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Abstract

In this paper, weak and strong convergence of finite step iteration
sequences to a common fixed point for a pair of a finite family of non-
expansive mappings and a finite family of asymptotically nonexpansive
mappings in a nonempty closed convex subset of uniformly convex Ba-
nach spaces are presented.
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1 Introduction

The class of asymptotically nonexpansive mappings which is an important gen-
eralization of that of nonexpansive mappings was introduced by Goebel and
Kirk [6]. Iteration processes for nonexpansive and asymptotically nonexpansive
mappings in Banach spaces including Mann [11] and Ishikawa [8] iteration pro-
cesses have been studied extensively by many authors (see [2, 7, 14, 15, 16, 17]).
Recently, Xu and Noor [19] introduced and studied a three-step scheme to

approximate fixed points of asymptotically nonexpansive mappings in Banach
space. Cho et al. [3] extended the work of Xu and Noor [19] to the three-step
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iterative scheme with errors in a Banach space and gave weak and strong con-
vergence theorems for asymptotically nonexpansive mappings. Chidume and
Ali [2] considered the multi-step scheme for a finite family of asymptotically
nonexpansive mappings and gave weak convergence theorems for this scheme
in a uniformly convex Banach space whose the dual space has the Kadec–Klee
property. They also proved a strong convergence theorem under some appro-
priate conditions on a finite family of asymptotically nonexpansive mappings.
Liu et al. (see [9] and [10]) established a new method with respect to a pair
of nonexpansive and asymptotically nonexpansive mappings. The results in [9]
and [10] generalize, improve and unify many known results due to many authors.
Moreover, they also gave an example to demonstrate that their results are sub-
stantial generalizations and many previous known results are not applicable in
this case.
Inspired by the above works, in this paper, a multi-step iteration scheme for

a finite family of nonexpansive and asymptotically nonexpansive mappings is
introduced and strong and weak convergence theorems of this scheme to com-
mon fixed point of nonexpansive and asymptotically nonexpansive mappings are
proved. The weak convergence theorem is proved in a uniformly convex Banach
space whose dual has the Kadec–Klee property. It is worth mentioning that
there are uniformly convex Banach spaces, which have neither a Fréchet differ-
entiable norm nor Opial property; however, their dual does have the Kadec–Klee
property (see [5, Example 3.1]). Hence our results are different from [9] and [10]
and the proofs are of independent interest.

2 Preliminaries

Let K be a nonempty subset of a real Banach space E and T : K → K be a
mapping with the fixed point set F (T ), i.e., F (T ) = {x ∈ K : x = Tx}. In this
paper, we write xn → x (resp. xn ⇀ x) if xn converges strongly (resp. weakly)
to x.

Definition 1 A mapping T : K → K is said to be

1. asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with
limn→∞ kn = 1 such that ‖T nx − T ny‖ ≤ kn‖x − y‖ for all x, y ∈ K and
n ≥ 1;

2. nonexpansive if ‖Tx− Ty‖ ≤ ‖x − y‖ for all x, y ∈ K;

3. Lipschitzian (with a Lipschitz constant L) if ‖Tx − Ty‖ ≤ L‖x − y‖ for
all x, y ∈ K;

4. demi-closed at a point p ∈ K if whenever {xn} is a sequence in K which
converges weakly to a point x ∈ K and {Txn} converges strongly to p, it
follows that Tx = p.
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Definition 2 [4] A norm on a Banach space E is uniformly convex (or simply,
E is uniformly convex) if for all {xn}, {yn} ⊂ {z ∈ E : ‖z‖ = 1} such that∥∥xn+yn

2

∥∥ → 1, we have ‖xn − yn‖ → 0.

Let K be a nonempty subset of a Banach space E. Let S1, S2, . . . , SN : K →
K be N nonexpansive mappings, T1, T2, . . . , TN : K → K be N asymptotically
nonexpansive mappings. Then the sequence {xn} defined by

x1 ∈ K,

x
(0)
n = xn,

x
(1)
n = a

(1)
n T n

1 x
(0)
n + (1 − a

(1)
n )S1xn,

x
(2)
n = a

(2)
n T n

2 x
(1)
n + (1 − a

(2)
n )S2xn,

...

x
(N−1)
n = a

(N−1)
n T n

N−1x
(N−2)
n + (1 − a

(N−1)
n )SN−1xn,

x
(N)
n = a

(N)
n T n

Nx
(N−1)
n + (1 − a

(N)
n )SNxn,

xn+1 = x
(N)
n , n ≥ 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where {a(i)
n }∞n=1 ⊂ [0, 1], i = 1, 2, . . . , N . An example of such iterations can be

found in [9] and [10].
The purpose of this paper is to study the weak and strong convergences of

finite-step iteration sequence {xn} defined by (1) to a common fixed point of
a finite family of nonexpansive mappings and a finite family of asymptotically
nonexpansive mappings in a uniformly convex Banach space.
The following lemmas are our main tool for proving the results.

