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Perturbed Hammerstein integral

inclusions with solutions that change sign

Gennaro Infante, Paolamaria Pietramala

Dedicated to Professor Espedito De Pascale on the occasion of his retirement.

Abstract. We establish new existence results for nontrivial solutions of some inte-
gral inclusions of Hammerstein type, that are perturbed with an affine functional.
In order to use a theory of fixed point index for multivalued mappings, we work
in a cone of continuous functions that are positive on a suitable subinterval of
[0, 1]. We also discuss the optimality of some constants that occur in our theory.
We improve, complement and extend previous results in the literature.
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1. Introduction

Quite often differential inclusions arise in the study of problems in applied
mathematics, engineering and economics, since some mathematical models utilize
multivalued maps instead of single-valued maps [6], [12]. One approach to finding
solutions of a boundary value multivalued problem is to re-write the problem as
an integral inclusion and then to investigate the existence of solutions via different
tools of nonlinear analysis, see for example [2], [18], [19], [36], [37].

When the problem is to find positive solutions of the corresponding integral
operator, some authors use various generalizations [1], [3], [38], [39] of the well-
known Guo-Krasnosel’skĭı theorem on cone-compressions and expansions (see for
example [17]). This is usually done by seeking the solutions in the cone of positive
functions or in smaller cone included in it. This idea relies on the fact that the
integral operator leaves the cone of positive functions invariant.

Here we establish new results for the existence of nontrivial solutions of integral
inclusion of the type

(1.1) u(t) ∈ γ(t)α[u] +

∫ 1

0

k(t, s)F (s, u(s)) ds,

where α[u] is a positive functional and both γ and k are allowed to change sign,
so a positive solution need not exist. The integral equation corresponding to (1.1)
has been studied in [24], motivated from the fact that it arises in the study of
some heat flow problem.
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Our approach relies on the theory of fixed point index for multivalued map-
pings [14], which is an extension of the well-known classical fixed point index.
For our index calculations we work on the cone of functions that are positive on a
suitable interval [a, b] ⊂ [0, 1], but are allowed to change sign elsewhere. This type
of cone has never been used before in the multivalued case, not even in the simpler
case of integral Hammerstein inclusions, that is when α[u] ≡ 0. In order to obtain
the existence of nontrivial solutions for multivalued boundary value problems we
extend the theoretical results of [24] to the context of set-valued mappings.

We also establish new results for the multivalued, nonlocal BVP

−u′′(t) ∈ F (t, u(t)), a.e. on [0, 1],(1.2)

u′(0) + α[u] = 0, βu′(1) + u(η) = 0, η ∈ [0, 1],(1.3)

when α[u] is a positive functional given by α[u] = A0 +
∫ 1

0
u(s) dA(s), involving a

Lebesgue-Stieltjes integral. This type of BC includes

α[u] =
m

∑

i=1

αiu(ξi) and α[u] =

∫ 1

0

α(s)u(s) ds,

that is, multi-point and integral BCs, that are widely studied objects both in the
single-valued (see for example [26], [35], [43]) and in the multivalued case (see for
example [7], [8], [9], [10], [13]). We point out that the BVP (1.2)–(1.3) occurs, in
the single-valued case, in the study of a thermostat model [24], [25], [41], [42].

By a more careful analysis of some of the constants that occur in the theory,
we are able to obtain values that are, in some sense, optimal for this method.
This follows the study done, for different ranges of the parameters and different
BCs, for the single-valued case, in [30], [31], [32], [41], [42].

Our results are an improvement valid also in the single-valued case.

2. Preliminaries

We recall some definitions and facts here and refer to [5], [6], [11], [12], [14] for
further information. Let (X, ‖ · ‖) be a Banach space and KC(X) be the set of
non-empty compact convex subsets of X .

A multivalued function F : X ⊸ X is said to be upper semicontinuous (u.s.c.)
on X if for each x ∈ X , the set F (x) is a non-empty closed subset of X and for
each open set V ⊂ X , with F (x) ⊂ V , there exists an open neighborhood U of
x such that F (U) ⊂ V . A multivalued map F is said to have closed graph if
xn → x, yn → y, yn ∈ F (xn) imply that y ∈ F (x).

