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(Communicated by Michal Feckan) 

ABSTRACT. In this paper, sufficient conditions are obtained for oscillation of 
all nontrivial, prepared, symmetric solutions of a class of nonlinear second order 
matrix differential equations of the form 

(P(t)Y')' + Q(t)F(Y) = 0, t>0, 

and 
Y" + Q(t)F(Y) = 0, t>0. 

©2007 
Mathematical Insti tute 

Slovak Academy of Sciences 

1. Introduc t ion 

In this paper, sufficient conditions are obtained for oscillation of all non-
trivial, symmetric, prepared solutions of a class of nonlinear second order matrix 
differential equations of the form 

(P(t)Y')' + Q(t)F(Y) = 0, t > 0 , (1.1) 

where P(t) and Q(t) are n x n real continuous symmetric matrix functions on 
[0, oc), P(t) is positive definite, F: Mn —> Mn and Mn is the vector space of all 
n x n real symmetric matrices. If P(t) = Ini n x n identity matrix, then (1.1) 
takes the form 

Y" + Q(t)F(Y) = 0, t > 0 . (1.2) 

The oscillation of Eqs. (1.1) and (1.2) must be studied separately since, unlike the 
scalar case, there is no oscillation preserving transformation of the independent 
variable that allows the passage between the two forms ([1]). 

2000 M a t h e m a t i c s Sub j ec t C l a s s i f i c a t i o n : Primary 34C10. 
Keywords : oscillation, non-oscillation, matrix differential system, nonlinear equation, self-
adjoint, second order. 

4ü Springer 



N. PARHI — P. PRAHARAJ 

Some authors ([7], [8], [9]) have obtained sufficient conditions for oscillation of 
solutions of (1.1) and (1.2) employing variational techniques. It seems that the 
work of H o w a r d [2] is the first one where the variational method is not used for 
the study of oscillation of solutions of (1.2). He has studied o cillatoiy behavioi 
of nontrivial, prepared, symmetric solutions of (1.2). His major a sumption that 

K(t) Q(s)ds ( t 0 > 0 ) 

possesses the property D, viz, 

ы(eк(t)0 CO as t 0 0 , 

where £ represents a column vector of unit length, is not easy to verify. It seems 
that no example could be given in the paper due to this reason. In this paper 
some new and easily veiifiable oscillation criteria are given for oscillation of non-
trivial, prepared, symmetric solutions of a class of nonlinear matrix differential 
equations. 

A solution Y(t) of (1.1) is said to be nontrivial if det Y(t) ^ 0 (determinant 
of Y(t) is denoted by detY(t)) for at least one t £ [0, oo). A solution Y t) of 
(1.1) is said to be prepared or self-conjugate or conjoined if 

Y*(t)(P(t)Y'(t)) - (P(t)Y'(t))*Y(t), 

that is, if P(t)Y'(t)Y~1(t) is symmetric for t G [0, oo). (The tianspose of a ma­
trix A is denoted by A*.) A nontrivial, prepared solution Y(t) of (1.1) is said to 
be oscillatory if, for every rj0 > 0, there exists a t\ > to such that detY(ti) 0. 
that is, det Y(t) has arbitrarily large zeros in [0,oo); otherwi e, Y(t) is called 
non-oscillatory. It may be noted that oscillation is defined through a prepared 
solution because it is possible (see [6]) that a nontrivial, nonprepared, nonoscil-
latory solution of a linear matrix differential equation exists. (The solution mav 
be symmetric or not.) Indeed, 

cos t — sin t 
sin t cos t 

U(t) = 

is a nontrivial, nonoscillatory solution (because det U(t) = 1 > 0) of 

Y" + Y = 0, t > 0, 

where Y is a 2 x 2 matiix. Since 

(1.3) 

and 

U*(t)U'(t) 

(U'(t))*U(t) 

cost sin/; 
— sin t cos t 

— s'mt cost 
— cos t - sin t 

— siní 
cost 

cost 
• sin t 

cost — s'mt 
sin t cos t 

0 1 
1 0 

0 1 
- 1 0 
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then U(t) is not prepared. We may note that U(t) is not symmetric. As a second 
example, we may consider 

cos t sin t 
sin t — cos t V(t) = t> 0. 