Lemma 1 ([7]) Let E be a uniformly convex Banach space and K be a nonempty
closed convex subset of E. If T : K → K is an asymptotically nonexpansive
mapping, then I − T is demiclosed at zero.

Lemma 2 Let E be a uniformly convex Banach space, {xn} and {yn} be se-
quences in E. Suppose that there is δ > 0 such that δ ≤ tn ≤ 1 − δ for all
n ∈ N. If lim supn→∞ ‖xn‖ ≤ a, lim supn→∞ ‖yn‖ ≤ a and limn→∞ ‖tnxn +
(1 − tn)yn‖ = a for some a ≥ 0, then limn→∞ ‖xn − yn‖ = 0. Moreover,
limn→∞ ‖xn‖ = limn→∞ ‖yn‖ = a.

Proof The first assertion follows from [15]. It suffices to prove that

lim inf
n→∞ ‖xn‖ ≥ a.

In fact, this follows since

a = lim
n→∞ ‖tnxn + (1 − tn)yn‖ = lim

n→∞ ‖xn + (1 − tn)(yn − xn)‖.

This finishes the proof. �
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Lemma 3 ([13]) Let {an} and {bn} be sequences of nonnegative numbers sat-
isfying the inequality an+1 ≤ (1 + bn)an, for all n ≥ 1. If

∑∞
n=1 bn < ∞, then

limn→∞ an exists. In particular, if {an} has a subsequence which converges to
zero, then limn→∞ an = 0.

Lemma 4 ([5]) Let E be a reflexive Banach space such that its dual E∗ has the
Kadec–Klee property. Let {xn} be a bounded sequence in E and p, q ∈ ωw(xn),
where ωw(xn) denotes the set of all weak cluster points of the sequence {xn}.
Suppose that limn→∞ ‖txn + (1 − t)p − q‖ exists for all t ∈ [0, 1]. Then p = q.

Lemma 5 ([5]) Let K be a convex subset of a uniformly convex Banach space
E. Then there exists a strictly continuous convex function φ : R

+ → R
+ with

φ(0) = 0 such that for each Lipschitzian mapping T : K → K with a Lipschitz
constant L,

‖tTx + (1 − t)Ty − T (tx + (1 − t)y)‖ ≤ Lφ−1(‖x − y‖ − 1
L
‖Tx − Ty‖)

for all x, y ∈ K and all 0 < t < 1.

Proposition 1 ([20]) Let K be a nonempty subset of a Banach space E and
T1, T2 . . . , TN : K → K be N asymptotically nonexpansive mappings. Then
there exists a sequence {kn} ⊂ [1,∞) such that limn→∞ kn = 1 and

‖T n
i x − T n

i y‖ ≤ kn‖x − y‖ (2)

for all x, y ∈ K, n ≥ 1 and i = 1, 2, . . . , N .

From now on, we will assume that N asymptotically nonexpansive mappings
T1, T2, . . . , TN : K → K share the same sequence {kn} ⊂ [1,∞) as mentioned in
the preceding proposition.

3 Technical Lemmas

Lemma 6 Let K be a nonempty convex subset of a real Banach space E. Let
S1, S2, . . . , SN : K → K be nonexpansive mappings, T1, T2, . . . , TN : K → K be
asymptotically nonexpansive mappings with the sequence {kn} and suppose that
F =

⋂N
i=1 F (Si) ∩ F (Ti) 
= ∅. If

∞∑
n=1

(kn − 1) < ∞, (3)

then limn→∞ ‖xn−q‖ exists for any q ∈ F , where {xn} is defined by the iterative
scheme (1).