It is well-known that for a multivalued map F with non-empty compact values,
the upper semicontinuity of F is equivalent to the fact that F maps compact sets
into relatively compact sets and has closed graph.

Let J be a closed bounded interval of the real line. A multivalued map F :
J → KC(X) is said to be measurable if for each x ∈ X the function D : J → R

defined by D(t) := d(x, F (t)) = inf{‖x− z‖ z ∈ F (t)} is measurable.
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A multivalued map F : J×R ⊸ R is said to be an upper-Carathéodory map if
for each u ∈ R, t 7→ F (t, u) is measurable and for almost every t ∈ J , u 7→ F (t, u)
is upper semicontinuous.

For each u ∈ C(J,R), the set of L1-selections of a multivalued map F : J×R ⊸

R is given by

S1
F,u := {fu ∈ L1(J,R) : fu(t) ∈ F (t, u(t)) for a.e. t ∈ J}.

The following result is due to Lasota-Opial [33].

Lemma 2.1. Let J be a closed bounded interval of the real line, F : J ×
R → KC(R), F be an upper-Carathéodory map, S1

F,u be non-empty for each

u ∈ C(J,R) and Θ : L1(J,R) → C(J,R) be a linear continuous operator. Then

Θ ◦ S1
F,· : C(J,R) ⊸ C(J,R), u 7→ Θ(S1

F,u) is a closed graph map in C(J,R) ×
C(J,R).

Let K be a cone in a Banach space X , that is, K is a closed convex set such
that λx ∈ K for x ∈ K and λ ≥ 0 and K ∩ (−K) = {0}. If Ω is a bounded open
subset of K (in the relative topology) we denote by Ω and ∂Ω the closure and
the boundary relative to K. When Ω is an open bounded subset of X we write
ΩK = Ω ∩K, an open subset of K.

We utilize an extension of the well-known fixed point index for single-valued
compact maps (see for example [4], [17]) to the case of multivalued maps due
to Fitzpatrick and Petryshyn [14]. The formal definition of this index is rather
technical and involves a topological degree introduced by Ma [34]. We refer to the
paper [14] for the details regarding the construction of the index and summarize in
Theorem 2.2, in a similar way as in [40], its main properties. Fixed point indices
for multivalued mappings in more general settings can be found in the monograph
by Andres and Górniewicz [5].

Theorem 2.2. Let K be a cone in X and let Ω be a bounded open set of X
such that ΩK 6= ∅. Let T : ΩK ⊸ K be an upper semicontinuous compact map.

Suppose that x /∈ T (x) for all x ∈ ∂KΩ, the boundary of Ω relative to K. The

fixed point index has the following properties:

(P1) (Existence) If iK(T,ΩK) 6= 0, then T has a fixed point in ΩK .

(P2) (Normalisation) If u ∈ ΩK , then iK(û,ΩK) = 1, where û(x) = u for

x ∈ ΩK .

(P3) (Additivity) If V1, V2 are disjoint relatively open subsets of ΩK such that

x /∈ T (x) for x ∈ ΩK \ (V1 ∪ V2), then

iK(T,ΩK) = iK(T, V1) + iK(T, V2).

(P4) (Homotopy) Let h : [0, 1]×ΩK ⊸ K be an upper semicontinuous compact

map such that x /∈ h(t, x) for x ∈ ∂KΩ and t ∈ [0, 1]. Then

iK(h(0, .),ΩK) = iK(h(1, .),ΩK).
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Moreover, from the properties (P1)–(P4), we have that

(1) if there exists e ∈ K \ {0} such that x /∈ Tx+ λe for all x ∈ ∂KΩ and all

λ > 0, then iK(T,ΩK) = 0,

(2) if λx /∈ Tx for all x ∈ ∂KΩ and all λ > 1, then iK(T,ΩK) = 1.

