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In the paper [Spectral analysis for rank one perturbations of diagonal opera-
tors in non-archimedean Hilbert space, Comment. Math. Univ. Carolin. 50 (2009),
no. 3, 385–400] by T. Diagana and G.D. Mc Neal, one needs to replace assump-
tion (vi) [in Section 4, Spectral Analysis], that is: Replace:

“(vi) 0 < mα := infj∈N |αj ||ωj |
1/2 ≤ ‖X − α0e0‖ = supj≥1 |αj ||ωj |

1/2 < m̂,

where m̂ is the constant appearing in (v).”

with the following:

“(vi) ‖X −α0e0‖ = supj≥1 |αj ||ωj |
1/2 < m̂, where m̂ is the constant appearing

in (v).”

Indeed, since X ∈ c0(N, ω, K), it does make sense to suppose that

inf
j∈N

∣∣αj

∣∣ ∣∣ωj

∣∣1/2 = mα > 0.

Consequently, the proof of Proposition 4.3(ii) needs to be slightly modified as
follows: Replace:
“Using assumption (vii) it follows that

∣∣∣∣
(

λj − 1

λj − θj

)
xj

∣∣∣∣ =
∣∣∣∣
(

λj − 1

−ωjαjβj

)
xj

∣∣∣∣

=

∣∣λj − 1
∣∣

∣∣αj

∣∣ ∣∣ωj

∣∣1/2
∥∥xj êj

∥∥

≤
max(1, M̂)

mα
·
∥∥xj êj

∥∥ .

Now |x0| = limj→∞ |(
λj−1
λj−θj

)xj | = 0, as limj→∞ ‖xj êj‖ = 0.”
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with the following:

“Using assumption facts |ωj | > 1 for all j ≥ 1 and |αjβj | = 1 for all j ∈ N [see
assumption (vii) and Remark 4.1(1)] it follows that for all j ≥ 1,

∣∣∣∣
(

λj − 1

λj − θj

)
xj

∣∣∣∣ =
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(

λj − 1

−ωjαjβj

)
xj

∣∣∣∣

=

∣∣λj − 1
∣∣

∣∣αj

∣∣ ∣∣ωj

∣∣1/2
∥∥xj êj

∥∥

=

∣∣βj

∣∣ ∣∣λj − 1
∣∣

∣∣ωj

∣∣1/2
∥∥xj êj

∥∥

=

∣∣λj − 1
∣∣ ∣∣βj

∣∣ ∣∣ωj

∣∣1/2
∣∣ωj

∣∣
∥∥xj êj

∥∥

≤ max
(
1, M̂

) ∣∣βj

∣∣ ∣∣ωj

∣∣1/2
∣∣ωj

∣∣ ·
∥∥xj êj

∥∥

< max
(
1, M̂

) ∣∣βj

∣∣ ∣∣ωj

∣∣1/2 ·
∥∥xj êj

∥∥ .

Now |x0| = limj→∞ |(
λj−1
λj−θj

)xj | = 0, as limj→∞ |βj |ωj |
1/2 = 0, and

limj→∞ ‖xj êj‖ = 0.”
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