Proof Let q ∈ F . It follows from (1) that

‖x(1)
n − q‖ ≤ a(1)

n ‖T n
1 xn − q‖ + (1 − a(1)

n )‖S1xn − q‖
≤ a(1)

n kn‖xn − q‖ + (1 − a(1)
n )‖xn − q‖

≤ a(1)
n kn‖xn − q‖ + (1 − a(1)

n )kn‖xn − q‖
= kn‖xn − q‖ (4)
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and from (4), we have

‖x(2)
n − q‖ ≤ a(2)

n ‖T n
2 x(1)

n − q‖ + (1 − a(2)
n )‖S2xn − q‖

≤ a(2)
n kn‖x(1)

n − q‖ + (1 − a(2)
n )‖xn − q‖

≤ a(2)
n k2

n‖xn − q‖ + (1 − a(2)
n )k2

n‖xn − q‖
= k2

n‖xn − q‖. (5)

Continuing the above process, we get

‖x(i)
n − q‖ ≤ ki

n‖xn − q‖ for all n ≥ 1, i = 1, 2, . . . , N. (6)

In particular,

‖xn+1 − q‖ = ‖x(N)
n − q‖ ≤ kN

n ‖xn − q‖ = (1 + (kN
n − 1))‖xn − q‖.

Notice that (3) holds (if and) only if

∞∑
n=1

(kN
n − 1) < ∞. (7)

By Lemma 3, we have limn→∞ ‖xn − q‖ exists. This completes the proof. �

Lemma 7 Under the assumptions of Lemma 6 and suppose that there is δ > 0
such that

δ ≤ a(i)
n ≤ 1 − δ for all n ≥ 1, i = 1, 2, . . . , N. (8)

If {xn} is defined by the iterative scheme (1), then
lim

n→∞ ‖Sixn − T n
i x(i−1)

n ‖ = 0 for all i = 1, 2, . . . , N. (9)

Proof Let q ∈ F . By Lemma 6, we have

d = lim
n→∞ ‖xn − q‖ exists. (10)

It follows from (6), (10) and limn→∞ kn = 1 that

lim sup
n→∞

‖x(N−1)
n − q‖ ≤ d, (11)

and so

lim sup
n→∞

‖T n
Nx(N−1)

n − q‖ ≤ d.

Also,

lim sup
n→∞

‖SNxn − q‖ ≤ d.
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Further, from (10) and (1) we have

d = lim
n→∞ ‖x(N)

n − q‖ = lim
n→∞ ‖a(N)

n (T n
Nx(N−1)

n − q) + (1 − a(N)
n )(SNxn − q)‖.

Then, by Lemma 2, we get

lim
n→∞ ‖SNxn − T n

Nx(N−1)
n ‖ = lim

n→∞ ‖(SNxn − q) − (T n
Nx(N−1)

n − q)‖ = 0,

and

lim
n→∞ ‖T n

Nx(N−1)
n − q‖ = d.

Therefore,

d = lim inf
n→∞ ‖T n

Nx(N−1)
n − q‖ ≤ lim inf

n→∞ kn‖x(N−1)
n − q‖

= lim inf
n→∞ ‖x(N−1)

n − q‖ ≤ lim sup
n→∞

‖x(N−1)
n − q‖ ≤ d.

Hence,

lim
n→∞ ‖x(N−1)

n − q‖ = d.

It follows from (6), (10) and limn→∞ kn = 1 that

lim sup
n→∞

‖x(N−2)
n − q‖ ≤ d, (12)

and so

lim sup
n→∞

‖T n
N−1x

(N−2)
n − q‖ ≤ d.

Also,

lim sup
n→∞

‖SN−1xn − q‖ ≤ d.

Further, from (10) and (1) we have

d = lim
n→∞ ‖x(N−1)

n −q‖ = lim
n→∞ ‖a(N−1)

n (T n
N−1x

(N−2)
n −q)+(1−a(N−1)

n )(SN−1xn−q)‖.

Applying Lemma 2, we have

lim
n→∞ ‖SN−1xn − T n

N−1x
(N−2)
n ‖ = lim

n→∞ ‖(SN−1xn − q) − (T n
N−1x

(N−2)
n − q)‖ = 0.

Continuing this in an obvious manner, we get (9) and this completes the proof.
�

Lemma 8 Under the assumptions of Lemma 6 and suppose that (8) holds. If
{xn} is defined by the iterative scheme (1) and

lim
n→∞ ‖xn − Sixn‖ = 0 for all i = 1, 2, . . . , N, (13)

then limn→∞ ‖xn − Tixn‖ = 0 for all i = 1, 2, . . . , N .
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Proof By Lemma 7, we have

lim
n→∞ ‖Sixn − T n

i x(i−1)
n ‖ = 0, for all i = 1, 2, . . . , N. (14)

It follows from (13) that,

lim
n→∞ ‖xn − T n

i x(i−1)
n ‖ = 0, for all i = 1, 2, . . . , N. (15)

