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GERSTENHABER AND BATALIN-VILKOVISKY ALGEBRAS;
ALGEBRAIC, GEOMETRIC, AND PHYSICAL ASPECTS

Claude Roger

Abstract. We shall give a survey of classical examples, together with alge-
braic methods to deal with those structures: graded algebra, cohomologies,
cohomology operations. The corresponding geometric structures will be des-
cribed(e.g., Lie algebroids), with particular emphasis on supergeometry, odd
supersymplectic structures and their classification. Finally, we shall explain
how BV-structures appear in Quantum Field Theory, as a version of functional
integral quantization.

1. Introduction

The present survey is an expanded version of the three lectures given by the
author at Srní, in January 2009. I have tried to keep, as much as possible, the style
of a graduate course; it should be accessible with only a minimal knowledge of
standard differential geometry, some familiarity with graded algebra, and of course
interest for mathematical physics. I do not claim here to prove any original result,
but we pretend to give an approach containing the different aspects of this multiform
theory; they can already be guessed from the title: Murray Gerstenhaber is well
known to be the father of algebraic deformation theory, while Igor Batalin and
G. Vilkovisky are famous for their approach of functional integral quantization.Let’s
give more details now, in order to smoothen the way:

(1) We begin with algebraic aspects, most of Chapter 1 is devoted to them;
our presentation will be mainly axiomatic, and then we describe some
cohomological tools, with graded algebra techniques and an approach of
Hochschild cohomology and H-K-R theorem. The size of the survey doesn’t
allow to reach more advanced techniques, and we stop where operad theory
(highly promising for the future of the subject) begins.

(2) The various geometrical aspects are extensively developed; most of examples
shown in Chapter 1 belong to classical differential geometry, we give some
links with Poisson geometry and the theory of Lie algebroids. The second
Chapter is entirely devoted to supergeometry; we can only give a very
short introduction to the famous dialectic odd-even, and then focus to
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symplectic supergeometry; its odd version, so-called “periplectic”, turns out
to be surprisingly analogous to (non super) symplectic geometry, although
made much more rigid by the odd coordinates. A very explicit sample of
supergeometric calculations is given in last section.

(3) I have tried to give some physical flavor of Batalin-Vilkovisky quantization
in Chapter 3. It is a part of functional integral quantization, in which
supergeometry plays a key role, through introduction of odd variables
in order to treat symmetries and constraints, in an infinite dimensional
context; it is linked with ‘ghosts-antighosts’(Faddeev-Popov) and BRST
symmetries. We give the fundamental equations, Quantum and Classical
Master Equations, in their natural context of graded Lie algebras as studied
in Chapter 1.

Acknowledgement. It is a pleasure to thank Jan Slovák and all organizers of
the 29th Winter School on Geometry and Physics for their invitation, all students
and participants for their patience and their questions. I also want to record
my gratitude and indebtedness to all colleagues who helped me for their advice
and expertise: Yvette Kosmann-Schwarzbach, Olga Kravchenko, Pierre Lecomte,
Damien Calaque. I am particularly indebted to Klaus Bering and Bruno Vallette
for very useful bibliographical information.

2. BV-algebras and G-algebras. Generalities and main examples

We shall present first a purely axiomatic presentation of those algebras

2.1. A few algebraic preliminaries and notations.
We shall deal with graded vector spaces E∗ =

∑
p∈Z E

p over a base field k of
characteristic zero; usually, one has Ep = 0 for p lower than some negative bound.
On those spaces will be defined algebraic structures of various kind, for which
“everything” respects graduation.
The degree of an element a ∈ E∗ is denoted by |a| = p.
Shift of graduation: one associates to a graded space E∗ another one denoted by
E[1]∗, where E[1]p=Ep+1, for p ∈ Z.
Algebraic differential operators: one defines inductively the order of a differential
operator of a graded commutative algebra A∗ into itself; operators of order zero
are given by multiplication µa : A∗ → A∗, so µa(b) = ab, for some a ∈ A∗. Then,
∆: A∗ → A∗ will be an operator of order n, if for any a ∈ A∗, the operator
[∆, µa] − µ∆(a) is of order (n − 1).Here the bracket denotes graded commutator
(each operator has an order and a degree); this notion of order for algebraic
differential operators is classical and due to Grothendieck.

2.2. Definition of Gerstenhaber and Batalin-Vilkovisky algebras.

2.2.1. Gerstenhaber algebras. A graded vector space A∗ is a Gerstenhaber algebra
if one has:

(1) An associative, graded commutative multiplication:

A∗ ×A∗ ·−−−−→ A∗ .
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For every a, b, one has: a · b = (−1)|a||b|b · a.
(2) A graded Lie algebra bracket

A[1]∗ ×A[1]∗ [ , ]−−−−−→ A[1]∗ .
So one has:

[b, a] = −(−1)(|a|−1)(|b|−1)[a, b] (graded antisymmetry)∑
(a,b,c)

(−1)(|a|−1)(|c|−1)[a, [b, c]] = 0 (graded Jacobi identity).

(3) Operations · and [ , ] are compatible through a Leibniz relation:
[a, b · c] = [a, b] · c+ (−1)(|a|−1)(|b|−1)b · [a, c]

Remark. One needs five axioms to express all properties of Gerstenhaber algebras;
there is an obvious analogy with the axioms of a Poisson algebra, but difficulties lie
in the change of graduation. We shall omit the point when the product is obvious.
2.2.2. Batalin-Vilkovisky algebras. A graded vector space A∗ is a Batalin-Vilkovisky
algebra (BV-algebra) if:

(1) A∗ is an associative graded commutative algebra.
(2) One has a differential operator ∆: A∗ → A∗ of order 2 and degree (−1).
(3) ∆2=0.

Four axioms are needed to define BV-algebras. More explicitly, ∆ of order 2 means
that for every a, b, c in A∗, one has:

∆(abc) = ∆(ab)c+ (−1)aa∆(bc) + (−1)|b|(|a|+1)b∆(ac)

−∆(a)bc− (−1)|a|a∆(b)c− (−1)|a|+|b|ab∆(c) .

2.2.3. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra. More precisely, one
can associate canonically to any Batalin-Vilkovisky algebra, a structure of Gersten-
haber algebra; the associative multiplication remains the same, and the graded Lie
algebra bracket is the obstruction of ∆ being a derivation:

(1) [a, b] = (−1)|a|
(
∆(ab)−∆(a)b− (−1)|a|a∆(b)

)
. Then, the couple of opera-

tions ( · , [ , ]) define a Gerstenhaber algebra structure on A∗. Moreover ∆
is then a graded derivation of [ , ]:

(2) ∆([a, b]) = [∆(a), b] + (−1)|a|−1[a,∆(b)].
Remark. For a Gerstenhaber algebra, equation [a, b] = (−1)|a|

(
∆(ab)−∆(a)b−

(−1)|a|a∆(b)
)

can be valid for some ∆, then called generator of bracket [ , ], which
doesn’t necessarily satisfy ∆2 = 0. We shall see later that if ∆2 derives associative
product, then ∆ derives the graded Lie bracket.
Exercise. Let A∗ be a Gerstenhaber algebra, such that Ap = 0 for p < 0. Show
that the axioms imply:

(1) A0 is an associative commutative algebra.
(2) A1 is a Lie algebra.
(3) There exists a Lie algebra morphism A1 → Der(A0), the Lie algebra of

derivations of A0. See [18] for more details.
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2.3. Basic examples of Gerstenhaber structures.

