad x * y=0$ and $y * x=0$ imply $x=y$.
Recently, Ch. B. Kim and H. S. Kim [5] defined a BG-algebra as an algebra $(A ; *, 0)$ of type $(2,0)$ satisfying (B1), (B2), and

$$
\text { (BG) } \quad x=(x * y) *(0 * y)
$$

For other generalizations of B-algebras see [11] ($B Z$-algebras) and [8] (β-algebras). Here we define $B F / B F_{1} / B F_{2}$-algebras. We introduce the notions of an

[^0]ideal and a normal ideal in $B F$-algebras. We then consider the propertics and characterizations of them.

2. $B F$-algebras

Definition 2.1. A $B F$-algebra is an algebra $(A ; *, 0)$ of type $(2,0)$ satisfying (B1), (B2), and the following axiom:
(BF) $0 *(x * y)=y * x$.
Remark 2.2. If $(A ; *, 0)$ is a B-algebra, then it satisfies (BF), (BG), and (BH . For a proof see [9, Proposition 1.5(b)] and [1, Proposition 2.2(ii), Lemma 3.5(i)].

Example 2.3. Let \mathbb{R} be the set of real numbers and let $\mathbf{A} \quad(\mathbb{R} ; *, 0)$ be the algebra with the operation $*$ defined by

$$
x * y= \begin{cases}x & \text { if } y=0 \\ y & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

Then \mathbf{A} is a $B F$-algebra.
Example 2.4. Let $A=[0 ;+\infty)(=\{x \in \mathbb{R}: x \geq 0\})$. Define the binary operation $*$ on A as follows:

$$
x * y=|x-y| \quad \text { for all } \quad x, y \in A
$$

Then $(A ; *, 0)$ is a $B F$-algebra.
Proposition 2.5. If $\mathbf{A}=(A ; *, 0)$ is a $B F$-algebra, then
(a) $0 *(0 * x)=x$ for all $x \in A$;
(b) if $0 * x=0 * y$, then $x=y$ for any $x, y \in A$;
(c) if $x * y=0$, then $y * x=0$ for any $x, y \in A$.

Proof. Let A be a $B F$-algebra and $x \in A$. By (BF) and (B2) we obtair $0 *(0 * x)=x * 0=x$, that is, (a) holds. Also (b) follows from (a). Let now $x, y \in A$ and $x * y=0$. Then $0=0 * 0=0 *(x * y)-y * x$. This gives (c).

Proposition 2.6. Any $B F$-algebra $(A ; *, 0)$ that satisfies the identity $(x * z) *$ $(y * z)=x * y$ is a B-algebra.

Proof. This follows immediately from Proposition 2.5(a) and [10, Theorem 2.2].

Definition 2.7. A $B F$-algebra is called a $B F_{1}$-algebra (resp. a $B F_{2}$-algebra) if it obeys (BG) (resp. (BH)).

Every B-algebra is a $B F_{1} / B F_{2}$-algebra (see Remark 2.2). The $B F$-algebra $(\mathbb{R} ; *, 0)$ given in Example 2.3 is not a $B F_{1}$-algebra, since $(1 * 2) *(0 * 2)=2 \neq 1$. Example 2.4 is a $B F_{2}$-algebra which is not a $B F_{1}$-algebra.

Proposition 2.8. An algebra $\mathbf{A}=(A ; *, 0)$ of type $(2,0)$ is a $B F_{1}$-algebra if and only if it obeys the laws (B1), (BF), and (BG).

Proof. Suppose that (B1), (BF), and (BG) are valid in A. Let $x \in A$. Substituting $y=x$, (BG) becomes $x=(x * x) *(0 * x)$. Hence applying (B1) and (BF) we conclude that $x=0 *(0 * x)=x * 0$. Consequently, (B2) holds. Therefore \mathbf{A} is a $B F_{1}$-algebra. The converse is obvious.