It is a nontrivial, nonprepared, symmetric, nonoscillatory solution of (1.3) be­
cause det V(t) = - 1 < 0, t > 0 and 

V(t)V'(t) = 
0 1 

- 1 0 
and V'(t)V(t) 

0 - 1 
1 0 

On the other hand, Eq. (1.3) may admit a nontrivial, nonprepared, oscillatory 
solution. Indeed, 

W(t) = sin t cos t 
2 sin t 3 cos t 

t > 0, 

is such a solution of (1.3), because det W(t) = s in tcos t and 

sin t 2 sin t 
cos t 3 cos t W*(ť)W'(ť) 

5 sin t cos t 
7 cos2 t 

cos t — sin t 
2 cost —3sint 

2/ -7sin^(t) 
-10 s intcost 

and 

(W'(t))*W(t) 
cos t 2 cos t 

— sint —3sint 

5 sin t cos t 
- 7 s i n 2 t 

sin t cos t 
2 sin t 3 cos t 

7 cos2 t 
10 sin t cost 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

imply that W(t) is not prepared. Moreover, Eq. (1.3) admits a nontrivial, 
prepared, symmetric, oscillatory solution 

Y(t) sin t cos t 
cos t sin t 

It also admits a nontrivial, prepared, nonsymmetric, oscillatory solution 

— cos t — sin t 
sin t cos t У(í) 

There are differential equations which admit nontrivial, prepared, symmetric, 
nonoscillatory solutions. For example, 

3* 0 
Y(t) 

0 

is such a solution of the equation 

(P(t)Y')' + Q(t)Y = 0, t>0, 
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where 

r p-2 t n " 

p(t)=[ 0 e « ]=<?(*)• 

2. Oscillation results 

Some oscillation results are obtained in this section. We need the following 

condition in the sequel: 

(Ci) Let P - 1 ( t ) > In, F(X) be a polynomial in X with real coefficients, Q(t) 
be positive semidefinite and F(X)X~1 > In for every nonsingular matrix 

X G Mn. 

THEOREM 1. Let (Ci) hold. If either 

(C 2) lim ±j(trjQ(s)ds) dt = oo 
T-C50 o V o / 

Or 

т T / t \* 
(C3) lim ± / ( t r / Q ( s ) d s ) dt = oc. 

T^oo 0 V 0 / 
l/ien every nontrivial, prepared, symmetric solution of (1.1) oscillates. 

Remark. If Y(t) is a nontrivial, prepared, symmetric, nonoscillatory solution 

of (1.1), then there exists a to > 0 such that det Y(t) ^ 0 for t > t0. Hence 

Y-^t) exists for t > t 0 and Y(t)Y~l(t) = In implies that (Y(t)Y ^(t))' - 0. 

Consequently ( y - 1 ^ ) ) ' = -Y^^Y'^Y'1^). Setting 

s(t) = -p(t)y'(t)y-Ht), t > t0, (2.i) 

we obtain 

S'(t) = Q(t)R(t) + SMP-itySQ), (2.2) 

where R(t) = F(Y(t))Y~1(t). From (Ci) it follows that R(t) is symmetric. 
Since Y(t) is prepared, then S(t) is symmetric. Indeed, 

S*(t) = -(Y- (t))*(P(t)Y'(t)y 

= -(Y*(t))-1Y*(t)(P(t)Y'(t))Y-1(t) 

= -P(t)Y'(t)Y~\t) = S(t). 
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Further, Y'(t)P(t) = Y^P^Y'^Y'1^) as Y(t) is symmetric and prepared. 
Hence 

(Y'(t)P(t))' =(Y(t)P(t)Y'(t)Y-\t))' 

= Y'(t)P(t)Y'(t)Y~1(t) + y ( i ) ( P ( t ) y ( t ) ^ _ 1 ( l ) ) ' 

= Y'(t)P(t)Y'(t)Y~1(t) + Y(t)(P(t)Y'(t))'Y-l(t) 

+ Y(t)P(t)Y'(t)(Y-\t))' 

= Y'(t)P(t)Y'(t)Y~1(t) - Y(t)Q(t)F(Y(t))Y-\t) 