3. Existence of nontrivial solutions of perturbed Hammerstein inte-

gral inclusions

We study the existence of nonzero solutions of the integral inclusion

(3.1) u(t) ∈ γ(t)α[u] +

∫ 1

0

k(t, s)F (s, u(s)) ds,

in the space C[0, 1] of continuous functions, endowed with the usual supremum
norm. Although it is not standard, we use the notation

⌈Υ⌉ := sup Υ, ⌊Υ⌋ := inf Υ, where Υ ⊂ R,

because we believe that this improves the readability of the paper.
From now on, we assume that F, α, γ and the kernel k have the following

properties:

(C1) F : [0, 1] × R → KC([0,+∞)) is an upper-Carathéodory map such that
for every r > 0, there exists a L1 function gr : [0, 1] → [0,∞) such that

⌈F (t, u)⌉ ≤ gr(t) for almost all t ∈ [0, 1] and all u ∈ [−r, r].

(C2) k : [0, 1]× [0, 1] → R is measurable, and for every τ ∈ [0, 1] we have

lim
t→τ

∫ 1

0

|k(t, s) − k(τ, s)|gr(s) ds = 0.

(C3) There exist [a, b] ⊂ [0, 1], a L∞ function Φ : [0, 1] → [0,∞) and a constant
c1 ∈ (0, 1] such that

|k(t, s)| ≤ Φ(s) for t ∈ [0, 1] and almost every s ∈ [0, 1]

k(t, s) ≥ c1Φ(s) for t ∈ [a, b] and almost every s ∈ [0, 1].

(C4) γ : [0, 1] → R is continuous and there exist a constant c2 ∈ (0, 1] such
that

γ(t) ≥ c2‖γ‖ for t ∈ [a, b].

(C5) α : K → R
+ is a continuous functional with

α[u] = A0 +

∫ 1

0

u(s) dA(s),

where dA is a Lebesgue-Stieltjes measure with A1 :=
∫ 1

0 dA(s) <∞.
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(C6) The function t 7→ k(t, s) is integrable with respect to the measure dA,
that is

K(s) :=

∫ 1

0

k(t, s) dA(t)

is well defined.

(3.2) K = {u ∈ C([0, 1]) : min{u(t) : t ∈ [a, b]} ≥ c‖u‖},

where c = min{c1, c2}. This type of cone was introduced in [23] and later used in
[15], [16], [20], [21], [22], [24].

This is similar to, but larger than, a cone of non-negative functions used by
Lan [28], which is a type of cone first used by Krasnosel’skĭı, see e.g. [27], and
D. Guo, see e.g. [17]. Note that functions in K are positive on the interval [a, b]
but may change sign on [0, 1]. We write Kr = {u ∈ K : ‖u‖ < r}, Kr = {u ∈ K :
‖u‖ ≤ r}, and define

Γ =

∫ 1

0

γ(t) dA(t).

We consider now the multivalued map T : K ⊸ C([0, 1]) defined for u ∈ K by

T (u) :=
{

h ∈ C([0, 1]) : there exists fu ∈ S1
F,u such that,

for every t ∈ [0, 1], h(t) = γ(t)α[u] +

∫ 1

0

k(t, s)fu(s) ds
}

.

We point out that T is well-defined, since (C1) implies that the set S1
F,u is

non-empty (see [12]).

Theorem 3.1. If the hypotheses (C1)–(C6) hold for some r > 0, then T maps

Kr into K. When these hypotheses hold for each r > 0, T maps K into K.

Moreover, T is an u.s.c. compact map with non-empty convex compact values.

