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The joint distribution of additive and
complex-valued multiplicative functions

Antanas Laurincikas

Abstract. In the paper the necessary and sufficient conditions for the existence
of joint limit distribution for real additive and complex-valued multiplicative
function are presented.

1. Introduction.

Let N, Z, R and C denote the sets of all positive integers, integers, real and complex
numbers, respectively. We recall that a function f : N — R is called additive if
fim-n) = f(m) + f(n) for all m,n € N such that (m,n) = 1, and a function
g : N — C is said to be multiplicative if g(m) # 0 and g(m - n) = g(m)g(n) for all
m,n € N, (m,n) = 1. Hence we have that f(1) = 0, while g(1) = 1.

The classical probabilistic number theory investigates asymptotic probabilistic
distribution laws for additive and multiplicative arithmetic functions. Let, for n €
N,

Up(...) = %#{1 <m<n:..},

where in place of dots a condition satisfied by m is to be written. Denote by B(S) the
class of Borel sets of the space S. Value distribution of arithmetic functions usually
is characterized by limit theorems in the sense of weak convergence of probability
measures. We recall some results in the field.

Denote by p a prime number, and define

_Jfp) Hf)] <1,
If(@)ll = {1 it £(p)] > 1.

Theorem A. Let f(m) be a real additive function. Then the probability measure
vn (f(m) € A), AeB(R),
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converges weakly to some probability measure on (R, B(R)) as n — oo if and only

if the series
2
S HOI g 5 @ (1)

p p

converge.

The sufficiency of Theorem A was proved by P. Erdds in [4], and a full proof
was obtained in [6].

In the case of multiplicative functions, we define the m-weak convergence of
probability measures. Let P, and P be two probability measures on (R, B(R)). We
say that P, converges m-weakly to P as n — oo if P, converges weakly to P and
P,({0}) - P({0}). In the case P({0}) =1 the last condition is not needed.

n
The first attempt to prove the existence of limit distribution for multiplicative

functions was made in [5].

Theorem B [5]. Let g(m) > 0 be a multiplicative function. Then the probability
measure

vn (g(m) € 4), A€ B(R), (2)

converges m-weakly to some probability measure P on (R, B(R)), P({0}) # 1, as
n — oo if and only if the series

lgtp) —1il lg(p) — 1]]?
S D P

converge.

A. Bakstys obtained in [1] a limit theorem for multiplicative functions with
positive and negative values. A probability measure P on (R, B(R)) is symmetric
if P(—00,a) =1— P(—00,al for some a € R.

Theorem C [1]. Let g(m) be a real multiplicative function. Then the probability
measure (2) converges m-weakly to some non-symmetric probability measure on
(R, B(R)) as n — oo if and only if the series

lg(p) — 1] lg(p) —1J* 1

g(p)<0

converge and there exists o € N such that g(2%) # —1.
Finally, in [13] the problem of the existence of limit distribution for real mul-
tiplicative functions has been solved completely. Define, for A € B(R),

Pu(A) = 1 ifaeA,
)0 ifad A

Moreover, let
w o if ul <1,
lull« =<1 ifu>1,
-1 ifu<-1.
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Theorem D [13]. Let g(m) be a real multiplicative function. The probability measure
(2) converges m-weakly to some probability measure P on (R,B(R)) , P # P, for
every a € R, as n — oo if and only if the series

[ITog |g(p)] Il Ioglg@IIIZ | !
3 2Dl 3 . dzp (3)

g(pz))#O .q(pz;;éﬂ .q(pI;ZO
converge.
The case of complex-valued multiplicative functions is more complicated. Let
g(m be a complex-valued multiplicative function. Define

g(p)
ug(p) = T9(P)] if g(p) # 0,
0 if g(p) =0,

and
o) = 4 loslat)l it ¢ <lglp)l <e,
! 1 if |g(p)| < L or |g(p)| > e.