2.3.1. Schouten bracket. Let X be a differentiable manifold, let τX → X be
its tangent bundle, and Λ∗τX → X the associated exterior algebra bundle. Let
Ω∗(X) = Γ(X,Λ∗τX) be its space of sections, in other words the space of antisym-
metric contravariant smooth tensor fields. Then: (Ω∗(X),∧, [ , ]) is a Gerstenhaber
algebra for exterior product ∧ of tensor fields, [ , ] being the Schouten bracket. It
can be defined as the unique graded extension of Lie bracket of vector fields; for
precise definition and more details, cf. [26].

2.3.2. Exterior algebra of a Lie algebra. Let g be a Lie algebra, then Λ∗(g) is
naturally a Gerstenhaber algebra, for exterior product and natural prolongation
of the bracket of g. One sees easily that this example can be deduced from the
previous one, since Λ∗(g) = InvG Ω∗(G), invariance being with respect to natural
action of G on the space of contravariant tensor fields.

2.3.3. Algebraization of the previous cases. Let A be a commutative associative
unital algebra, and M an A-module, Set Pn(A,M) the space of antisymmetric
mappings which are multiderivations, i.e. derivations w.r.t. each entry. Let Pn(A) =
Pn(A,M), and P∗(A) =

∑+∞
p=0 Pn(A). Then:

(
P∗(A), ·, [ , ]S

)
is a Gerstenhaber

algebra for:
(1) The cup-product of cochains, defined as follows:

(c1 · c2)(x1, x2, . . . , xm+n)

= (−1)mn
∑

σ∈Σm+n

ε(σ) c1(xσ(1), . . . , xσ(m))c2(xσ(m+1), . . . , xσ(m+n) .

(2) The generalized Schouten bracket [ , ]S , being defined as the unique graded
Lie bracket which prolongates: [a, b]S = 0 if |a|=|b| = 0;

[a, b]S = 0 if |a| = 1, and |b| = 0.
For the case A = C∞(X), one recovers geometric Schouten bracket as above.

2.3.4. Geometric generalization: Lie algebroids. (In fact all previous examples are
particular cases of this one).

Definition 1. A Lie algebroid on X is a vector bundle A→ X together with a
bundle map a : A→ τX such that:

(1) Γ(A) is equipped with a Lie bracket.
(2) a : Γ(A)→ Γ(X, τX) = Vect(X) is a Lie morphism.
(3) one has the following relation:

[ξ, fη] = f [ξ, η] + (La(ξ)f) η
for every ξ, η ∈ Γ(A) and every f ∈ C∞(X).

Besides, for any vector bundle A→ X, then A = ⊕nk=0Γ(ΛkA) is an associative
graded-commutative algebra for exterior product; one has the following:

Theorem. A is a Lie algebroid ⇐⇒ A is a Gerstenhaber algebra.
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For a proof cf. [37, 22].

Exercise. Let A be a Lie algebroid, let A′ be its dualvector bundle, prove the
existence on the space of sections Γ∗(A′) of a differential d, such that Γ∗(A′)
becomes a differential graded algebra (DGA for short). In some sense, the notion
of Gerstenhaber algebra is dual to the notion of DGA).

Examples
(1) A = τX , with a = Id, one gets the first example above.
(2) A = g and X = point, one gets the second example above.
(3) A is a tangent bundle to some regular foliation on X, a being the natural

inclusion.
(4) Let (P,Λ) be a Poisson manifold. Set A = τ∗P , the cotangent bundle of

P , and let a =: τ∗P → τP be the “musical” 1 morphism associated to
Λ. It means that for 1-forms on P , α and β, one has a(α)(β) = Λ(α, β);
one could also define this operator as an inner product: a(α) = iαΛ. Then
following Koszul, one can define the algebroid bracket of forms α and β:

[α, β] = −d
(
Λ(α, β)

)
+ La(α) − La(β) .

If Λ turns out to be of maximal rank, it defines a symplectic structure and
a is an isomorphism: one recovers the first case above. See [37] for details.
For a good textbook in Poisson geometry, cf. [36].

2.4. Examples of Batalin-Vilkovisky structures.
We shall see that most examples from the above section are in fact Batalin-Vilkovisky
algebras

(1) We shall begin with a particular case of case 2.3.3 above. Let An =
k[x1, x2, . . . , xn]. One easily determines the derivations:
Der(An) =

{∑n
i=1 piθi|pi ∈ An, θi = ∂

∂xi

}
. Then,

P∗(An) = Λ∗An(Der(An) = Λ∗(θ1, . . . , θn)⊗ k[x1, x2, . . . , xn] .

Let’s now settle some notations, in order to simplify the formulas. For
Φ ∈ P∗(An), set Φ = ΦIθI , where θI = θi1,...,im for I = {i1, . . . , im},and
ΦI = Φi1,...,im = (−1)

m(m−1)
2

Φ(xi1 ,...,xim )
m! , where Einstein convention is

used. One can now write down explicit formula for Schouten bracket of
Φ ∈ Pm(An) and Ψ ∈ P l(An):

[Φ,Ψ] =
m∑
k=1

Φi1,...,im ∂

∂xik
(Ψj1,...,jl)θIkθJ − (−1)(m−1)(l−1)

×
l∑

k=1
Ψj1,...,jl

∂

∂xjk
(Φi1,...,im)θJkθI .

1terminology of musical morphism, because # and [ upper and lower indices respectively.



306 C. ROGER

For I = {i1, . . . , im} ∈ {1, . . . , n}, then Ik = {i1, . . . , ik−1, ik+1, . . . , im}
and similarly for J = {j1, . . . , jl} ∈ {1, . . . , n}, then Jk = {j1, . . . , jk−1,
jk+1, . . . , jm}.

Remark. One has the inner product i(x) : Pk(An) → Pk−1(An), defined as
i(x)Φ = [Φ, x], for x ∈ An = P0(An); then for xk, k = 1, . . . , n, one has i(xk) = ∂

∂θk
.

Theorem. Let ∆ = − ∂
∂xi

∂
∂θi

(using Einstein convention once more). Then ∆2 = 0,
∆ is a differential operator of order 2 and degree (−1) which generates Schouten
bracket on P∗(An).

Proof. Exercise. �

Remark. There is a curious analogy, and not only because of notations, between
∆ and the Laplacian. Things will become clear in the next chapter, in the context
of supergeometry.(
Ω∗(X),∧, [ , ]

)
is a BV-algebra with de Rham codifferential on contravariant tensor

fields as BV-operator, provided X is orientable. Take ω ∈ Ω∗(X) a volume form, it
defines “musical” isomorphisms (i.e. moving indices up and down), which transfers
De Rham differential d to codifferential δ:

Ωp

#
��

d // Ωp+1

#
��

Ωn−p δ // Ωn−p−1

Operator δ is of order 2 and degree (−1), and δ2 = 0 is obvious. One checks easily
that (Ω∗(X),∧, δ) is a BV-algebra.

Remark. The operator is non unique since it depends on the choice of volume
form. Operator δ can be changed into δ′ = δ + i(dϕ), for some function ϕ.