Proof: Let u ∈ Kr, t ∈ [0, 1] and h ∈ T (u), Then we have,

|h(t)| ≤ |γ(t)|α[u] +

∫ 1

0

|k(t, s)|fu(s) ds ≤ |γ(t)|α[u] +

∫ 1

0

Φ(s)fu(s) ds

so that

(3.3) ‖h‖ ≤ ‖γ‖α[u] +

∫ 1

0

Φ(s)fu(s) ds.
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Also

min
t∈[a,b]

{h(t)} ≥ c2‖γ‖α[u] + c1

∫ 1

0

Φ(s)fu(s) ds

≥ c
[

‖γ‖α[u] +

∫ 1

0

Φ(s)fu(s) ds
]

≥ c‖h‖,

where c = min{c1, c2}. Hence Tu ⊂ K for every u ∈ Kr.
To see that Tu is a convex set for all u ∈ K, let h1, h2 ∈ Tu. Then there are

f1
u and f2

u in S1
F,u such that for all t ∈ [0, 1]

h1(t) = γ(t)α[u] +

∫ 1

0

k(t, s)f1
u(s) ds

and

h2(t) = γ(t)α[u] +

∫ 1

0

k(t, s)f2
u(s) ds.

Let λ ∈ (0, 1). We have

λh1(t) + (1 − λ)h2(t) = γ(t)α[u] +

∫ 1

0

k(t, s)[λf1
u(s) + (1 − λ)f2

u(s)] ds,

with λf1
u(s) + (1 − λ)f2

u(s) ∈ S1
F,u because S1

F,u is convex (see [33]).
Now, we show that the multimap T is compact. Firstly, we show that T sends

bounded sets into bounded sets. It is enough to see that T (Kr) is bounded. Let
u ∈ Kr and h ∈ T (u). Then, for all t ∈ [0, 1] and some fu ∈ S1

F,u, from (3.3) we
have

‖h‖ ≤ ‖γ‖α[u] +

∫ 1

0

Φ(s)gr(s) ds ≤ ‖γ‖(A0 + rA1) +Mr,

for some 0 ≤Mr <∞.
We prove now that T sends bounded sets into equicontinuous sets. Let t1, t2 ∈

[0, 1], t1 < t2, u ∈ Kr and h ∈ T (u). Then

|h(t1) − h(t2)| ≤ |γ(t1) − γ(t2)|α[u] +

∫ 1

0

|k(t1, s) − k(t2, s)|fu(s) ds

≤ |γ(t1) − γ(t2)|α[u] +

∫ 1

0

|k(t1, s) − k(t2, s)|gr(s) ds.

Then |h(t1) − h(t2)| → 0 when t1 → t2. By the Ascoli-Arzelà Theorem we can
conclude that T is a compact map.

Finally, we show that T has closed graph. Let un, u0 ∈ K, un → u0, hn ∈
T (un), hn → h0. We have to prove that h0 ∈ T (u0), that is, there exists fu0

∈

S1
F,u0

such that for all t ∈ [0, 1], h0(t) = γ(t)α[u0]+
∫ 1

0 k(t, s)fu0
(s) ds. Since hn ∈
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T (un), there exists fun
∈ S1

F,un

such that for all t ∈ [0, 1], hn(t) = γ(t)α[un] +
∫ 1

0
k(t, s)fun

(s) ds. From Lemma 2.1, applied to the integral operator

Θ : L1([0, 1], R) → C([0, 1], R), w 7→

∫ 1

0

k(t, s)w(s) ds,

we obtain that the operator

Θ ◦ S1
F,· : C([0, 1], R) ⊸ C([0, 1], R), u 7→

{

∫ 1

0

k(t, s)fu(s) ds : fu ∈ S1
F,u

}

has closed graph. So, because hn − γα[un] ∈ Θ ◦ S1
F,un

and hn − γα[un] →

h0−γα[u0], we have that h0−γα[u0] ∈ Θ◦S1
F,u0

, that is, there exists fu0
∈ S1

F,u0

such that for all t ∈ [0, 1],

h0(t) = γ(t)α[u0] +

∫ 1

0

k(t, s)fu0
(s) ds.

�

Let q : C([0, 1]) → R denote the continuous function q(u) = min{u(t) : t ∈
[a, b]}. We shall use the open set Vρ = {u ∈ K : q(u) < ρ}. Vρ is equal to the set
called Ωρ/c in [22]. Note that Kρ ⊂ Vρ ⊂ Kρ/c.

Firstly we prove that the index is 0 on the set Vρ; this is an extension of
Lemma 2.4 of [24] to the multivalued case.