Theorem E [3]. Let g(m) be a complex-valued multiplicative function. The proba-
bility measure

vn (g(m) € A), A e B(C),
converges weakly to a probability measure P on (C,B(C)), P({0}) #1, as n —
if and only if the following hypotheses hold:

10 The series )
LR )
PR P

converge;
20 Either for allm € N and all t € R

Z 1 —Re ul'(p)p~*
p p

= +OO,

or there ezits at least one m € N such that the series
Z 1- UZ"” (p)
p p

converges.

In [8] and [9] a joint limit theorem for real additive and real multiplicative
functions has been obtained.

Let P, and P be probability measures on (R?, B(R?)). We say that P, con-
verges a,m—weakly to P as n — oo if P, converges weakly to P and P,(R x

{0})) — PR x {0}).

Theorem F.[8], [9]. Let f(m) and g(m) be a real additive and real multiplicative
functions, respectively. The probability measure

va ((f(m), g(m)) € A), A€ B(R?),

converges a, m-weakly to some probability measure P on (R?, B(R?)), P(R x A) #
P,(A4), a €R, as n — oo if and only if the series (1) and (3) converge.



38 Antanas Laurin¢ikas

The aim of this paper is to obtain a joint limit theorem for a real additive and
a complex-valued multiplicative function.

Let X =R x C, and let P,, and P be probability measures on (X, B(X)). We
say that P, converges a, m-weakly to in the sense of X P as n — oo if P, converges
weakly to P and P,(R x {0}) . P(R x {0}).

Theorem 1. Let f(m) and g(m) be a real additive and o complez-valued multiplica-
tive function, respectively. The probability measure

de
Pu(A4) Cu ((£(m),g(m)) € 4), A € B(X),
converges a, m-weakly in the sense of X to some probability measure P on (X, B(X)),
PR x{0}) #1, as n — oo if and only if the series (1) converge and the hypotheses
of Theorem E are satisfied.
For the proof of Theorem 1 the method of characteristic transforms is applied.

2. Characteristic transforms

First we recall some results on probability measures and their convergence on C.
Denote points of C by z = re*?. Let P be a probability measure on (C, B(C)). The
function w(r, k) defined by the equality

w(T, k) = / riTet*?dP, T eR, keZ,
c\{o}

is called the characteristic transform of P.
The measure P is uniquely determined by its characteristic transform w(r, k).
Let P and P, be probability measures on (C, B(C)). We say that P, converges
weakly in sense of C to P as n — oo if P,, converges weakly to P and nlirgo P,({0}) =

P({0}).

Lemma 2. Let {P,} be a sequence of probability measures on (C,B(C)) and let
{wn(1,k)} be the sequence of corresponding characteristic transforms. Suppose that
lim wy,(7,k) = w(r, k) for all 7 € R and k € Z, and that the function w(r,0)

n—oo

is continuous at the point 7 = 0. Then there exists a probability measure P on
(C,B(C)) such that P, converges weakly in sense of C to P as n — oo. In this
case, w(t, k) is the characteristic transform of the measure P.

Lemma 2 and other elements of the theory of probability measures on (C, B(C))
can be found in [10].

For points of the space X we will use the notation (a:,rei‘/’). Let P be a
probability measure on (X, B(X)), and

Pr(A)=P(AxC), AcB([R).
The functions

w(T) = / e™dPg, TER,
R
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and
w(r, 7, k) = /e“m’“w)rmdp, 1,72 €R, k €Z,
X

where the last integrand is zero if » = 0, are called the characteristic transforms of
the measure P.

For the proof of Theorem 1 we need the continuity theorems for probability
measures on (X, B(X)).

In [11] it was proved that a probability measure P on (X, B(X)) is uniquely
determined by its characteristic transforms (w(7),w(71, 72, k)). Moreover, two fol-
lowing statements in [11] were obtained.