Proposition 2.9. Let $\mathbf{A}=(A ; *, 0)$ be an algebra of type $(2,0)$. Then \mathbf{A} is a $B F_{2}$-algebra if and only if \mathbf{A} satisfies (B2), (BF), and the following axiom:
($\left.\mathrm{BH}^{\prime}\right) \quad x * y=0 \Longleftrightarrow x=y$.
Proof. Let \mathbf{A} be a $B F_{2}$-algebra. By definition, (B2) and (BF) are valid in A. Suppose that $x * y=0$ for $x, y \in A$. Proposition $2.5(\mathrm{c})$ yields $y * x=0$. From (BH) we see that $x=y$. If $x=y$, then $x * y=0$ by (B1). Thus (BH^{\prime}) holds in \mathbf{A}.

Let now A satisfies (B2), (BF), and (BH'). (BH') implies (B1) and (BH). Therefore \mathbf{A} is a $B F_{2}$-algebra.

Theorem 2.10. In a $B F$-algebra \mathbf{A} the following statements are equivalent:
(a) \mathbf{A} is a $B F_{1}$-algebra;
(b) $x=[x *(0 * y)] * y$ for all $x, y \in A$;
(c) $x=y *[(0 * x) *(0 * y)]$ for all $x, y \in A$.

Proof.
(a) \Longrightarrow (b): Let \mathbf{A} be a $B F_{1}$-algebra and $x, y \in A$. To obtain (b), substitute $0 * y$ for y in (BG) and then use Proposition 2.5(a).
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$: We conclude from (b) that $0 * x=[(0 * x) *(0 * y)] * y$. Hence $0 *(0 * x)=y *[(0 * x) *(0 * y)]$ by (BF). But $0 *(0 * x)=x$, and we have (c).
$(\mathrm{c}) \Longrightarrow$ (a): Let (c) hold. (BF) clearly forces

$$
\begin{equation*}
0 * x=[(0 * x) *(0 * y)] * y \tag{1}
\end{equation*}
$$

Using (1) with $x=0 * a$ and $y=0 * b$ we have

$$
0 *(0 * a)=[(0 *(0 * a)) *(0 *(0 * b))] *(0 * b)
$$

Hence applying Proposition 2.5(a) we deduce that $a=(a * b) *(0 * b)$. Consequently, \mathbf{A} is a $B F_{1}$-algebra.

Theorem 2.11. Let $\mathbf{A}=(A ; *$. 0$)$ be a $B F$-algebra. Then:
(a) \mathbf{A} is a $B G$-algebra;
(b) For $x, y \in A, x * y=0$ implies $x=y$;
(c) The right cancellation law holds in \mathbf{A}, i.e., if $x * y=z * y$, then $x=z$ for any $x, y, z \in A$;
(d) The left cancellation law holds in \mathbf{A}, i.e., if $y * x=y * z$, then $x=z$ for any $x, y, z \in A$.

Proof.
(a) is a direct consequence of the definitions.
(b): Let $x, y \in A$ and $x * y=0$. By (BG), $x=(x * y) *(0 * y)=0 *(0 * y)$. From Proposition 2.5(a) we conclude that $x=y$.
(c) is obvious, since the right cancellation law holds in every $B G$-algebra (see [5, Lemma 2.4]).
(d) follows from (c) and (BF).

Proposition 2.12. Every $B F_{1}$-algebra is a $B F_{2}$-algebra. Every $B F_{2}$-algebra satisfying the axiom ($\mathrm{BG)}$ is a $B F_{1}$-algebra.

Proof. The first statement is a consequence of Theorem 2.11(b). The second part of Proposition 2.12 follows from the definitions.

Theorem 2.13. Let $\mathbf{A}=(A ; *, 0)$ be a $B F_{1}$-algebra. Then $(A ; *)$ is a quasi group.

Proof. Let $\mathbf{A}=(A ; *, 0)$ be a $B F_{1}$-algebra and $x, y \in A$. We take $z_{1}=x *(0 * y$ and $z_{2}=(0 * x) *(0 * y)$. By Theorem 2.10, we have $x=z_{1} * y$ and $x-y * z_{2}$. Now, Theorem 2.11 implies that $(A ; *)$ is a quasigroup.

The interrelationships between some classes of algebras mentioned before are visualized in Figure 1. (An arrow indicates proper inclusion, that is, if \mathcal{X} and \mathcal{Y} are classes of algebras, then $\mathcal{X} \rightarrow \mathcal{Y}$ means $\mathcal{X} \subset \mathcal{Y}$.) The implications (a and (d) follow easily from the definitions. By [5, Proposition 2.8], we get (e) The implications (b) and (c) follow from Theorem 2.11 and Proposition 2.12, respectively.