- Y(t)P(t)Y'(t)Y-1(t)Y'{t)Y-1(t) 

= Y'(t)P(t)Y'(t)Y~1(t) - Y(t)Q(t)F(Y(t))Y-\t) 

-Y'(t)P(t)Y'(t)Y-\t) 

= -Y(t)Q(t)F(Y(t))Y~\t) 

and ((P(t)Y'(t))')* = -(Q(t)F(Y(t)))*, that is, (Y'(t)P(t))' = -F(Y(t))Q(t) 
imply that 

Y(t)Q(t)F(Y(t))Y~1(t) = F(Y(t))Q(t), 

that is, Q(t)F(Y(t))Y~1(t) = Y~1(t)F(Y(t))Q(t) = F(Y(t))Y~1(t)Q(t) be­
cause F(Y(t))Y(t) = Y(t)F(Y(t)). Hence Q(t)R(t) = R(t)Q(t). Consequently, 
Q(t)R(t) is symmetric. 

We need the following lemmas for the proof of Theorem 1. 

LEMMA 2. Let (Ci) hold. Then 

T 

0 < lim / t r [S ' ( t )p- 1WS ,W] d t < o o , (2.3) 
T ^ o o J 

to 

where S(t) is defined by (2.1). 

P r o o f . Integrating (2.2) from to to t and then taking trace we obtain 

t t 

t r S ( t ) - t r S ( t 0 ) = f tr(Q(s)R(s))ds+ f tT(S(s)P~1(s)S(s)) ds. 

to to 
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Further integration from to to T yields 

T / t \ T 

i | I Jtr(S(s)p-1(s)S(s))ds j dt = i j t rS ( t )d t - ( l - | j trS(t0) 

to \ to / to 

-^j(jtv(Q(s)R(s))ds\ dt. 

to \ t 0 ' 

Since R(t) - Jn > 0, Q(t) > 0 and Q(t) commutes with P(t), then Q(t)(R(t) 
- In) > 0 and hence tr(Q(t)it(t)) > trQ(t) for t > t0. Thus 

ftr(Q(s)i?(s))ds> / t r Q ( s ) d s > 0 . 

to to 

Consequently, 

T / t 

i | I / t rCSWP-H^SC^ds j dt < ±jtrS(t)dt - ( l - | ) tr S(t 

to \ to / to 

As S(t)P~l(t)S(t) > S2(t) > 0 implies that t r ^ ^ P " 1 (*)$(*)) > 0, then 

t 

/>tr(5(s)p-1(s)5(s))d;s 

to 

is an increasing function of t and hence 

t 

lim í tr(S(s)p-x (s)S(s)) ds = џ, 
:^00 J t 

to 

where 0 < /i < oo. If /x = oo, then it may be shown that 

T / t 

. _ ^ T 1 ^ / 1 J^(S(s)p-1(s)S(S))dsj dt = 
to \to 

and hence from (2.4) it follows that 

T 

lim — / trS(t)dt = oo. 
T-+00 T J w 
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Thus 
i 

i / t r S ( í ) d í > - ( l - | ) t r S ( í 0 ) 
*o 

for large T. Then (2.4) yields 

T / t 

*/h 
to \ t o 

tr(5(s)p-Ҷs)S(s))ds d í < T 

1 

í txS(t) àt (2.5) 

ío 

for large T. An application of the Cauchy-Schwarz inequality yields, for T > 
Ti > t0, 

1 

fJtvS(t) dí 

ío 

I / ( t r 5 ( ť ) ) 2 d í , | ^ / l 2 d í 
ťo 

T 

^ / t r s Ҷ í ) 
ťo 

T 

<Ş/tr(S(í)P-Ҷí)S(í))dí. 

to 

l d í l l l - l 

Hence, from (2.5) it follows, for T > Fi > t0, that 

т / t 

* / / • 
to \to 

i 2 

< tr(S(s)p- 1(s)S(s))ds I dt 

Setting, for T > 7\ > t0 

H(T) 

we get 
T 

H'(T)= ftiiS^p-^^S^dt. 