Lemma 3. Let {P,} be a sequence of probability measures on (X,B(X)), and let
{(wn (T), wn (11, 72,k))} be the corresponding sequence of characteristic transforms.
Suppose that

lim w,(7) =w(r), T€ER,

and
lim wn(Tl,TQ,k):w(Tl,Tg,k), Tl,TQER, kEZ,

n—oo
where the functions w(r), w(m,0,0) and w(0,72,0) are continuous at the points
7=0,71 =0 and 72 =0, respectively. Then on (X, B(X)) there exists a probability
measure P such that P, converges a, m-weakly in the sense of X to P as n — oo.
In this case, (w(7),w(71, 72, k)) are the characteristic transforms of the measure P.

Lemma 4. Let {P,} and {(w,(7),wn(m1,72,k))} be the same as in Lemma 2.
Suppose that P,, converges a, m-weakly in the sense of X to some probability measure
P on (X,B(X)) as n — oco. Then

lim wy(r) =w(r), 7€R,

and
lim wy,(71,72,k) = w(n, 2, k), 71,72 €R, keZ,

where (w(7),w(71,72,k)) are the characteristic transforms of the measure P.

3. Mean values of multiplicative functions
We say that a multiplicative function g(m) has the mean value M(g) if the limit

1
Jim =3 g(m) = M(g)
m<z

exists.

Lemma 5. In order that the mean value of the multiplicative function g(m),
lg(m)| < 1, exist and be zero, it is necessary and sufficient that one of the fol-
lowing conditions should be satisfied:

1—R —iu
1° For every u € R, ZLWZOO;

p p
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20 There ezxists a number ug € R such that the series

1 —Re g(p)p
2

p

77;’U,0

converges, and 27" g(2") = —1 for all r € N.
The lemma is a corollary of results from [7].

Lemma 6. Let g(m) = g(m;ty,....tr), |g(m)| < 1, be a multiplicative function, and

the series
—ia(t1,...,t2)

Z 1 —Re g(p;t1,....,t.)p

p p

converges uniformly in t;, |t;| <T, j=1,..,r. Then, as x — oo,

1 Z ( ) xia(th'“vtr)
- g(m;ty, .., tp) = ——————X
x = 1+a(ty, ..., t)
g p tl?"'» )
x 1:[ (1 o _) (1 + Z a(1+1a(t1,.... T))) + 0(1)
p<z

uniformly in t;, [t;| <T,j=1,..,n
The lemma is a special case of a result from [12].

4. Sufficiency
We suppose that 0, =0, for z € C.

Let (wy(7), wn (71,72, k)) be the characteristic transforms of the measure P,.
Then we have that

n

1 it f(m
w"(T):ﬁZe fm)
m=1

and

1 - iT1 ] g i
— f(m)+ik arg g(m) iTo
wn (71,72, k) = — > e lg(m)[*™.

m=1

It is easily seen that the series

Zl—Re; irf(p << Z

p \f(p)\>1

+ Z 241) ZHf

Fwi<
in view of the convergence of series (1) converges uniformly in |7| < T. Therefore,
by Lemma 6, as n — oo,

wa(r) = [ (1 - %) (1 + i e”;ipa)> +o(1)

a=1

p)II?

(4)
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uniformly in |7| < T. Hence, taking into account the convergence of series (1)
again, we find that

Jim_w, (1) = w(T), (5)
where )
1 . et f(0?
w(T)zl;[<1—];) <1—|-az_:1 o )

is continuous at 7 = 0.
Now we consider the series

8(7—177—27k) d;fz
p

Using the identity
1— 212923 :2223(1—Zl)—l—Zg(l—Zg)—l-(l—Zg), (6)
we find that uniformly in |7;| < T, j = 1,2,

1 — Re eim f(p)+ikargg(p) lg(p)|i™
» .