ON BF-ALGEBRAS

Figure 1

3. Ideals in $\boldsymbol{B F}$-algebras

In $B F$-algebras (similarly as in $B C K / B C I / B H$-algebras; see [3], [2], and [4]), we define the notion of an ideal.

From now on, \mathbf{A} always denotes a $B F$-algebra $(A ; *, 0)$.
Definition 3.1. A subset I of A is called an ideal of \mathbf{A} if it satisfies:
$\left(\mathrm{I}_{1}\right) 0 \in I$,
($\left.\mathrm{I}_{2}\right) x * y \in I$ and $y \in I$ imply $x \in I$ for any $x, y \in A$.
We say that an ideal I of \mathbf{A} is normal if for any $x, y, z \in A, x * y \in I$ implies $(z * x) *(z * y) \in I$.

An ideal I of \mathbf{A} is said to be proper if $I \neq A$.

Obviously, $\{0\}$ and A are ideals of A. A is normal, but $\{0\}$ is not normal m gencral. (See the example below.)
Example 3.2. Let $A=\{0,1,2,3\}$ and $*$ be defined by the following table:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	0
2	2	3	0	2
3	3	0	2	0

Then $I=\{0\}$ is not a normal ideal in the $B F$-algebra $(A ; *, 0)$. Indeed, $1 * 3=0 \in I$, but $(2 * 1) *(2 * 3)=3 * 2=2 \notin I$.

Lemma 3.3. Let I be a normal ideal of a $B F$-algebra \mathbf{A} and $x, y \in A$. Then:
(a) $x \in I \Longrightarrow 0 * x \in I$,
(b) $x * y \in I \Longrightarrow y * x \in I$.

Proof.
(a): Let $x \in I$. Then $x=x * 0 \in I$. Since I is normal, $(0 * x) *(0 * 0) \in I$. Hence $0 * x \in I$.
(b): Let $x * y \in I$. $\mathrm{By}(\mathrm{a}), 0 *(x * y) \in I$. Applying (BF) we have $y * x \in I$.

Definition 3.4. A nonempty subset N of A is called a subalgebra of \mathbf{A} if $x * y \in N$ for any $x, y \in N$.

It is easy to see that if N is a subalgebra of \mathbf{A}, then $0 \in N$.
Lemma 3.5. Let N be a subalgebra of \mathbf{A} and let $x, y \in A$. If $x * y \in N$, ther $y * x \in N$.

Proof. Let $x * y \in N$. By (BF), $y * x=0 *(x * y)$. Since $0 \in N$ and $x * y \in N$, we see that $0 *(x * y) \in N$. Consequently, $y * x \in N$.

Example 3.6. Let $A=\{0,1,2,3\}$. We define the binary operation $*$ on A a follows:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Then $\mathbf{A}=(A ; *, 0)$ is a $B F$-algebra. The set $N=\{0,1\}$ is a subalgebra of \mathbf{A}. N is not an ideal, since $2 * 1=1 \in N$, but $2 \notin N$. It is easy to see that the set $I-\{0,2,3\}$ is an ideal of \mathbf{A}, but it is not a subalgebra.

Proposition 3.7. If I is a normal ideal of \mathbf{A}, then I is a subalgebra of \mathbf{A} satisfying the following condition:
(NI) if $x \in A$ and $y \in I$, then $x *(x * y) \in I$.
Proof. Let $x \in A$ and $y \in I$. Lemma 3.3(a) shows that $0 * y \in I$. Since I is normal, we conclude that $(x * 0) *(x * y) \in I$, i.e., $x *(x * y) \in I$. Thus (NI) holds. Let now $x, y \in I$. Therefore $x *(x * y) \in I$. By Lemma 3.3(b), $(x * y) * x \in I$. From the definition of ideal we have $x * y \in I$. Thus I is a subalgebra satisfying (NI).

Remark 3.8. The converse of Proposition 3.7 does not hold. Indeed, the subalgebra $\{0,1\}$ of the $B F$-algebra \mathbf{A} (see Example 3.6) satisfies (NI), but it is not an ideal.