(3) The same construction works for Λ∗(g), and one gets that (Λ∗(g),∧, δ) is a
BV-algebra, where δ is the differential of the homological Chevalley-Eilenberg
complex of the Lie algebra g with scalar coefficients:

δ(x1 ∧ · · · ∧ xn) =
∑

1≤i<j≤p
(−1)i+j [x̂i, x̂j ] ∧ x1 ∧ · · · ∧ xi ∧ · · · ∧ xi ∧ · · · ∧ xp .

(4) For a Poisson manifold (P,Λ), let
(
Ω∗(P ),∧, [ , ]

)
the Gerstenhaber struc-

ture naturally associated to it. Then operator dΛ = [i(Λ), d] generates
the Gerstenhaber bracket, as it can be checked easily. So one obtains a
BV-algebra (Ω∗(P ),∧, dΛ).

Moreover, complex
(
Ω∗(P ), dΛ

)
is the Poisson homology of (P,Λ) as

defined by J.-L. Brylinski [6]. If the Poisson structure is symplectic, this
BV-algebra is isomorphic to (2.4) above; if the Poisson structure is the
linear Poisson structure on the dual of some finite dimensional Lie algebra,
then one recovers the BV-structure of case (2.4) above.
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(5) For the general case of Lie algebroids, the problem has been fully geo-
metrized by Ping Xu [37]. For any algebroid A, he defines the notion of
A-connection, straightforwardly generalizing linear connections. So cova-
riant derivative acts:

∇ : Γ(A)× Γ(E)→ Γ(E)

satisfying standard axioms of covariant derivative (here Γ denotes the
space of sections as usual). Then, he associates to any A-connection on the
determinant bundle ΛnA, a covariant derivative DΛ : Γ(ΛkA)→ Γ(Λk−1A),
which satisfies the following properties:

(a) DΛ generates the Gerstenhaber bracket on A = ⊕nk=0Γ(ΛkA)
(b) D2

Λ = −i(R), where R denotes the curvature of ∇; it belongs to
Γ(Λ2A∗ ⊗ End(ΛnA)).

So, one obtains finally:

(a) An isomorphism between the set of coboundaries for Gerstenhaber
structure on A = ⊕nk=0Γ(ΛkA), and the set of A-connections on the
determinant bundle ΛnA.

(b) An isomorphism between the set of BV-structures associated to the
Gerstenhaber structure on A = ⊕nk=0Γ(ΛkA) and the set of flat
A-connections on the determinant bundle ΛnA.

In the C∞ context, there is no obstruction to the existence of connections2, so any
Gerstenhaber algebra associated to an algebroid admits a coboundary; as long as
determinant bundle ΛnA is trivial (orientability!), it admits flat connections as
well, so the corresponding algebroid (A = ⊕nk=0Γ(ΛkA),∧, DΛ) is a BV-algebra.

2.5. Algebraic computations through Graded Lie Algebras (GLA).
Relations with Hochschild cohomology and Chevalley-Eilenberg coho-
mology.

2.5.1. We shall make use of algebraic deformation methods initiated by Gers-
tenhaber in the early sixties [14, 15], and extensively developed by Nijenhuis and
Richardson (cf. for example [26]). Our approach of vanishing square formalism and
associated cohomology has been borrowed from Lecomte and De Wilde (cf. [12]).

Let L∗ be a GLA, with Lk = 0 when k ≤ k0. An element with vanishing square
is a c ∈ L1, such that [c, c] = 0. If one sets ∂c(x) = [c, x], then (L∗, ∂c) is a
cohomological complex.

Exercise. Check that the cohomology space of this complex is also a GLA, for
the induced bracket. This GLA will be denoted as Hc(L∗).

2unlike the complex analytic case, cf. the famous Atiyah class.
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2.5.2. Deformation theory through GLA. Let c be a square-vanishing object, a
deformation of c will be an element c+γ, also square-vanishing. One easily deduces
from equation [c+ γ, c+ γ] = 0, the Maurer-Cartan equation:

(1) ∂c(γ) + [γ, γ]
2 = 0 .

[Historical remark: the analogy with vanishing curvature equation for connexion
is obvious, this terminology was first used in algebraic deformation theory by
Kontsevich [21]].
One then obtains inductive classification of deformations (infinitesimal, order
2, order k, formal. . . ) through H1

c (L∗), and obstructions, using square map
Sq : H1

c (L∗)→ H2
c (L∗).

2.5.3. Fundamental examples.
(1) Let E be a vector space, define a graded vector space by M∗(E) =
⊕p=∞p=−1Mp(E), where Mp(E) = Cp+1(E,E), the space of (p+1)-linear map-
pings from E into E. For ca ∈Ma(E), cb ∈Mb(E) define i(ca)cb ∈Ma+b(E)
as:

i(ca)cb(x0, . . . , xa+b)

=
k=b∑
k=0

(−1)akcb(x0, . . . , xk−1, ca(xk, . . . , xk+a), xk+a+1, . . . , xa+b) .

Then [ca, cb] = i(ca)cb− (−1)abi(cb)ca defines a Graded Lie Algebra (GLA)
bracket on M∗(E) (it was already implicit in the work of Gerstenhaber
[14]); then one has for c ∈M1(E):

[c, c] = 0 ⇐⇒ c is associative .

Cohomology space Hc(M∗(E)) is then Hochschild cohomology of associative
algebra structure defined by c on E.

(2) Let E be a vector space, define a graded vector space by A∗(E) =
⊕p=∞p=−1Ap(E), where Ap(E) = Altp+1(E,E), the space of completely an-
tisymmetric (p + 1) mappings from E into E. If E is finite dimensional,
one has an identification between Ap(E) and Λp+1(E′) ⊗ E. The GLA
bracket on A∗(E) is obtained from the previous one by antisymmetrization;
n terms of elements in Λp+1(E′)⊗ E, one has:

[α⊗X,β ⊗ Y ] = α ∧ i(X)β ⊗ Y − (−1)abβ ∧ i(Y )α⊗X

where |α| = a and |β| = b. Then one has for c ∈ A1(E):

[c, c] = 0 ⇐⇒ c satisfies Jacobi identity .

Cohomology space Hc(A∗(E)) is then Lie algebra cohomology (Chevalley-
-Eilenberg) for the adjoint representation of the Lie algebra structure on E
defined by c.
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Remark. We shall see in next chapter a supergeometric interpretation of this
GLA. One has A∗(E) = Der(Λ∗E), so A∗(E) = Vect(0|n) if n = DimE. If E is a
graded vector space for some intrinsic graduation, then M∗(E) and A∗(E) become
bigraded Lie algebras, and indices with respect to the intrinsic graduation will be
written below.

2.5.4. Applications to Gerstenhaber and BV-structures. We give in this subsection
some applications of GLA computations to classification or generalization of Gers-
tenhaber and BV structures, under the form of small exercises; computations are
sometimes lengthy, but straightforward.

1. Let E be the graded vector space underlying a Gerstenhaber structure, let µ and c
its associative multiplication and graded Lie bracket respectively; then µ ∈M1(E)0,
and c ∈ A1(E)−1 ⊂M1(E)−1. Then if operator ∆: E ∈ E defines a BV-structure
associated to the Gerstenhaber structure given by (µ, c), one has ∆ ∈ M0(E)−1,
satisfying [∆, µ] = c (check it!). So, in the graded Hochschild cohomology for the
associative algebra structure on E defined by µ, c is the coboundary of ∆.

2. Deduce from Leibniz property of bracket c, that [c, µ] = 0 in M2(E)−1, so c is a
2-cocycle in graded Hochschild cohomology (what about the converse?).