Џ Jtx(S(t)p-\t)S(t))át. (2.6) 
ío 

T / i 

" ' ' 
*0 \ * 0 

tr(S(s)P -Ҷs)S(s))ds dí > 0 , 

to 

From (2.6) it follows that 
H'(T) ^ 1 

H2(T) AnT 
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Integrating the above inequality from T\ to T and then taking limit as T —* oo 
we obtain 

1 ,. - (T\ 1 
0 0 = — - l i m In —- < TT,^ x < 00, 

4nT-oo \T\) ~ H(T\) 

a contradiction. Hence 0 < \i < 00. This completes the proof of the lemma. • 

L E M M A 3. 

lim sup — / tr / Q(s) ds \ dt = 00 

if and only if 

lim sup — / I tr / Q(s) ds ] dt = 00 

to \ to 

0 \ 0 

T / t 

T—>nn P̂ . 

/Or every t0 > 0. 

The proof of the lemma is straight-forward and hence is omitted. 

P r o o f of T h e o r e m 1. Suppose (C2) holds. Let Y(t) be a nontrivial, sym­
metric, prepared, non-oscillatory solution of (1.1). Hence detY"(t) 7̂  0 foi 
t > t0 > 0. Consequently, Y~] (t) exists for t > t0. Setting S(t) as in (2.1), 
we obtain (2.2). Integrating it yields 

t t 

S(t)-S(t0)= [Q(s)R(s)ds+ f S(s)p-1(s)S(s)ds. 

Hence 

1 t 

tг S(t) - tr 5(ť 0) = tг / Q(s)R(s) ds + tv í 5 ( s ) P _ 1 ( s ^ s ) ds 

to to 

tr[Q(s)R(s)]ds> tтQ(s)ds, > 
to to 

since R(t) -In>0, Q(t) > 0 and R(t)Q(t) = Q(t)R(t). Then 

T T / t \ 
l
fJtTS(t)dt-(l-ťj^tTS(t0)>±J y"trQ(s)ds dť. 

to to \ to 

From Lemma 3 and the assumption (C2) it follows that 
T 

1 ľ 
lim sup — / tr S(t) dt = 00. 

T-^oo T J 
to 
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Hence there exists a sequence {T m } such that T m —> oo as m —» oo and 

(2.7) lim — / tтS(t)dt 
m->oc T m J 

oo. 

ťo 

The use of the Cauchy-Schwarz inequality yields 

Tm 2 Т 
-*• m 

Tm -

-L ítтS(t)dt 
- m J 

< -?- í(trS(t))2dt 
Im J f/dí 

L ť 0 Ј L ť 0 Ј L ť 0 Ј 
Tm 

< -£- trS2(t)dt 
•J-m J 

fi--*--" 
Т L ť0 Ј 

— 

-*• m 

<-£- ítvS2(t)dt 
4m J 

ťo 

< 
Tm 

- ^ í tv(S(t)P-Ңt)S(ť))dt 
4m J 

ťo 

since P _ 1 ( 0 > -?n. From (2.7) it follows that 

hm Ј - /tг(S(t)P-Ҷt)S(ť))dt: OO, 

ťo 

a contradiction to (2.3). 
Suppose (C3) holds. Then 

lim ™JI"/ Q(s) ds dt = 00. 

£0 \ £0 

Integrating (2.2) from to to t , we obtain 

t 

where 

tr S(t) = tr / Q(s)R(s) ds-tr í S(s)p-ľ (s)S(s) ds + L, 

ť 0 ť 

0 0 

L = tr S(t0) + tr / S ( s ) P _ Ҷ s ) 5 ( s ) ds 

to 
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and -oo < L < oo, by Lemma 2. As Q(t)(R(t) - In) > 0, then 

t t 

0 < tr / Q(s) ds <tv ( Q(s)R(s) ds 

to to 
OO 

<tvS(t) + tvJs(s)p-1(s)S(s)ds-L. 
t 

Then (tr jQ(s)ds) < 4(trS(t))2 + 4 ftr J S(s)P~1(s)S(s) dsj + 2L2 and 
t 0 

hence 
2 

T , , „ , Q(s)ds\ dt 
т / t 

тj(Ч> 
to \ to 

<ïf(trS(t))2dt + ±jltгjs(8)P-Ч8)S(8)d8) dt + 2L2(l-Џ). 
T T / oc 

to to \ t 

As 

tr í S(s)p-l(s)S(s)ds <oo 

ťo 

and 
T T 

í(tvS(t))2dt<n ítvS2(t)dt<n / ' tr(5(í)p- 1 (í)s(ř))dí ) 