In [7], J. Neggers and H. S. Kim introduced the notion of a normal subalgebra of a B-algebra. Let $\mathbf{A}=(A ; *, 0)$ be a B-algebra and N be a subalgebra of A. N is said to be a normal subalgebra if
(NS) $\quad(x * a) *(y * b) \in N$ for any $x * y, a * b \in N$.
Remark 3.9. In [9], it is proved that if N is a subalgebra of \mathbf{A}, then N is normal if and only if N satisfies (NI).

In B-algebras the following result holds:
Proposition 3.10. Let A be a B-algebra and let $N \subseteq A$. Then N is a normal subalgebra of \mathbf{A} if and only if N is a normal ideal.

Proof. Let N be a normal subalgebra of A. Clearly, $0 \in N$. Suppose that $x * y \in N$ and $y \in N$. Then $0 * y \in N$. Since N is a subalgebra, we have $(x * y) *(0 * y) \in N$. But $(x * y) *(0 * y)=x$, because every B-algebra satisfies (BG) (see Remark 2.2). Therefore $x \in N$, and thus N is an ideal. Let now $x, y, z \in A$ and $x * y \in N$. By (NS), $(z * x) *(z * y) \in N$. Consequently, N is normal. The converse follows from Proposition 3.7 and Remark 3.9.

Definition 3.11. Let $\mathbf{A}=\left(A, *, 0_{A}\right)$ and $\mathbf{B}=\left(B, *, 0_{B}\right)$ be $B F$-algebras. A mapping $\varphi: A \rightarrow B$ is called a homomorphism from \mathbf{A} into \mathbf{B} if $\varphi(x * y)=$ $\varphi(x) * \varphi(y)$ for any $x, y \in A$.

Observe that $\varphi\left(0_{A}\right)=0_{B}$. Indeed, $\varphi\left(0_{A}\right)=\varphi\left(0_{A} * 0_{A}\right)=\varphi\left(0_{A}\right) * \varphi\left(0_{A}\right)=0_{B}$. We denote by $\operatorname{ker} \varphi$ the subset $\left\{x \in A: \varphi(x)=0_{B}\right\}$ of A (it is the kernel of the homomorphism φ).

Lemma 3.12. Let $\varphi: A \rightarrow B$ be a homomorphism from \mathbf{A} into \mathbf{B}. Then $\operatorname{ker} \varphi$ is an ideal of \mathbf{A}.

ANDRZEJ WALENDZIAK

Proof. Obviously, $0_{A} \in \operatorname{ker} \varphi$, that is, $\left(\mathrm{I}_{1}\right)$ holds. Let $x * y \in \operatorname{ker} \varphi$ and $y \in$ $\operatorname{ker} \varphi$. Then $0_{B}=\varphi(x * y)=\varphi(x) * \varphi(y)=\varphi(x) * 0_{B}=\varphi(x)$. Consequently, $x \in \operatorname{ker} \varphi$. Therefore, $\left(\mathrm{I}_{2}\right)$ is satisfied. Thus I is an ideal of \mathbf{A}.

The next example shows that the kernel of a homomorphism is not always a normal ideal. Let \mathbf{A} be the algebra given in Example 3.2. Clearly, $\mathrm{id}_{A}: A \rightarrow A$ is a homomorphism and the ideal $\operatorname{ker}\left(\operatorname{id}_{A}\right)=\{0\}$ is not normal.

The example below will demonstrate that there is a homomorphism φ of $B F$-algebras with $\operatorname{ker} \varphi=\{0\}$ which it is not one-to-one.

Example 3.13. Let $\mathbf{A}=(A ; *, 0)$ be the $B F$-algebra, where $A=\{0,1,2\}$ and $*$ is given by the table

$*$	0	1	2
0	0	1	2
1	1	0	0
2	2	0	0

Let $\varphi: A \rightarrow A$ be defined by $\varphi(0)=0$ and $\varphi(1)=\varphi(2)=1$. It is obvious that φ is not one-to-one, but $\operatorname{ker} \varphi=\{0\}$.
Proposition 3.14. Let \mathbf{A} and \mathbf{B} be $B F_{2}$-algebras and let $\varphi: A \rightarrow B$ be a homomorphism from \mathbf{A} into \mathbf{B}. Then:
(a) $\operatorname{ker} \varphi$ is a normal ideal;
(b) φ is one-to-one if and only if $\operatorname{ker} \varphi=\left\{0_{A}\right\}$.