3. Deduce from above a cohomological interpretation of existence and classification
of BV-structures associated to a given Gerstenhaber structure.

4. Let ∆ be a coboundary for c, so [∆, µ] = c. Prove that [∆2, µ] = [∆, c] (up
to sign). So ∆ is a derivation of c if and only if ∆2 is a derivation of µ, and in
particular if ∆2 = 0!

5. Suppose now that c = [∆, µ] without assuming that c is a Lie algebra structure;
compute Sq(c) = [c, c] ∈ A2(E)−2 and prove: Sq(c) = 0 ⇐⇒ ∆2 of order 2. For
more details about this kind of computations, cf. the work of Penkava and Schwarz
[28], or F. Akman [1].

2.5.5. More results about Hochschild cochains.
1. A new Gerstenhaber algebra. Let E be a vector space (not necessarily graded),
and µ ∈M1(E) an associative multiplication. Denote by A the associative algebra
defined by multiplication µ on E, and let Cp+1(A,A) = Mp(E) be the space of
Hochschild cochains. Then Gerstenhaber bracket defines a GLA bracket:

(1)

C∗(A,A)[1]× C∗(A,A)[1] [ , ]−−−−−−→ C∗(A,A)[1] .
One has moreover the naturally defined cup-product3

(2)
C∗(A,A)× C∗(A,A) ∪−−−−→ C∗(A,A) .

3the name cup-product, standard in algebraic topology is naturally extended to this context



310 C. ROGER

For c ∈ Ck(A,A) and c′ ∈ Cl(A,A), one has c ∪ c′ ∈ Ck+l(A,A) defined
as follows:
(c ∪ c′)(x1, . . . , xk+l) = (−1)klµ

(
c(x1, . . . , xk), c′(xk+1, . . . , xk+l)

)
.

The two operations defined above doesn’t give a structure of Gerstenhaber algebra
on C∗(A,A), since cup-product is not graded-commutative, for example, but
everything works well on cohomological level. One has:

Theorem (Gerstenhaber 1963 [14]). For any associative algebra, Hochschild coho-
mology space HH∗(A,A) admits a Gerstenhaber algebra structure.

2. H-K-R Theorem. This example can be considered as a generalization of case
(Ω∗(X),∧, [ , ]) above; let’s now mention the:
Hochschild-Kostant-Rosenberg Theorem [17]:

If A is a smooth commutative k-algebra, then one has an isomorphism:
Λ∗A
(

Derk(A)
)
−−−→ HH∗(A,A) .

So, as a particular example of smooth algebra, if A = C∞(X), then Derk(A) =
Vect(X), and Λ∗A(Derk(A)) = Ω∗(X) = HH∗

(
C∞(X), C∞(X)

)
, and we obtain(

Ω∗(X),∧, [ , ]
)

Explicitly, one associates to each antisymmetric contravariant
tensor T ∈ Ωk(X) the Hochschild cochain cT ∈ Cp

(
C∞(X), C∞(X)

)
, given by:

cT (f1, . . . , fp) = 〈T, df1 ∧ · · · ∧ dfp〉 ,
where 〈 〉 denotes evaluation of contravariant tensors on differential forms. One
can then check that cup-product of Hochschild cochains give exterior product of
tensors in cohomology. There exists also a homological version of this theorem, one
can construct explicitly a map:

HH∗(A,A) −−−→ Ω∗k(A)
which is an isomorphism, the latter space being the space of Kähler differentials on
A which is exactly the space of differential forms on X when A = C∞(X). So Hoch-
schild cohomology (resp. homology) can be considered as a natural generalization
of the space of contravariant tensors (resp. differential forms); noncommutative
geometry broadly generalizes that point of view (cf. [11]).
3. Note about the proof of H-K-R Theorem: cf. also [12, 7], or [36, p. 417 sqq.].
This paragraph presents a sketch of a proof of H-K-R Theorem for C∞ manifolds,
using standard though apparently sophisticated tools of cohomology; it is intended
for devotees of homological algebra, others can skip it without inconvenients.

(1) Consider first the case when A = k[x1, . . . , xn]. From the very definition of
Hochschild cohomology, one has:

HH∗(A,A) = ExtA⊗Aop(A,A)
(cf. [24, p.283]), where Aop denotes the opposite algebra to A; since A
is commutative, one has Aop = A, whence A ⊗ A = A[y1, . . . , yn], and
finally one has to compute HH∗(A,A) = ExtA[y1,...,yn](A,A). This space
can now be determined using Koszul resolution of a polynomial algebra (cf.
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again [24, p.204]); one has to take an exterior algebra over n generators
(∂1, . . . , ∂n) and so one can easily conclude that:

HH∗(A,A) = A⊗k Λ∗(∂1, . . . , ∂n) = Λ∗A
(

Derk(A)
)
,

as required.
(2) For the case of an arbitrary C∞ manifold X, we shall use basic techniques

of sheaf theory. Let O be the structural sheaf of X, its sections on an open
subset U are simply the smooth functions on U ; let C∗(O,O) be the sheaf
of local Hochschild cochains on O, Hochschild differential gives a complex
of sheaves, denoted by (C∗, d) for short. We shall consider hypercohomology
of X with coefficients in this complex, denoted by H∗

(
X, (C∗, d)

)
. This

hypercohomology is obtained through a bicomplex, which induces two
spectral sequences (see [9] for definitions and appropriate techniques for
hypercohomology); the first one gives:

Ep,q1 = Hq
(
X, (Cp, d)

)
.

It is now easy to get convinced that (C∗, d) is a complex of fine sheaves:
Peetre’s theorem (cf. [27]) shows that any local multilinear map from O
into itself is locally given by a multidifferential operator, so sheaf C∗ is
locally free over O, hence fine; so cohomology vanishes, except in degree
zero and one has Ep,q1 = 0, for q 6= 0, and Ep,01 = Cp(X), the space of
global sections of Cp, in other words the space of Hochschild p-cochains
on C∞(X). So this first spectral sequence degenerates from E2 and one
has Ep,02 = HHp

(
C∞(X), C∞(X)

)
. So hypercohomology is exactly the

expected Hochschild cohomology.
Now, degeneracy of the second spectral sequence will give the result; we

must compute cohomology beginning with the differential d of the complex
of sheafified Hochschild cochains, it gives the cohomology sheaves H∗, and
the second spectral sequence satisfies:

Ep,q2 = Hp(X,Hq) .

The delicate part is now to identify those cohomology sheaves H∗; going to
inductive limits on charts around some point x ∈ X allows identification
between fiber H∗x and the space of Hochschild cohomology HH∗(Ox,Ox),
where Ox is the fiber of O in x, i.e. the ring of germs of smooth functions
at x.