1 1 — Re e /() 1 — Re etk arg g(p)
S(T17T27k)<< Z —+Z—+ Z +
o P p v p
9(p)=0 P I
1
1 — eiT2loglg(p)l 1 — Re /() \ 2
+y | ] x
P p N p
g(p)#0
2 1
1 — Re etk argg(p) 1 — Re e/ \ 2
% Z + Z — | X
P p N p
g(p)#0
i 1
1 —Re eiT2 log |g(p)| 1 — Re eik arg p
> it )«
P p - P
a(p)#0 g(p)#0

1

1 — Re eim2loglg(p)]
x Z . (7)
~ p
9(p)#0
Suppose that there exists kg € N such that the series

Z 1- ulgf0 (p)

P p

converges. Then it can be proved, see [2], p. 224 -227, that there exists ¢ € N such
that the series .
Z 1- Ug ()
» p
converges if and only if ¢|k. For these k, we have that the series

>

I3
g(p)#0

1 — Re etkargg(p)

p
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converges.
We already have seen that in view of the convergence of series (1) the series

Z 1 — Re e/ ()

- p

converges uniformly in |r;| < T. Moreover, condition 1° of Theorem E shows that

the series
)l 1 73— vi(p)
< 2y 2 8
> > i ®

P P
g(p)#0 vg(p)=1

1 — Re i loglg(p

also converges uniformly in |72| < T'. These three remarks and (7) yield the uniform
convergence in |7;| < T, j = 1,2, for the series S(7, 72, k) if g|k. Therefore, if ¢|k,
then by Lemma 6, as n — oo,

1 it f(p™)+ik arg g(p™) ) |iTe
wa(r1, 72, k) = [] (1 - ]—)) <1+ Yy o 9@ Loy ()

p()t

p<n a=1
uniformly in |7;| < T, j = 1,2. We have that

ein f(p)+ik arg g(p) |g(p) |i7'2 -1

p
0 (%) if g(p) =0,
o (1) if |f(p)l>1
z or |loglg(p)|l > 1,
u]g“(p) -1 i f(p) Z'7'1(Ulg€ (p) —1)f(p) "
p p p
= n iTovg(p) ZTQ(US(])) = Dvg(p) _ (10)
p p if |f(p)l<1
B Tlrzf(p)vg(p)U’g(p)+ and [loglg(p)|| < 1.
p
7112 (p) |25 (p)
vo (Il o ( ’ )

From the hypotheses of Theorem 1 it follows that

5 Re (1—1;’3(p))f(p) -y 1—R<;u’;(p>

P P
[f(p)I<1 [f(p)I<1

> Im (1 - uf(p))f(p) _ > —Im ug (0)/ () _

» p » p
£ ()<t IF(p)I<1
. 1
Im wf (p)]* ) * f*(p)
< - 97 CA A <
B (Z p zp: p B
p 1F(p)<1
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<2<21_Reu’;<p>>% > S0

p »
p I£(p)I<1

converges if g|k. Hence the series

P
[f(p)I<1

converges. Similarly, we find that the series

Z (US (p) — 1)vg(p)

p

\10;{\92(010)\%1
and
3 f(p)vg(p)uy(p)

[F@)I<1, Toglg(p)<1 b
also converges. Therefore, (9) and (10) show that uniformly in |7;| < T, j = 1,2,

lim wy, (71,72, k) = w(m, 72, k),
n—oo

1 O it f(p™)+ik arg g(p™) a\|iTe
w(T1,T2,k):H<1——) <1_|_Ze lg(p®)| .
a=1

(67
. p p

where

Clearly, w(7,0,0) and w(0, 72,0) are continuous at 71 and 7o = 0, respectively.
Now suppose that ¢ 1 k. Then, by repeating the arguments of [2], it can be
proved that
1—Re uf(p)p~™