to to to 

then 
T 

T 
ťo 

and 

lim i í(tvS(t))2dt = 0 
—oo I J 

lim 
T-+00 

Hence 

^ytrys^p-^^^ds d*=o. 
ť0 V ť / 

T / t \ 2 

lim — / tr / Q(s) ds\ dt < oo, 
ť0 V ť0 / 

a contradiction. 
Thus the proof of the theorem is complete. • 
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Remark. In general, the conditions (C2) and (C3) are independent. However, 
if 

00 

/ 
qij(t)dt < 00, 

where Q(t) = (qij(t))nXn, then (C2) implies (C3). Indeed, Q(t) > 0 and 
00 t t 

I / qij(t) dt\ < 00 imply that / Q(s) ds > 0 for t > 0 and hence tr / Q(s) ds > 0. 
0 0 0 

Thus 

ft N* 
0 \ 0 

Thus (C2) implies (C3). 

s) ds dí < ±j ltrJQ(s)ds 

Remark. It is possible to find symmetric matrices Y0 and Y0 such that 
Y0(P(t0)Y0) - (Y0P(to))Y0 = 0. If Y(t) is a symmetric solution of the initial 
value problem (1.1) and Y(0) = YQ and Y'(0) = Y0 and if Y(t) commutes with 
Q(t), then Y(t) is prepared because 

[Y(t)(P(t)Y'(t)) - (Y'(t)P(t))Y(t)}' = 0 

implies that 
Y(t)(P(t)Y'(t)) - (Y'(t)P(t))Y(t) = C, 

a constant matrix. The existence of a symmetric solution of (IT) can be estab­
lished by the suitable choice of fixed point theorems. 

In order to obtain an example to illustrate Theorem 1, we consider following 
equations: 

y"(t) + qi(t)f(y(t))g(y'(t)) = 0 (2.8) 

and 
(r(t)y'(t))' + p(t)y'(t) + q2(t)f(y(t)) = 0, (2.9) 

t > t0 > 0, where / G C( ( -oo , oc), ( -co , co)) with yf(y) > 0 for y ^ 0, 
g G C((—oo,co), (-00,00)) with g(y) > K > 0 for y 7̂  0, p, qi and q2 G 
C([t0, 00), (—00, 00)) with qi(t) > 0 but qi(t) 7̂  0 on any ray [^,00), t\ > to 
and r G Cl([to, 00), (0, 00)). A solution of (2.8)/(2.9) is said to be oscillatory if 
it has arbitrarily large zeros; otherwise, it is called non-oscillatory. 

LEMMA 4. (see [5, Theorem 3.5]) If f(y)/y > Mo > 0 for y ^ 0. where Lt0 is a 
constant, then every solution of (2.8) is oscillatory provided that for each b > to 
and for some A > 1. the following two inequalities hold: 

lim sup —-—т I ( 

b 

s - b)xK/jL0qi(s)ds > л 2 

4 ( Л - 1 ) 
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and 
t 

limsup-т—- / (t - s)лA"/i0gi(s) ds > 
Ѓ-+00 t л J 

Л2 

4 ( A - 1 ) 

L E M M A 5. (see [4, Corollary A] and [5]) If 

2í 

lim t / q2(s) ds = a > a0 , 

then every solution of (2.9) is oscillatory, where cr0 = 3 — 2\/2. 