(3) We shall compute HH∗(Ox,Ox) using change of rings; the choice of a local
chart in x induces a morphism of rings ix : A→ Ox, and we use now the
theorem of change of rings, following Cartan and Eilenberg [9, p. 172, Prop.
5.1]. It gives:

HH∗(Ox,Ox)

= ExtOx⊗Oop
x

(Ox,Ox) i∗x−−−−−→ ExtA⊗Aop(A,Ox) = HH∗(A,Ox)
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is an isomorphism. In order to determine HH∗(A,Ox), we shall use flatness;
it follows from a theorem of Tougeron [34, chap. VI, p. 118, Cor. 1.3] that
Ox is flat on the ring of germs of analytic functions in x, since the latter
is flat on the polynomial ring A (classical result of commutative algebra),
one has Ox flat on A; then tensor product commutes with cohomology, so
one gets: HH∗(A,Ox) = HH∗(A,A)⊗A Ox. One obtains finally:
HH∗(Ox,Ox) = HH∗(A,A)⊗A Ox =

(
A⊗k Λ∗(∂1, . . . , ∂n)

)
⊗A Ox

= Ox ⊗k Λ∗(∂1, . . . , ∂n)
It is now easy to identify the latter space with Ω∗ x, the space of germs
in x of contravariant antisymmetric tensor fields. Summarizing, we have
identified the cohomology sheaves H∗ with the sheaves Ω∗ of contravariant
antisymmetric tensor fields.The latter being a fine sheaf, its cohomology
vanishes except in degree zero, so one gets for the second spectral sequence:
Ep,q2 = 0 for p 6= 0, and E0,q

2 = Ωq(X) the space of contravariant anti-
symmetric tensor fields on X. Finally, this spectral sequence and one gets
H-K-R Theorem for rings of smooth functions.

Final remarks. In fact, the right tool to deal with the above defined algebraic
structures on Hochschild cochains C∗(A,A) are the “structures up to homotopy”.
It turns out that the space of Hochschild cochains C∗(A,A) admits a structure of
Gerstenhaber algebra up to homotopy, obtained through various construc-
tions of operators, called “braces” (cf. [1] and [35]). The combinatorics of those
braces can be very complicated, the appropriate formalism being the theory of
operads (cf. [25]). As a recent result, let’s mention the work of B. Vallette and
collaborators [8], in which the right operad for BV-structures is constructed, and
so allows to handle with BV-structures up to homotopy.

3. BV-structures and supergeometry

3.1. A short sketch of supergeometry.
We shall only give here the few definitions really unavoidable in order to make
this chapter reasonably self-contained; the reader is referred to [13] for a nice and
rigorous introduction to supergeometry.

3.1.1. Superspace. Basically a superspace will be a vector space equipped with a
Z/2Z-graded commutative algebra of functions, called superfunctions; this point of
view might seem strange at first glance, but it is nothing but a (very)particular
case of basic principle of considering geometry as given by a ring of functions on the
space! So, we shall consider superspace Rp|q, as a space with a ring of superfunctions
C∞(Rp|q) = C∞(Rp) ⊗ Λ∗(Rq); set the generators of exterior algebra as odd, it
will uniquely determine the parity.

3.1.2. Superdomain. Analogously, we shall consider superdomain U ⊂ Rp|q, defined
by C∞(U) = C∞(U) ⊗ Λ∗(Rq), where U ⊂ Rp is an open set. Dimension of a
superdomain will be a couple of integers, here Dim U = p|q. One has an algebra of
superfunctions on a superdomain, which is associative and graded commutative.
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3.1.3. Supermanifold. A supermanifold will be defined as a ringed space, in Grothen-
dieck’s sense [16], locally isomorphic to some superdomain; more precisely, it will be
a differentiable manifold equipped with a sheaf of superfunctions, as follows: one has
X = (X,OX ) a ringed space whose underlying space is a differentiable manifold X
of dimension n, and for each open set U ⊂ X, one has OX (U) = C∞(U)⊗Λ∗(Rm).
We set Dim X = n|m. A typical example of a supermanifold is the following:
consider a vector bundle of rank m on a manifold X, say E → X; then take the
bundle in exterior algebras,and its sheaf of sections, then with OX = Γ(Λ∗E). Up
to some minor details, one can prove that all supermanifolds in the C∞ category
are of this type (Batchelor Theorem, cf. [13]).

3.1.4. Change of parity. Functions on a supermanifold form naturally a Z/2Z-graded
commutative algebra; explicitly OX = OX even ⊕ OX

odd, where OX (U)even =
C∞(U)⊗Λeven(Rm) (resp. for odd). One defines then the functor of change of parity,
denoted by Π: for a superspace E, one has (ΠE)odd = Eeven and (ΠE)even = Eodd;
one checks immediately that Π is functorial. One can construct very useful and
interesting supermanifolds using this functor: let X be any differentiable manifold,
then ΠTX (resp. ΠT ∗X) is the supermanifold obtained by making the fibers of
tangent (resp. cotangent) bundle odd. In terms of the above definition of superma-
nifolds, one has ΠTX = (X,Ω∗) (sheaf of differential forms), and ΠT ∗X = (X,Ω∗)
(sheaf of antisymmetric contravariant tensor fields).

3.1.5. About supergroups and Lie superalgebras. Basic notions of differential geome-
try can be more or less extended to the super case, with some specific difficulties
with volume form and integration, some of them will be discussed below. In particu-
lar, one has frame bundles, and G-structures, for various supergroups G ⊂ GL(n|m).
The latter is simply the group of even graded linear automorphisms of superspace
Rn|m, which can be described through block matrices and graded commutator(some
examples will be given below); the corresponding Lie superalgebra gl(n|m) is des-
cribed similarly. The general problem of constructing a supergroup associated with
a general Lie superalgebra is rather delicate and we shall not use it here (it uses
the notion of Harish-Chandra pair, or one can consider the more sophisticated
notion of “functor of points”, like in algebraic group theory, cf. once more [16]).

3.2. Supersymplectic geometry.

The notion of supersymplectic form on a supermanifold X can be naturally
defined; a 2 form ω ∈ Ω2(X ) will be called supersymplectic, if it is closed and non
degenerate. For any x ∈ X, the underlying manifold, one has a superantisymmetric
mapping

ω(x) : TxX × TxX → R1|1

Superantisymmetry reads: ω(x)(a, b) = −(−1)|a||b|ω(x)(b, a), and in terms of parity,
one has: |ω(x)(a, b)| = |a|+ |b|+ |ω| (mod. 2), where |ω| denotes the parity of the
form ω itself. So one can distinguish to geometrically very different cases, according
to the parity of ω, keeping in mind the splitting TxX = TxX even ⊕ TxX odd, and
TxX even = TxX:
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(1) ω is even: one has an orthosymplectic form, which restricts to a symplectic
form on TxX even, and to a symmetric non degenerate form on TxX odd.
So the underlying manifold carries a symplectic structure; we shall not
consider this case here (cf. [29]).

(2) ω is odd: it defines an isomorphism between TxX even = TxX odd, so this
case can occur only if n = m. We shall call this form a periplectic form,
following Leites and Poletaeva [29].

One has a canonical periplectic form on Rn|n, we shall denote by P (n) ⊂ GL(n|n) its
group of invariance (this group enters the famous classification of finite dimensional
supergroups, due to V. Kac).

Super Darboux theorem.
Let X be a supermanifold with a periplectic form ω ∈ Ω2

odd(X ), then there exists
at every point a chart U ⊂ X with coordinates (x1, . . . , xn, θ1, . . . , θn), such that

ω|U =
n∑
i=1

dxi ∧ dθi .

Then the usual formalism of symplectic geometry extends straightforwardly
to the periplectic case, one has the construction of Hamiltonian (called Leitesian
here) and odd Poisson bracket, known as Buttin bracket4. Explicitly, one has for f ,
g ∈ OX :

{f, g} =
n∑
i=1

( ∂f
∂xi

∂g

∂θi
+ (−1)|f | ∂f

∂θi

∂g

∂xi
) .