Proof.

(a): By Lemma 3.12, $\operatorname{ker} \varphi$ is an ideal of \mathbf{A}. Let $x, y, z \in A$ and $x * y \in \operatorname{ker} \varphi$. Then $0_{B}=\varphi(x * y)=\varphi(x) * \varphi(y)$. From ($\left.\mathrm{BH}^{\prime}\right)$ it follows that $\varphi(x)=\varphi(y)$. Consequently, $\varphi((z * x) *(z * y))=(\varphi(z) * \varphi(x)) *(\varphi(z) * \varphi(x))=0_{B}$, and hence $(z * x) *(z * y) \in \operatorname{ker} \varphi$.
(b): Obviously, if φ is one-to-one, then $\operatorname{ker} \varphi=\left\{0_{A}\right\}$. On the other hand, suppose that $x, y \in A$ and $\varphi(x)=\varphi(y)$. Then $\varphi(x * y)=\varphi(x) * \varphi(y)=$ $\varphi(x) * \varphi(x)=0_{B}$. Hence $x * y \in \operatorname{ker} \varphi=\left\{0_{A}\right\}$, and so $x * y=0_{A}$. By (BH'), $x=y$. Therefore, φ is one-to-one.

Next we construct quotient $B F$-algebras via normal ideals. Let $\mathbf{A}=(A ; *, 0)$ be a $B F$-algebra and I be a normal ideal of \mathbf{A}. For any $x, y \in A$, we define

$$
x \sim_{I} y \Longleftrightarrow x * y \in I
$$

By $\left(\mathrm{I}_{1}\right), x * x=0 \in I$, that is, $x \sim_{I} x$ for any $x \in A$. This means that \sim_{I} is reflexive. From Lemma 3.3(b) we deduce that \sim_{I} is symmetric. To prove that

ON BF-ALGEBRAS

\sim_{I} is transitive, let $x \sim_{I} y$ and $y \sim_{I} z$. Then $x * y \in I$ and $y * z \in I$. Since I is normal,

$$
\begin{equation*}
(z * x) *(z * y) \in I \tag{2}
\end{equation*}
$$

We have

$$
\begin{equation*}
z * y \in I \tag{3}
\end{equation*}
$$

because $y * z \in I$. Hence, we conclude from (2) and (3) that $z * x \in I$, and thus that $x * z \in I$, so that finally $x \sim_{I} z$ as well. Consequently, \sim_{I} is an equivalence relation on A.

Theorem 3.15. Let I be a normal ideal of a BF-algebra A. Then \sim_{I} is a congruence relation of \mathbf{A}.

Proof. Let $x, y, z, t \in A$. Suppose that $x \sim_{I} y$ and $z \sim_{I} t$. Then $x * y \in I$ and $z * t \in I$. Since I is normal, (2) holds, and hence $[0 *(z * x)] *[0 *(z * y)] \in I$. From (BF) we deduce that $(x * z) *(y * z) \in I$. Thus

$$
\begin{equation*}
x * z \sim_{I} y * z \tag{4}
\end{equation*}
$$

As $z * t \in I$ we have $(y * z) *(y * t) \in I$. Therefore

$$
\begin{equation*}
y * z \sim_{I} y * t \tag{5}
\end{equation*}
$$

From (4) and (5) we conclude that $x * z \sim_{I} y * t$. Consequently, \sim_{I} is a congruence relation of \mathbf{A}.

Let I be a normal ideal of \mathbf{A}. For $x \in A$, we write x / I for the congruence class containing x, that is, $x / I=\left\{y \in A: x \sim_{I} y\right\}$. We note that

$$
x \sim_{I} y \quad \text { if and only if } \quad x / I=y / I
$$

Denote $A / I=\{x / I: x \in A\}$ and set $x / I *^{\prime} y / I=x * y / I$. The operation $*^{\prime}$ is well-defined, since \sim_{I} is a congruence relation of \mathbf{A}. It is easy to see that $\mathbf{A} / I=\left(A / I, *^{\prime}, 0 / I\right)$ is a $B F$-algebra. The algebra \mathbf{A} / I is called the quotient $B F$-algebra of \mathbf{A} modulo I. There is a natural map φ_{I}, called the quotient map, from \mathbf{A} onto \mathbf{A} / I defined by