Example 1. Consider 

y" + y + y 3 - o, t > o. (2.10 

In this case, P(t) = I2, Q(£) = I2 and F(X) = X + X3 for X e M2. For a 
nonsingular matrix X e AI2, F(X)X~l = I2 + X2 > I2 since X2 > 0. Henc-
(Ci) holds. Further, (C2) holds because tr Q(t) = 2. From Theorem 1 it follows 
that every non-trivial, symmetric, prepared solution of (2.10) is oscillatory. If 
yn(t) and 2/22 (t) are nontrivial solutions of 

x + x + x° 0, (2.11 

then 

У(ŕ) 2/ii W 0 
0 2/22 (*) 

is a non-trivial, symmetric solution of (2.10). Further, y(£) is prepared be­
cause Y(t)Y'(t) = Yf(t)Y(t). Hence Y(t) is oscillatory by Theorem 1, that is. 
det Y(t) = yn(t)y22(t) has arbitrarily large zeros. On the other hand, from 
Lemma 4/Lemma 5 it follows that yn(t) and H22W are oscillatory solutions 
of (2.11). 

Example 2. Consider 

(P(t)Y')' + Y + Y3 t > 0, (2.12 

where 

p(t) = 
Pu(t) 0 

0 P22(ť) 

P11 and P22 G C r l([0, 00), (0 1]). We may observe that P(t) is a symmetric, 
positive definite matrix function on [0,oo). Hence P~x(t) exists and is given b\ 

P ҶІ) p ц ( t ) 
0 

P22ÍÍ) 
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As pn(t) < 1 and p22(t) < 1, then P _ 1 (*) > h- Thus (Ci) and (C2) hold. 
From Theorem 1 it follows that every nontrivial, symmetric, prepared solution 
of (2.12) oscillates. In particular, 

" 2/n W 0 
0 V22(t) 

oscillates, where yn(t) and y22(t) are nontrivial solutions of 

(pn(t)x'y + x + x3 = 0 

and 

(P22(t)x')' + X + X3 =0 

respectively. On the other hand, yn(t) and y22(t) oscillate due to Lemma 5. 
Hence det Y(t) = yn(t)y22(t) is oscillatory, which confirms the assertion made 
above. 

Remark. Consider 

where 

Y" + Q(Y + Y3) = 0, t>0, (2.13) 

Q = 
2 
0 

0 

We may observe that Q is symmetric but not positive semi-definite because 
x*Qx = 2x\ — x\. Hence Theorem 1 cannot be applied to (2.13). However, the 
following theorem can be applied. 

THEOREM 6. Let F(X) be a polynomial in X with real coefficients and XF(X) 
> 0 for X £ Mn. Let F'(X) > In, where F'(X) stands for the derivative of the 
polynomial F(X) with respect to X in the symbolic sense. Let (C3) hold. If 

(C4) lim inf ^J(T- t)p tr Q(t) dt > - 0 0 . 
T^OO Q 

where p > 1 is an integer, then every nontrivial, symmetric, prepared solution 
of (1.2) oscillates. 

P r o o f . If possible, let (1.2) admit a nontrivial, symmetric, prepared, non-
oscillatory solution Y(t) on [0,oo). Then there exists a t0 > 0 such that 
det Y(t) ^ 0 for t > t0. Hence Y^(t) exists for t > t0. As det(Y(t)F(Y(t))) = 
detY (t) det F(Y(t)) and Y(t)F(Y(t)) > 0 implies that det(Y(t)F(Y(t))) > 0, 
then det F(Y(t)) ^ 0 and hence (F(Y(t)))~r exists for t > t0. Setting 

t 

Z(t) = J[F(Y(s))}-1Y'(s)ds, 
to 

(2.14) 
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we obtain 
Z'(t) = (F(Y(t)))-lY'(t). 

Hence 

Z"(t) = (F(Y(t)))~1Y"(t) + {(F(Y(t)))-']'Y'(t) 

= -(F(Y(t)))~lQ(t)F(Y(t)) + [(F(Y(t)))-'}'Y'(t). 2.15 

As (y"(i)Y = -(Q(i)E(y(i))Y implies y"(t) = -E(y(t))Q(t), then 
Q(t)F(Y(t)) = F(Y(t))Q(t). Further, 

F(Y(t))(F(Y(t)))~l = In = » [F(y(i))(F(y(i)))"1]' = 0. 

Hence 
P W ) ) ) - 1 ] ' = -(F(y(t)))-1E'(y(t))y'(t)(F(y(0))-1. 