Example. Consider ΠT ∗X with canonical Liouville form made odd is a periplectic
manifold. Then, through identification C∞(ΠT ∗X) = Ω∗(X), Buttin bracket on
superfunctions and Schouten bracket on contravariant antisymmetric tensor fields,
as an immediate calculation shows. So if Dim X = n, then Dim ΠT ∗X = (n|n).
One can easily generalize this construction: let X be a supermanifold, one easily
constructs a super-Liouville form on cotangent after change of parity on the
fiber, and ΠT ∗X is a periplectic manifold; if Dim X = (n|m) then Dim ΠT ∗X =
(n+m|n+m) (cf. [31, 20]) for details. In fact this example will turn out to be the
only one, up to isomorphism!

Theorem (Albert Schwarz [31]). Let X = (X,OX ) be a (n|n)-dimensional super-
manifold with a periplectic form. Then X is equivalent, through a diffeomorphism
exchanging periplectic forms5, to ΠT ∗X with periplectic form defined as above.

4Claudette Buttin (1936-1972)
5one should call it “periplectomorphism” !
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3.3. The Berezinian. We shall now deal with determinants and volume forms;
the standard definition of determinant cannot be directly extended to the super-
geometric case, since the exterior algebra over odd space is infinite dimensional.
The supertrace is naturally defined; any linear endomorphism of a superspace
E = Eeven ⊕ Eodd can be decomposed as a 4 blocks matrix as follows:

M =
(
A B
C D

)
.

The supertrace is then naturally defined
sTr(M) = Tr(A)− Tr(D) .

It has the good property one should expect from a trace: it is a supersymmetric
invariant. One want to define a determinant, in order to keep the well known relation
between trace and determinant :Det(exp(M)) = exp(Tr(M)), for M a (classical)
matrix. We shall call the superdeterminant Berezinian, from its inventor, and
denote it as Ber. So we require

Ber
(

exp(M)
)

= exp
(

sTr(M)
)

for every endomorphism of a superspace. The solution is given by the following
explicit formula:

Ber(M) = Det(A−BD−1C) Det(D)−1

(cf. [13] for details) for a matrix M =
(
A B
C D

)
as above. One has the expected

property, that mapping Ber: GL(n|m) → GL(1|0) is a group homomorphism,
whose kernel is SL(n|m). One can now define a subgroup of periplectic group P (n)
as SP(n) = P (n) ∩ SL(n|n), or equivalently

SP(n) = {M ∈ P (n)|Ber(M) = 1} .
Then a direct computation shows that if

M =
(
A B
C D

)
∈ P (n) .

Then
Ber(M) = Det(A)2 .

This formula will play a crucial role in the next sections.

3.4. The Berezin integral. We need an integration of functions on supermani-
folds, or ‘superfunctions’, which preserves the fundamental principle that integration
of a differential on a closed cycle gives zero, as well as the integral of a Lie derivative:∫
X

(Lξf)dµ = 0.
In the purely odd case, one has:

∫
R0|1(a+ bθ)Dθ = b, since a = ∂

∂θ (aθ); and for
the same reason ∫

R0|n
Σ cIθIDθ1, . . . , θn = c1,...,n

(summation on I ∈ {1, . . . , n})
On supermanifolds ΠT ∗X, one has a canonical Berezin measure D(x, θ). On

a coordinate chart U ⊂ X, one has D(x, θ)|ΠT∗U =
∏n
i=1 dxi

∏n
i=1Dθi.
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Warning: This is not a supervolume form (it doesn’t exist on periplectic manifolds,
for the reason mentioned at the beginning of previous section). If one considers
homothetic transformation on coordinates xi → λxj , and θi → λθj , then dxi →
λdxj but Dθi → λ−1Dθj (and this is the reason why this Berezin measure is
canonical).

Now, on any supermanifold X , one has the sheaf of densities Ber(Ω1
X ), defined

as linear forms on the space of (super)functions. The sheaf of half-densities is then a
tensor square root of the sheaf of densities. One then deduces the notion of integral
forms, which can be integrated on submanifolds; it differs from differential forms
(cf. [13, Vol1, p 84] for details). One has moreover a formula of change of variables
for integrals on superdomains . . . :∫

Φ(U)
f(y, ψ)D(y, ψ) =

∫
U
f(Φ(x, θ)) |Ber(TΦx,θ)| D(x, θ) .

So, this formula is formally the same as the classical one, the Berezinian replacing
usual determinant. One characterizes integral forms through the following:

Theorem (Khudaverdian, cf. [19]). Integral forms on a supermanifold X can be
identified with half densities on the periplectic supermanifold ΠT ∗X .

Sketch of proof: Let Φ be an odd symplectomorphism and set:

TΦ =
(
TΦ1,1 ∗
∗ ∗

)
.

So, using 3.3, one sees that Det(TΦ1,1) =
√

Ber(TΦ); if one now considers integral
forms on X , such as σ = s(x, θ)[dx1, . . . , dxn], then one deduces:

Φ∗(σ) = σDet(TΦ1,1) = σ
√

Ber(TΦ) .

So, according to formula 3.4 above, σ transforms as a half-density, as if it were a
square root of integral forms on ΠT ∗X ; so, it can be written as

σ = s(x, θ)
√
D(x, θ)

(for full details, cf. [20]).

3.4.1. BV operator in supergeometry. One can now find a naturally defined Gersten-
haber algebra in supergeometrical context. Following the scheme: X supermanifold
→ ΠT ∗X periplectic supermanifold → C∞(ΠT ∗X ) = Ω∗X . The latter is naturally
a Gerstenhaber algebra, just the superization of example 2.3.1 above: associative
product is simply the supercommutative product of functions, and graded Lie
algebra bracket being the Buttin bracket 3.2.

We shall now construct a BV operator which is a generator of this bracket,
but non canonically .If : ω|U =

∑n
i=1 dxi ∧ dθi is the periplectic form, then:

∆|U =
∑n
i=1

∂
∂xi

∂
∂θi

is a BV operator which generates the Gerstenhaber algebra
(Warning: here, xi denotes coordinates on supermanifold X , were they even or odd).
But this BV operator, acting on superfunctions, also called for obvious reasons
Superlaplacian, depends on the choice of a system of coordinates. It is associated
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to De Rham differential, using so-called “odd Fourier transform” (cf. once more
[31]), and has the following nice properties:

(1) ∆ acts canonically on half densities: σ = s(x, θ)
√
D(x, θ) gives ∆(σ) =∑n

i=1
∂2σ

∂xi∂θi

√
D(x, θ), this transformation being covariant under odd sym-

plectomorphism.
(2) If the integral form is changed by multiplication by a factor ρ, then ∆ is

changed into ∆ρ = ∆ + 1
2{Log(ρ), ·} (find a cohomological interpretation).