Lemma 3.2. Assume that there exists ρ > 0 such that u /∈ Tu for u ∈ ∂Vρ and

(I0ρ) there exists a measurable function ψρ : [a, b] → R+ such that

⌊F (t, u)⌋ ≥ ρψρ(t) for all u ∈ [ρ, ρ/c] and almost all t ∈ [a, b],

(3.4) α[u] ≥ α0ρ for u ∈ ∂Vρ,

and

(3.5) c2‖γ‖α0 + inf
t∈[a,b]

∫ b

a

k(t, s)ψρ(s) ds ≥ 1.

Then we have iK(T, Vρ) = 0.

Proof: Let e(t) ≡ 1 for t ∈ [0, 1]. Then e ∈ K. We prove that

u /∈ T (u) + λe for all u ∈ ∂Vρ and λ > 0,

which ensures, by Theorem 2.2, that the index is 0 on the set Vρ. In fact, if not,
there exist u ∈ ∂Vρ and λ > 0 such that u−λe ∈ Tu. Then there exists fu ∈ S1

F,u
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such that for all t ∈ [a, b]

u(t) = γ(t)α[u] +

∫ 1

0

k(t, s)fu(s) ds+ λ

≥ c2‖γ‖α0ρ+ ρ

∫ b

a

k(t, s)ψρ(s) ds+ λ.

By (I0ρ), this implies that q(u) ≥ ρ+λ > ρ contradicting the fact that u ∈ ∂Vρ. �

We next prove that the index is 1 on the set Kρ; this is an extension of
Lemma 2.6 of [24] to the multivalued case.

Lemma 3.3. Suppose Γ < 1 and assume that there exists ρ > 0 such that u /∈ Tu
for all u ∈ ∂Kρ and

(I1ρ) there exists a measurable function φρ : [0, 1] → R+ such that Kφρ ∈

L1([0, 1]),

⌈F (t, u)⌉ ≤ ρ φρ(t) for all u ∈ [−ρ, ρ] and almost all t ∈ [0, 1],

and

(3.6)
A0‖γ‖

(1 − Γ)ρ
+

‖γ‖

(1 − Γ)

∫ 1

0

K(s)φρ(s) ds+ sup
t∈[0,1]

∫ 1

0

|k(t, s)|φρ(s) ds ≤ 1.

Then we have iK(T,Kρ) = 1.

Proof: We show that λu /∈ Tu for every u ∈ ∂Kρ and for every λ > 1; this
ensures, by Theorem 2.2, that the index is 1 on Kρ. In fact, if there exists λ > 1
and u ∈ ∂Kρ such that λu ∈ Tu then for some fu ∈ S1

F,u

(3.7) λu(t) = γ(t)α[u] +

∫ 1

0

k(t, s)fu(s) ds.

Therefore we have

(3.8) λ

∫ 1

0

u(t)dA(t) = α[u]Γ +

∫ 1

0

K(s)fu(s) ds.

Hence

(λ− Γ)α[u] = λA0 +

∫ 1

0

K(s)fu(s) ds.

Substituting into (3.7) gives

λu(t) =
λA0γ(t)

λ− Γ
+

γ(t)

λ− Γ

∫ 1

0

K(s)fu(s) ds+

∫ 1

0

k(t, s)fu(s) ds.
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Taking the absolute value and then the supremum for t ∈ [0, 1] yields

λρ ≤
λA0‖γ‖

λ− Γ
+

‖γ‖

λ− Γ

∫ 1

0

K(s)fu(s) ds+ sup
t∈[0,1]

∫ 1

0

|k(t, s)|fu(s) ds.

Thus we have, since λ > 1,

(3.9) ρ <
A0‖γ‖

1 − Γ
+

‖γ‖

1 − Γ

∫ 1

0

K(s)ρφρ(s) ds+ sup
t∈[0,1]

∫ 1

0

|k(t, s)|ρφρ(s) ds.

This contradicts (3.6) and proves the result. �

We can now state the following new result on the existence of multiple nonzero
solutions for equation (3.1).