Consequently, from (2.15) we have 

Z"(t) = -Q(t) - (F(Y(t)))-1F'(Y(t))Y'(t)(F(Y(t)))-1Y'(t) 

= -Q(t) -F'(Y(t))(F(Y(t)))-lY'(t)(F(Y(t))TlY'(t) 

= -Q(t)-F'(Y(t))(Z'(t)f 

because F(Y) is a polynomial in Y and Y commutes with itself imply tha 
F'(Y(t))F(Y(t)) = F(Y(t))F'(Y(t)), that is, 

Z"(t) + Q(t) + F'(Y(t))(Z'(t))2 = 0, t>t0. (2A6 

Since Y(t) is prepared, then Y(t)Y'(t) = Y'(t)Y(t), that is, F(Y(t))Y'(t) 
Y'(t)F(Y(t)) and hence Z(t) and z'(i) are symmetric. Indeed, from (2.14) it 
follows that 

t 

Z*(t) = J(F(Y(s)))-1Y'(s)ds =j[(F(Y(s)))-1Y'(s)Y ds 
to J to 

t 

= j(Y'(s))*[(F(Y(s)))-l]*ds = JY'(s)(F(Y(s)))-1 ds 
to to 

t 

= J(F(Y(s)))-lY'(s)ds = Z(t). 
to 

Integrating (2.16) from to to t and then taking the trace we get 
t t 

f tr Q(s) ds = tr Zf(t0) - tr Zf(t) - f tv[Ff(Y(s))(Zf(s))2} ds 

= C0(t)-trZ'(t), 
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where 
t 

C0(t) = tr Z'(t0) - J tr[F'(Y(s))(Z'(s))2} ds. 
to 

We may note that 

F'(Y(t)) > /n > 0 and (Z'(t))2 > 0 implies tr[F'(Y(t))(Z'(t))2} > 0 for t > t0. 

If possible, let 
oo 

0 < ftr[F'(Y(s))(Z'(s))2}ds = K0 < oo. 

As 
to 

imply that 

then 

F'(Y(t)) - In > 0 and (Z'(t))2 > 0 

tr[.Ғ'(Y( í))(z ' ( í))2]>tr(z ' ( í))2 , 

t t 

ítт(Z'(s))2ds < ítr[F'(Y(s))(Z'(s))2}ds < K0. 

*o * 0 

Further, 

ítrQ(s)ds\ =(C0(t)-trZ'(t)) 
\ÍQ 

<2[C2
0(t) + (trZ'(t))2} 

<2[C0
2(í)+ntr(z'(í))2]. 

Hence 

(Co(t))2 = 
t 

tr Z'(t0) - J tr (F'(Y(s))(Z'(s))2) ds 
ío 

<2(trz ' ( í0)Г + 2 
L*o 

7//^ \\2 , O Ï V 2 

t l 2 

Jtr(F'(Y(s))(Z'(s))2)ds 

<2(trZ'(t0))
2 + 2Щ = L 
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implies that 

T / t \ 2 T 

LflftrQ(s)ds\ d . < 2 _ . ( l - | ) + ^ jtr(Z'(t)fdt 

to \to / to 

<2L(1-feW-"!£-. ( i - Ş 

Thus 

lim — / / trQ(s)ds dt < 2L < oo, 

to \tD I 

a contradiction to (C3). Hence 

0 0 

f tr[F,(Y(s))(Z'(s))2} ds = oc. 

to 

However, this is true if and only if (see the remark below) 

T 

T ^ h !{T"t)p t r ^F'{Y m z ' ( t ) ) 2 ] d t = °°' 
to 

where p > 1 is an integer. Multiplying (2.16) through by (T — t)p, to < t < T, 
integrating from t 0 to T and then taking trace we obtain 