3.5. An integration formula in supergeometry.
This section follows an example given in the article of A. Losev [32]. For physical
applications, it happens rather often that really interesting relations, such as the
presence of a group of symmetries, are valid only on the space of solutions of the
equation; or, in theoretical physicist’s language, valid only “on shell”. In most case
this space of solutions is not simple to handle, many technicalities were introduced
to circumvent those difficulties; we shall show here how supergeometry can be
used for this purpose, through some extension of the classical notion of Lagrange
multipliers. Let X be the space of fields and f : X → R the structure equation,
and {f−1(0)} the space of solutions. As an example of computations “on shell”
one needs to understand

∫
{f−1(0)} ω, for some differential form ω. Using Poincaré

duality, one can write ∫
{f−1(0)}

ω =
∫
X

δf ∧ ω ,

where δf is a current in De Rham’s sense, whose cohomology class [δf ] ∈ H1(X)
is Poincaré dual of [{f−1(0)}] ∈ Hn−1(X). Recall that De Rham’s currents are
continuous linear forms on spaces of differential forms, just as distributions are
linear forms on spaces of differentiable functions; they can also be regularized as
limits of differential forms. For our case, if one sets δ(m)

f = 1√
π

exp(−m2f2)mdf ,
one has δf → δ

(m)
f for the weak topology when m→∞. So, as a consequence:∫

{f−1(0)}
ω = lim

m→∞

∫
X

δ
(m)
f ∧ ω .

Now, supergeometry can enter the scenario: let’s first extend manifold X to a
supermanifold by adding one odd coordinate; so we consider X = X × R0|1, we
shall denote by η the odd coordinate. Let’s then consider the tangent space on X
with inverse parity on the fibers ΠTX , which is isomorphic to ΠTX × R1|1, with
R1|1 identified with ΠTR0|1; we shall denote by t the even tangent coordinate in
ΠTR0|1. Since differential forms on X are functions on ΠTX, one can consider
the function exp(−m2f2 + ηmdf) on ΠTX ; it satisfies, from the properties of odd
variables:

exp(−m2f2 + ηmdf) = exp(−m2f2) + η exp(−m2f2)mdf .

One then deduces from the properties of Berezin integral:

δ
(m)
f = 1√

π

∫
R0|1

exp(−m2f2 + ηmdf)Dη .



318 C. ROGER

One further uses properties of Fourier transforms for gaussian functions,and the
even tangent variable t as a Lagrange multiplier to get:

δ
(m)
f = 1

2π

∫
R1|1

exp(itmf − t2

4 + ηmdf)D(η, t) .

One can now use the following change of variables l = mt2π, θ = mη, and one
obtains:

δ
(m)
f =

∫
R1|1

exp(2iπlf − ( lπ
m

)
2

+ θdf)D(θ, l) .

So finally when m→∞, one has:

δf =
∫

R1|1
exp(2iπlf + θdf)D(θ, l) .

In a system of coordinates (xi, ψi) on ΠTX, one can write: 2iπlf + θ df = 2iπlf +
θ(
∑n
i=1

∂f
∂xi

ψi) = [2iπl ∂∂θ +
∑n
i=1 ψi

∂
∂xi

](θf) = D(θf). Here D represents exterior
derivative of functions on supermanifold X and the 1-form D(θf) is then seen as a
function on ΠTX (up to homothety l→ 2iπl). One obtains finally:∫

{f−1(0)}
ω =

∫
ΠTX

ω exp(D(θf))D(xi, ψi, θ, l) .

So the integral of ω on a complicated space, is replaced by integration of a function
ω exp

(
D(θf)

)
on a bigger space, but regular; this exactly the old idea of Lagrange

multipliers where constraints are integrated in the phase space, but adapted to the
supergeometric context; the supplementary odd variables are known as “twisted
fermions”.

3.6. About symplectomorphisms of ΠT ∗X.
The theorem of A. Schwarz, mentioned above 3.2, says that any periplectic manifold
is equivalent to some ΠT ∗X, but non canonically, i.e. up to some odd symplec-
tomorphism. We shall say now some words about them, following results from
Schwarz [31] and Khudaverdian [19] to periplectic form ω.

3.6.1. Homotopy type. Let’s consider the cotangent vector bundle T ∗X → X, and
its group of vector bundle automorphisms AUT (T ∗X). The structure of the latter
group is well known from classical Gauge Theory; it enters an exact sequence:

C∞(X; GL(n)) −→ AUT (T ∗X) −→ Diff(X)

Here C∞(X; GL(n)) is simply the gauge group associated to the corresponding
frame bundle. Now, one has an obvious inclusion AUT (T ∗X) ⊂ Sympl(ΠT ∗X,ω),
the latter group being the group of odd symplectomorphisms of manifold ΠT ∗X,
with respect to periplectic form ω. The image of this inclusion consists of automor-
phisms which are linear in the odd variables. A result of Schwarz [31] shows that
this inclusion is a homotopy equivalence.
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3.6.2. Various kind of odd symplectomorphisms. In [19], Khudaverdian distinguishes
3 kinds of odd symplectomorphisms:

(1) ponctual: They form the image of Diff(X) ⊂ Sympl(ΠT ∗X,ω);
(2) special: They form the image of an embedding Ω1(X) ⊂ Sympl(ΠT ∗X,ω),

defined as follows: a 1-form α =
∑n
i=1 αidxi gives(x, θi)→ (x, θi + αi)

(3) adjusted: They are much more mysterious, they mix odd and even va-
riables.

Ponctual and special automorphisms generate together a copy of semi-direct product
of diffeomorphism group with one-forms. The deep result is now that those three
kind of symplectomorphisms together generate the full group Sympl(ΠT ∗X,ω) (see
[19] for proof).

4. BV-structures in field theory

Those structures appeared for the first time as a version of quantum field theory
(QFT), using functional integration for quantizing classical action γ → S(γ) into
a partition function Z :

∫
exp(iS(γ)

h )D(γ), using some kind of “measure” on a
space of paths γ (for Quantum Mechanics) or fields φ (for Quantum Field Theory).
One then computes mean values of functionals over the space of fields, or some
correlation functions:

〈F(φ)〉 =
∫
F(φ) exp(iS(φ)

h )D(φ)
Z

.

Recall that when h → 0, the value of the integral tends to be concentrated on
critical values of the functional, so one obtains as classical limit the Euler-Lagrange
equation δS

δγ = 0 as usual.

4.1. General framework of BV quantization.
We shall start from some space of fields, some manifold or supermanifold X ,
usually infinite dimensional. The fields will be defined on

∏
T ∗X , equipped with

its periplectic and Gerstenhaber structure, constructed in Chapter 2, and with
some BV operator associated to it; The choice of some density enables to integrate
functions f :

∏
T ∗X → C, on a Lagrangian submanifold L ⊂

∏
T ∗X . For classical

actions Σ:
∏
T ∗X → C, one wants to define quantum action as the integral∫

L

exp
( iΣ
h

)
as a quantum action. One then has

Theorem (Main theorem of BV quantization (Albert Schwarz)).
(1) ∆f = 0 and L1 homologous to L2 imply

∫
L1
f =

∫
L2
f

(2) If f = ∆g, then
∫
L
f = 0 for any Lagrangian L.

Before entering the arguments of proof, one needs some precision about geometry
of Lagrangian submanifolds.
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4.2. About Lagrangian submanifolds.
The theory is completely parallel to the case of symplectic geometry, but much more
rigid. A submanifold L ⊂

∏
T ∗X is Lagrangian if it is maximal isotropic (recall

that ‘isotropic’ means ω|L = O). A standard example of isotropic submanifold is
the following: let N be a k-dimensional submanifold of X , and set T ′N = {α ∈
T ∗X|α(ξ) = O, if ξ ∈ TN}, then

∏
T ′N ⊂

∏
T ∗X is a Lagrangian submanifold,

called standard Lagrangian.
In terms of local coordinates: let x1, . . . , xn, θ1, . . . , θn be a system of coordinates

in
∏
T ∗X , let N be a k-dimensional submanifold defined locally by xk+1 = · · · =

xn = 0 (so here X is an ordinary manifold); then
∏
T⊥N admits local equations

xk+1 = · · · = xn = 0, θ1 = · · · = θk = 0. So Dim (
∏
T⊥N ) = (k|n− k).