Theorem 3.4. Equation (3.1) has a nonzero solution in K if either of the fol-

lowing conditions hold.

(H1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that

(I1ρ1
), (I0ρ2

), u /∈ Tu for u ∈ ∂Vρ2
.

(H2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that

(I0ρ1
), (I1ρ2

), u /∈ Tu for u ∈ ∂Kρ2
.

Equation (3.1) has two nonzero solutions in K if one of the following conditions

hold.

(D1) There exist ρ1, ρ2, ρ3 with ρ1 < ρ2 and ρ2 < cρ3 such that

(I1ρ1
), (I0ρ2

), u /∈ Tu for u ∈ ∂Vρ2
and (I1ρ3

) hold.

(D2) There exist ρ1, ρ2, ρ3 with ρ1 < cρ2 < cρ3 such that

(I0ρ1
), (I1ρ2

), u /∈ Tu for u ∈ ∂Kρ2
and (I0ρ3

) hold.

Moreover, if in (D1), strict inequality holds in (I1ρ1
), then equation (3.1) has a

third solution u0 ∈ Kρ1
(possibly zero).

We omit the proof which follows simply from properties of fixed point index,
for details of similar proofs see [22], [28].

Remark 3.5. It is possible to state results for three or more nonzero solutions
by expanding the lists in conditions (D1), (D2), see [29] for the type of result that
may be stated.

4. Nonzero solutions of some BVP

We now consider the BVP

(4.1) −u′′(t) ∈ F (t, u(t)), a.e. on [0, 1],

with boundary conditions

(4.2) u′(0) + α[u] = 0, βu′(1) + u(η) = 0, η ∈ [0, 1].
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The solution of −u′′ = y under these BCs can be written

u(t) = (β + η − t)α[u] + β

∫ 1

0

y(s) ds+

∫ η

0

(η − s)y(s) ds−

∫ t

0

(t− s)y(s) ds.

By a solution of the BVP (4.1)–(4.2) we mean a solution u ∈ C[0, 1] of the
corresponding integral inclusion

u(t) ∈ (β + η − t)α[u] +

∫ 1

0

k(t, s)F (s, u(s)) ds,

where

(4.3) k(t, s) = β +

{

η − s, s ≤ η

0, s > η
−

{

t− s, s ≤ t

0, s > t.

Note that k(t, s) in (4.3) is the kernel for the special case α[u] ≡ 0, studied in the
case of F (t, u) single-valued in [25].

Here we discuss the case β > 0 and β+η < 1. When 0 < β+η < 1 there cannot
exist positive solutions for all positive right-hand sides, but there are nonzero
solutions that are positive on an interval [0, b] for any b with 0 < b < β + η < 1.

We point out that, with the same technique one can prove, for different ranges
of the parameter β the existence of solutions that are positive, negative and
negative on an interval, see Remark 3.4 of [24] for the results that can be stated.

Upper bounds. Upper bounds for |k(t, s)| and γ(t) were given in [24], [25] as
follows

Φ(s) = ‖γ‖ =

{

β + η, for β + η ≥ 1
2 ,

1 − (β + η), for β + η < 1
2 .

Lower bounds. We take [a, b] with 0 ≤ a < b < η + β. Note that in [a, b], γ(t)
is a decreasing function of t and mint∈[a,b] γ(t) = β + η − b. A simple calculation
shows that

min
t∈[a,b]

k(t, s) = k(b, s) ≥

{

β, for b ≤ η,

β + η − b, for b > η.

Thus we can choose

(4.4) c =



















β/(β + η), for b ≤ η, β + η ≥ 1
2 ,

β/(1 − (β + η)), for b ≤ η, β + η < 1
2 ,

(β + η − b)/(β + η), for b > η, β + η ≥ 1
2 ,

(β + η − b)/(1 − (β + η)), for b > η, β + η < 1
2 .
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Henceforth we work on the cone

K = {u ∈ C[0, 1], min
t∈[a,b]

u(t) ≥ c‖u‖},

with c as in (4.4).
For brevity and clarity, we state a result for the existence of one nontrivial

solution when F (t, u) = g(t)H(u), for which the hypotheses are easier to check.
Of course there are more general results, including existence of multiple nonzero
solutions, analogous to Theorem 3.4.