$$
\varphi_{I}(x)=x / I \quad \text { for all } \quad x \in A
$$

Clearly, φ_{I} is a homomorphism of \mathbf{A} onto \mathbf{A} / I. Observe that $\operatorname{ker}\left(\varphi_{I}\right)=I$. Indeed,

$$
x / I=0 / I \Longleftrightarrow x \sim_{I} 0 \Longleftrightarrow x * 0 \in I \Longleftrightarrow x \in I
$$

Theorem 3.16. Let \mathbf{A} and \mathbf{B} be $B F_{2}$-algebras and let $\varphi: A \rightarrow B$ be a homomorphism from \mathbf{A} onto \mathbf{B}. Then $\mathbf{A} / \operatorname{ker} \varphi$ is isomorphic to \mathbf{B}.

ANDRZEJ WALENDZIAK

Proof. By Proposition 3.14(a), $I=\operatorname{ker} \varphi$ is a normal ideal of A. Define a mapping $\psi: A / I \rightarrow B$ by $\psi(x / I)=\varphi(x)$ for all $x \in I$. Let $x / I=y I$. The 1 $x \sim_{I} y$, that is, $x * y \in I$. Hence $\varphi(x) * \varphi(y)=0_{B}$. By ($\left.\mathrm{BH}^{\prime}\right)$ we have $\varphi(x)-\varphi(y$. Consequently, $\psi(x / I)=\psi(y / I)$. This means that ψ is well defined. It is easy to sce that ψ is a homomorphism from \mathbf{A} / I onto \mathbf{B}. Observe that ker $\psi=\left\{0_{A} I\right\}$. Indeed, $x / I \in \operatorname{ker} \psi \Longleftrightarrow \psi(x / I)=0_{B} \Longleftrightarrow \varphi(x)=0_{B} \Longleftrightarrow x \in I \Longleftrightarrow$ $x / I \quad 0_{A} / I$. From Proposition 3.14(b) it follows that ψ is one-to-one. Thus ψ is an isomorphism from \mathbf{A} / I onto \mathbf{B}.

Acknowledgement. The author thanks the referee for his remarks which were incorporated into this revised version.

REFERENCES

[1] CHO, J. R. KIM, H. S.: On B-algebras and quasigroups, Quasigroups Related Systems 7 (2001), 16.
[2] HUANG, Y.: Irreducible ideals in BCI-algebras, Demonstratio Math. 37 (2004), 18.
[3] ISEKI, K. TANAKA, S.: Ideal theory of BCK-algebras, Math. Japon. 21 (1976, 351366.
[4] JUN, Y. B. ROH, E. H. KIM, H. S.: On BH-algebras, Sci. Math. Jpn. 1 (1998. 347354.
[5] KIM, Ch. B. KIM, H. S.: On BG-algebras, Mat. Vesnik (To appear)
$[6$ NEGGERS, J. KIM, H. S.: On B-algebras, Mat. Vesnik 54 (2002), 2129.
[7] NEGGERS, J. KIM, H. S.: A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 207214.
[8] NEGGERS, J. KIM, H. S.: On β-algebras, Math. Slovaca 52 (2002), 517530.
[9] WALENDZIAK, A.: A note on normal subalgebras in B-algebras, Sci. Math. Jpn. 62 (2005), 4953.
[10] WALENDZIAK, A.: Some axiomatizations of B-algebras, Math. Slovaca 56 (2006, 301306.
[11] ZHANG, X. YE, R.: BZ-algebra and group, J. Math. Phys. Sci. 29 (1995), 223233.

Received 18.4.2005
Revised 7.6.2005

Insitute of Mathematics and Phys cs University of Podlasie PL 08110 Siedlce POLAND
E-mail: walent $a_{\text {interia.pl }}$

[^0]: 2000 Mathematics Subject Classification: Primary 06F35.
 Keywords: $B F / B F_{1} / B F_{2}$-algebra, $B H$-algebra, $B G$-algebra, ideal, normal ideal, subalgebra, quotient $B F$-algebra.