Remark. This construction can be generalized for the case when X a supermani-
fold.

Theorem. Let L ⊂
∏
T ∗X be a Lagrangian submanifold. Then there exists a

smooth family of Lagrangian submanifolds (Lt), t ∈ [0, 1], with L0 = L and L1 of
the form

∏
T⊥N for some N ⊂ X . A detailed proof can be found in [20], it makes

an extensive use of classification of odd symplectomorphisms.

4.3. Classical and quantum BV master equation.
Let Σ:

∏
T ∗X → C be a classical action. One wants to compute ∆

(
exp

(
iΣ
h

))
,

where ∆ is the BV-operator.

Proposition 1. One has: ∆
(

exp
(
iΣ
h

))
= exp

(
iΣ
h

)(
∆(Σ)− [Σ,Σ]

2ih
)
.

Proof. Develop exp
(
iΣ
h

)
into power series, use the fact that ∆ is of order 2, and

compute! �

Corollary. ∆
(

exp
(
iΣ
h

))
= 0 ⇐⇒ 2ih∆Σ = [Σ,Σ].

Remark. The first equation is called BV Equation, and the second one Quan-
tum Master Equation (QME). One must point out the analogy with deformation
theory and Maurer-Cartan equation (cf. 2.5.2).

Let now Ψ:
∏
T ∗X → C be another function. If Σ satisfies (QME), then one

has
∆
(

Ψ exp
( iΣ
h

))
=
(

∆Ψ + (−1)|Ψ| i
h

[Ψ,Σ]
)

exp
( iΣ
h

))
.

So one has:

Corollary. If Σ satisfies (QME), then one has

∆
(

Ψ exp
( iΣ
h

))
= 0 ⇐⇒ ih∆Ψ = (−1)|Ψ|[Ψ,Σ] .

Such a function Ψ will be called a quantum observable.

Remark. Set ∆Σ(Ψ) = ih∆Ψ− (−1)|Ψ|[Ψ,Σ]. Then if Σ satisfies (QME), one has
∆Σ

2 = 0. So there exists a cohomology naturally associated to it! If h → 0, the
QME tends to the Classical Master Equation

[Σ,Σ] = 0 .



GERSTENHABER AND BATALIN-VILKOVISKY ALGEBRAS 321

So when X is a classical finite dimensional manifold, [ , ] turns out to be Schouten
bracket (cf. 2.3.1), and CME is the equation of Poisson tensors. Moreover, the
equation for classical observables (cf. above) yields:

[Ψ,Σ] = 0 .
It means that Ψ is a cocycle for Poisson cohomology defined by tensor Σ. This
cohomology is a typical example of cohomologies obtained through vanishing square
objects (cf. 1); it has been introduced by A. Lichnerowicz [23], for maximal rank
(symplectic) Poisson structures, it yields De Rham cohomology of X , but in general
it is very difficult to understand.

Remark (Exercise, or cf. Cattaneo [10]). If Σ satisfies QME, then one obtains
two homological differentials ∆ and ∆Σ, since ∆2 = 0 and ∆Σ

2 = 0. Prove they
define the same cohomology, using the above computation for ∆

(
Ψ exp

(
iΣ
h

))
.

4.4. Integration on Lagrangian submanifolds and quantization.
The global scheme works as follows:

(1) Let v = vol a volume form on X ;
(2) One deduces from v, the density Dv on

∏
T ∗X (Berezinian);

(3) One deduces a generator ∆v for the BV structure;
(4) Finally one gets a density on any Lagrangian submanifold L ⊂

∏
T ∗X ,

denoted by
√
Dv.

Those successive constructions have been described in previous sections; one
first gets the partition function

Z =
∫
L

exp
( iΣ
h

)√
Dv ,

for Σ satisfying QME. For any quantum observable Ψ, one computes the mean
value:

〈Ψ〉 =

∫
L

Ψ exp
(
iΣ
h

)√
Dv

Z
.

The main theorem above imply that Z, 〈Ψ〉, and correlation functions 〈Ψ1Ψ2 . . .Ψp〉
do not depend on the choice of a particular Lagrangian submanifold, inside a same
homology class; this kind of independence looks very much like ‘gauge invariance’.

Remark. If one changes densities, and thus the operator ∆, then one modifies
action and the corresponding quantum observables according to previous formulas.

4.5. Miscellaneous.

4.5.1. Algebraic quantization. Starting from a particular solution of CME, one
can try to construct inductively a solution of QME, in the spirit of perturbative
theory or deformation quantization; more explicitly, let S be a solution of CME, so
[S, S] = 0, and look for solutions of QME following the Ansatz:

Σ = S +
+∞∑
p=1

hpΣp .
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So, from 2ih∆Σ = [Σ,Σ], one deduces successive equations

i∆S = [S,Σ1]
...

i∆Σp = [S,Σp] + 1
2
∑
a+b=p

[Σa,Σb] .

So Quantum Master Equation leads to successive and recurrent cohomological
equations, for the cohomology defined by bracket with S (cf. 1).

4.5.2. Ghosts. Following Losev [32], if one has a classical action f : X → R, and
a group G acting on X such that f is invariant, then one can make G enter the
configuration space, but with inversed parity. Let g the Lie algebra of G and let
{ca} be a basis of g; consider the supermanifold X ×Πg and then its associated
cotangent space with inverse parity on the fibers:

X = ΠT ∗(X ×Πg) = ΠT ∗(X)×Πg× g∗ .

This supermanifold admits a natural periplectic structure, and its space of (super)
functions form a BV algebra. Choosing coordinates xi onX, one deduces coordinates
on X : (xi, ca, θi, c∗a). One can now define the BV action,which is the quantization
of the previous f :

S(x, θ, c, c∗) = f(x) + cavia(x)θi + 1
2C

c
a bc

acbc∗c .

[NB: here we use Einstein convention, i.e. summations on indices are understood,
and Cca b indicates structure constants].

Then, for the above mentioned BV structure, the BV equation ∆S = 0 is
equivalent to the fact that vector fields via(x) ∂

∂xi
generate a Lie algebra isomorphic

to g, and they leave action f invariant. In the BV terminology, the xi are the
fields, θi the antifields, and the ca the c-ghosts (following Faddeev-Popov). Here
we briefly checked how to introduce symmetries in the configuration space; in the
previous chapter (see 3.5) we showed in a very particular case, how to introduce
constraints in the configuration space, generalizing Lagrange multipliers with odd
coordinates; in the general case one gets this way b-ghosts. Both approach are
strongly linked, in some sense dual to each other, ie symmetries gives cohomology,
while constraints give homology. The cohomology one gets from the full quantized
action is a mixture of Lie algebra homology and cohomology. Well known examples
of this kind of cohomology are BRST6, and semi-infinite cohomology [5, 33].

4.5.3. Further applications. For more details about the physical roots of those
constructions, see the original articles [3, 2], or the beautiful survey [30]. Recent
applications of the BV-quantization scheme to the study of Poisson sigma-models
has been given in [4].

6Becchi-Rouet-Stora-Tyutin
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