When F (t, u) = g(t)H(u) where Φg ∈ L1[0, 1] and H is upper semicontinuous,
then ψρ(s) = g(s)Hρ,ρ/c, where Hρ,ρ/c = inf{⌊H(u)⌋/ρ : ρ ≤ u ≤ ρ/c}. Then
(3.5) reads more simply

(4.5) c2‖γ‖α0 +Hρ,ρ/c ·
1

M
≥ 1,

where

(4.6)
1

M
= inf

t∈[a,b]

∫ b

a

k(t, s)g(s) ds.

Moreover we have φρ(s) = g(s)H−ρ,ρ where H−ρ,ρ = sup{⌈H(u)⌉/ρ : −ρ ≤
u ≤ ρ}. Then (3.6) reads more simply

(4.7)
A0‖γ‖

ρ(1 − Γ)
+

( ‖γ‖

1 − Γ

∫ 1

0

K(s)g(s) ds+
1

m

)

H−ρ,ρ ≤ 1,

where

(4.8)
1

m
= sup

t∈[0,1]

∫ 1

0

|k(t, s)|g(s) ds.

Remark 4.1. We point out that all the constants that appear in (4.5) and (4.7)
can be computed. This was shown, in a single-valued case, for the four-point BVP
corresponding to α[u] = αu(ξ) with ξ ∈ [0, b], see Remark 3.1 and Example 3.2
of [24].

Theorem 4.2. Let 0 ≤ a < b < β + η < 1, and suppose that
∫ b

a Φ(s)g(s) ds > 0.

Let c be as in (4.4). Let m be as in (4.8) and M as in (4.6). Then the BVP

(4.1)–(4.2) has at least one nonzero solution, positive on [0, b], if either one of the

following conditions hold.

(S1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that H−ρ1,ρ1 satisfies (4.7)
and Hρ2,ρ2/c satisfies (I0

ρ2
), with (3.5) replaced by (4.5).

(S2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that Hρ1,ρ1/c satisfies (I0
ρ1

),

with (3.5) replaced by (4.5) and H−ρ2,ρ2 satisfies (4.7).
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5. Optimal constants

We now assume that g ≡ 1 and we seek the ‘optimal’ [a, b] for which M(a, b)
is a minimum. This type of problem has been tackled in the past for different
BCs [30], [31], [32], [41], [42]. In particular, Webb [41], [42] studied the case when
β+ η ≥ 1, that leads to positive solutions. Here we assume that β+ η < 1, β > 0
and η > 0. The value 1/m was given in [24], as follows

1/m = sup
t∈[0,1]

∫ 1

0

|k(t, s)| ds = max
{

β +
1

2
η2, β2 − β +

1

2
(1 − η2)

}

.

For arbitrary 0 ≤ a < b < β + η, the kernel k(t, s) is a positive, non-increasing
function of t. Thus

1/M(a, b) = min
t∈[a,b]

∫ b

a

k(t, s) ds =

∫ b

a

k(b, s) ds.

Note that inf0≤a<bM(a, b) = M(0, b) and

1/M(0, b) =

∫ b

0

k(b, s) ds =

{

−b2 + bβ + ηb, if b ≤ η,

−b2/2 + βb+ η2/2, if b ≥ η.

Now we have

max
0<b≤η

{βb+ ηb− b2} = max{(β + η)2/4, βη} =

{

(β + η)2/4, if β ≤ η,

βη, if β ≥ η,

and

max
0<η≤b

{−b2/2 + βb+ η2/2} = max{(β2 + η2)/2, βη} =

{

βη, if β ≤ η,

(β2 + η2)/2, if β ≥ η.