1 Ľ 

í(T-t)ptтQ(ť)dt + í(T-t)ptт[F'(Y(t))(Z'(t))2] dt 

to to 
T 

= (T - t0)
p tr zľ'(£0) - P Í(T - t)p~l tr Z'(ť) dt (2.17) 

to 
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An application of the Cauchy-Schwarz inequality yields 

i 

[(T-ty-HrZ^^dt 
to 

T 

< i\T-ty/2\tiz'(t)\(T-ty'2-1 dt 

T "I V2 r T 

f(T - ty (tr z\t)f dt f(T - ty~2 dt 

J Lto 
T 1 1/2 r T 

f(T - ty tr(zf(t))2 dt f(T - ty~2 dt < 

< 

LtO 

т 

n 

L to 

т 

n 

to 

1/2 

п 1/2 

1 

J(T~tYtv(F'(Y(t))(Z'(t))2)dt 

1/2 

(T-toү-1 

p-1 

1/2 

that is, 

-JrpJ(T-tү-HvZ'(t)dt 

т 

J(T-tүtv(F'(Y(t))(Z'(t))2)dt n 
TP 

1/2 .'. 

Є Г - Ѓ O ) " - 1 ] 1 7 2 

(p-l)TP 

From (2.17) we obtain 

±-f(T-ty tтQ(t)dt 
to 

T 

< (l - Џ)P tv Z'(t0) ~^J(T~ tү tv[F'(Y(t))(Z'(t))2) dt 

ío 

+p 

1 

- ^ J(T-tүtv(F'(Y(t))(Z'(t))2)dt 

1/2 

(T-toY-1 

(p-l)TP 

1/2 
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T 

±-J(T-tytx(F'(Y(t))(Z'(t))2)dt 

1 2 

we observe that lirn /(F) = oo and 
T—>oo 

1 

^J(T-tГtrQ(t)dt 
to 

< (l-Џy tľZ'(t0)-f2(T)+pn"2f(T) 

<(l-ЏУ t.Z'(t0)-f(T)lf(T)-pn"2 

(Г-ŕp)P l 

(p - l)TP 

1 

-,1 2 

(p - 1)Г V г 
l _ í ° v ґ 1 2^ 

Hence 

lim inf ±- Í(T - ty tr Q(t) dř = -oo, 
T—>co -L l J 

a contradiction to (C4). 

Remark . 

(i) 
OO 

/ t r ( F ' ( (Y(t))(z'(ř))2)dí = oo 

if and only if 

1 

Л™ ^ / ( Т - 0Ptr(F'(Y(t))(Z'(t))2) dř - 00. 
* 0 

(ü) 

^ ä f тĵ  / ( Т " t ) v trQ{t} át > "°° 
0 

implies that 

lim inf — / (T - t)p tr Q(t)dt> -00 for every t0 > 0. 

472 



OSCILLATION OF NONLINEAR SECOND ORDER MATRIX DIFFERENTIAL EQUATIONS 

Example 3. Consider (2.13). Since F(X) = X+X3, t h e n X F ( X ) = X2+X4 > 0 
and F'(X) — In + 3X2 > In. Conditions (C3) and (C4) hold because trQ = 
2 + ( - l ) = l . If 

" l/i i(*) 0 
0 2/22 (t) 

where yn(t) and 2/22 (l) are non-trivial solutions of x" + 2x + 2x3 = 0 and 

Y(t) 

x — X 
3 _ 0 respectively, then Y(t) is a non-trivial, symmetric, prepared 

solution of (2.13). From Theorem 6 it follows that Y(t) oscillates. On the other 
hand, from Lemma 4/Lemma 5 it follows that yn(t) is oscillatory. Hence Y(t) 
is oscillatory, because detY(t) = yn(t)y22(t)• 

THEOREM 7. Let (Ci) hold. Let g(t) be a positive, differentiable function on 
[0, oo) such that 

and 

lim 
t—>oo H g(s)Q(s 

lim / (g(s)) l ds = oo 
-+°°J 

o 

(g'(s))2 

4<7(s) 
ds n g'(t) OO. 

Then every nontrivial, prepared, symmetric solution of (1.1) oscillates. 

The proof is similar to that of Theorem 1 and hence is omitted. 

THEOREM 8. Suppose that all the conditions of Theorem 6 hold, except (C3) 
which is replaced by 

T / t 

l i m s u p - / I / trQOs 

~̂ °° b \ 0 

Then every nontrivial, prepared, symmetric solution of (1.2) oscillates. 

The proof is similar to that of Theorem 6 and hence is omitted. 

(s) ds dt = 00. 
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