> =0 (11)
> p
for all u € R. Then, using (6), we have

1 — Re ei‘rlf(p)uk T2 —1U 1
3 ;(p)lg(p)l P 3 Ly

<n p<n
p= g(p)=0

1 —Re u* —iu 1— i1 f(p) iTo
Py o™ S Re e lg(p)"™

p<n p p<n p
g(p)#0 9(p)#0
; 4
1 — Re /@) |g(p)[im 1—Re uf(p)p~™
—c3 Z | ( )| Z g (12)
p<n p p<n p
g9(p)#0 g(p)#0

with some positive c1, co and c3. However,

3 1 —Re e/ @g(p|'™
p

<

p<n
g(p)#0

1 — Re eiT21oglg(p)|

_ i71f(p)
<<Zl Reelfp+z n

p<n p p<n p
- 9(p)#0
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1 — Re ei2loglg(pl

N Z 1 — Re e () Z <1

p<n p p<n p
- 9(p)#0

uniformly in |7;| < T, j = 1,2, in view (4) and (8). From this, (11) and (12) we
obtain that

Z 1 —Re emf(p)ulg(p)|9(p)|mp_i“ C
» p
for all 7,7 € R and all © € R. Consequently, by Lemma 5 we have in this case
that

lim wy,(71,72,k) =0 (13)

for all 7,7 € R.
If i A
1—Reu T
Z g(p)p — 100

p
p
for all £ € N and u € R, then, reasoning similarly to the case ¢ 1 k, we obtain that

lim wn(Tl,TQ,k) =0

for all 71,7 € R and k € N.
Therefore, the sufficiency follows from Lemma, 3.

5. Necessity

Suppose that the measure P, converges a, m-weakly to some probability measure
P on (X,B(X)), P(R x {0}) # 1, as n — oo. Let (wy(7),wn(m1,72,k)) be the
characteristic transforms of the measure P,. Then by Lemma, 4
lim w,(7) =w(T), 7TE€R,
and
lim wn(Tl,TQ,k):w(Tl,Tg,k), Tl,TQER, kEZ, (14)

n—oo
where (w(7),w(m1, 72, k)) are the characteristic transforms of P.
The function w(7) is the characteristic function of the probability measure
Pr(A x C), A € B(R). Therefore, w(7) is continuous at 7 = 0. Hence we obtain
that the probability measure

vn (f(m) € 4), A€ B(R),

converges weakly to the probability measure Pr as n — oco. Therefore, by Theorem
A, series (1) converges.
We observe that the function w(0, 72,0) is continuous. Really,

w(O,Tg,O):/rmsz /rmdp, (15)
X 7"(;00

where P is a probability measure on (R, B(R)). In place of the measure P we can
use the distribution function

F(z) = P(—o0, ).



The joint distribution of additive and complex-valued multiplicative functions 45

Define
fo=1-F(0), pr=F(0).
Now let, for 3; #0, 5 =1,2,

Go(ﬂ?) _ F(e )_F(0)7
Bo
Gl(x) _ F(O) _F(_e )
p1
Then Gy(x) and G;(x) are distribution functions, and we have in view of (15) that
w(0,72,0) = Bofo(r2) + B1 f1(72), (16)

where f;(72) is the characteristic function of the distribution function G,(x), j =
0,1. (16) remains valid also in the case when Sy =0 or 8; =0, or 5y =0, 31 = 0.
In this case the corresponding terms on the right-hand side of (16) are zeros.
Since the characteristic functions fy(72) and fi(72) are continuous, equality
(16) gives the continuity of w(0,72,0). By (14) the characteristic transform of the
measure
vn (g(m) € A), A e B(C), (17)

converges to the function w(0, 72, k), and w(0, 72, k) is continuous at 7 = 0. Hence,
by Lemma 2, the measure (17) converges weakly in the sense of C to some proba-
bility measure P; on (C, B(C)). Clearly, P(R x A) coinsides with P;(A), A € B(C).
Since P(R x {0}) # 0, hence we have that P;({0}) # 0. Therefore, by Theorem E
we obtain the conditions related to the function g(m). The necessity is proved.
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