This implies that

1/Mopt =

{

(β + η)2/4, if β ≤ η,

(β2 + η2)/2, if β ≥ η,

and therefore we choose

[a, b] =

{

[0, (β + η)/2], if β ≤ η,

[0, β], if β ≥ η.
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Finally, in the following table, we compute some values for the constantsm,Mopt, c
for the optimal [a, b], when η and β vary.

η β m Mopt [a, b] c
1/5 1/5 25/8 25 [0, 1/5] 1/3

2/5 50/21 10 [0, 2/5] 1/3

3/5 50/31 5 [0, 3/5] 1/4

2/5 1/5 25/7 100/9 [0, 3/10] 1/2

2/5 25/12 25/4 [0, 2/5] 1/2

3/5 1/5 50/19 25/4 [0, 2/5] 1/4
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[5] Andres J., Górniewicz L., Topological Fixed Point Principles for Boundary Value Problems,

Kluwer Academic Publishers, Dordrecht, 2003.
[6] Aubin J.P., Cellina A., Differential Inclusions, Springer, Berlin, 1984.
[7] Benchohra M., Ntouyas S.K., A note on a three point boundary value problem for second

order differental inclusions, Math. Notes (Miskolc) 2 (2001), 39–47.
[8] Benchohra M., Ouahab A., Upper and lower solutions method for differential inclusions

with integral boundary conditions, J. Appl. Math. Stoch. Anal. 2006, Art. ID 10490, 10 pp.
[9] Dhage B.C., Graef J.R., On boundary-value problems for second order perturbed differential

inclusions, Appl. Anal. 84 (2005), 953–970.
[10] Dhage B.C., Ntouyas S.K., Cho Y.J., On the second order discontinuous differential inclu-

sions, J. Appl. Funct. Anal. 1 (2006), 469–476.
[11] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985.
[12] Deimling K., Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.
[13] Erbe L., Ma R., Tisdell C.C., On two point boundary value problems for second order

differential inclusions, Dynam. Systems Appl. 15 (2006), 79–88.
[14] Fitzpatrick P.M., Petryshyn W.V., Fixed point theorems and the fixed point index for

multivalued mappings in cones, J. London Math. Soc. 12 (1975/76), 75–85.
[15] Franco D., Infante G., O’Regan D., Positive and nontrivial solutions for the Urysohn

integral equation, Acta Math. Sin. (Engl. Ser.) 22 (2006), 1745–1750.
[16] Franco D., Infante G., O’Regan D., Nontrivial solutions in abstract cones for Hammerstein

integral systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14 (2007), 837–
850.

[17] Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cones, Academic Press,
Boston, 1988.



604 G. Infante, P.Pietramala

[18] Hong S., Wang L., Existence of solutions for integral inclusions, J. Math. Anal. Appl. 317

(2006), 429–441.
[19] Hong S., Multiple positive solutions for a class of integral inclusions, J. Comput. Appl.

Math. 214 (2008), 19–29.
[20] Infante G., Eigenvalues of some non-local boundary-value problems, Proc. Edinb. Math.

Soc. 46 (2003), 75–86.
[21] Infante G., Nonzero solutions of second order problems subject to nonlinear BCs, Dynamic

systems and applications. Vol. 5, Dynamic, Atlanta, GA, (2008), 222–226.
[22] Infante G., Webb J.R.L., Nonzero solutions of Hammerstein integral equations with dis-

continuous kernels, J. Math. Anal. Appl. 272 (2002), 30–42.
[23] Infante G., Webb J.R.L., Three point boundary value problems with solutions that change

sign, J. Integral Equations Appl. 15 (2003), 37–57.
[24] Infante G., Webb J.R.L., Nonlinear nonlocal boundary value problems and perturbed Ham-

merstein integral equations, Proc. Edinb. Math. Soc. 49 (2006), 637–656.
[25] Infante G., Webb J.R.L., Loss of positivity in a nonlinear scalar heat equation, NoDEA

Nonlinear Differential Equations Appl. 13 (2006), 249–261.
[26] Karakostas G.L., Tsamatos P.Ch., Existence of multiple positive solutions for a nonlocal

boundary value problem, Topol. Methods Nonlinear Anal. 19 (2002), 109–121.
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