Next, from (1) we have

‖xn − xn+1‖ ≤ a(N)
n ‖xn − T n

Nx(N−1)
n ‖ + (1 − a(N)

n )‖xn − SNxn‖.
From (13) and (15), we have

lim
n→∞ ‖xn − xn+1‖ = 0. (16)

Thus, we can estimate, using (1),

‖xn − T n
i xn‖ ≤ ‖xn − T n

i x(i−1)
n ‖ + ‖T n

i x(i−1)
n − T n

i xn‖
≤ ‖xn − T n

i x(i−1)
n ‖ + kn‖x(i−1)

n − xn‖
≤ ‖xn − T n

i x(i−1)
n ‖ + kna(i−1)

n ‖T n
i−1x

(i−2)
n − xn‖

+ kn(1 − a(i−1)
n )‖Si−1xn − xn‖.

Hence,

lim
n→∞ ‖xn − T n

i xn‖ = 0, for all i = 1, 2, . . . , N. (17)

It then follows from (16) and (17) that

‖xn − Tixn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − T n+1
i xn+1‖ + ‖T n+1

i xn+1 − T n+1
i xn‖

+ ‖T n+1
i xn − Tixn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − T n+1
i xn+1‖ + kn+1‖xn+1 − xn‖

+ k1‖T n
i xn − xn‖

≤ (1 + kn+1)‖xn − xn+1‖ + ‖xn+1 − T n+1
i xn+1‖ + k1‖T n

i xn − xn‖
for i = 1, 2, . . . , N . This implies that

lim
n→∞ ‖xn − Tixn‖ = 0, for all i = 1, 2, . . . , N.

This completes the proof. �

Lemma 9 Under the assumptions of Lemma 6 and suppose that (8) holds and
that

‖x − Tiy‖ ≤ ‖Six − Tiy‖ for all x, y ∈ K and i = 1, 2, . . . , N. (18)

If the sequence {xn} is defined by the iterative scheme (1), then
lim

n→∞ ‖xn − Sixn‖ = lim
n→∞ ‖xn − Tixn‖ = 0,

for all i = 1, 2, . . . , N .
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Proof We shall show that

lim
n→∞ ‖xn − Sixn‖ = 0, for all i = 1, 2, . . . , N. (19)

By Lemma 7, we have

lim
n→∞ ‖Sixn − T n

i x(i−1)
n ‖ = 0, for all i = 1, 2, . . . , N. (20)

It follows from (18) that

lim
n→∞ ‖xn − T n

i x(i−1)
n ‖ = 0, for all i = 1, 2, . . . , N. (21)

Thus (19) follows. And Lemma 8 guarantees the second equality. �

4 Strong convergence theorems

A finite family {T1, . . . , TN} of mappings of K with

F =
N⋂

i=1

F (Ti) 
= ∅

is said to satisfy condition (B) [2] if there exists a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > r for all r ∈ (0,∞) such that
for all x ∈ K

max
1≤i≤N

‖x − Tix‖ ≥ f(d(x, F )),

where d(x, F ) = inf{‖x − p‖ : p ∈ F}.
Theorem 1 Let K be a nonempty closed convex subset of a uniformly con-
vex Banach space E. Let S1, S2, . . . , SN : K → K be nonexpansive mappings,
T1, T2, . . . , TN : K → K be asymptotically nonexpansive mappings with the se-
quence {kn} and suppose that F =

⋂N
i=1 F (Si) ∩ F (Ti) 
= ∅. Suppose that the

family {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies condition (B) and (3), (8), (18)
hold. Then the sequence {xn} defined by (1) converges strongly to a common
fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .

Proof We have

‖xn+1 − q‖ = ‖x(N)
n − q‖ ≤ (1 + (kN

n − 1))‖xn − q‖ for all q ∈ F .

Consequently,
d(xn+1, F ) ≤ (1 + (kN

n − 1))d(xn, F ).

Applying Lemma 3 to the above inequality, we obtain that limn→∞ d(xn, F )
exists. Also, by Lemma 9,

lim
n→∞ ‖xn − Sixn‖ = lim

n→∞ ‖xn − Tixn‖ = 0 for all i = 1, 2, . . . , N. (22)
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Since {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies condition (B), we conclude that
lim

n→∞ d(xn, F ) = 0.

We now prove that {xn} is a Cauchy sequence in K. Let ε > 0. Then there
exists a positive integer n0 such that d(xn0 , F ) < ε

4 . Find p ∈ F such that
‖xn0 − p‖ < ε

4 . By Lemma 6, we see that limn→∞ ‖xn − p‖ exists and so
{xn − p} is bounded. Then there is a constant M > 0 such that

‖xn − p‖ ≤ M for all n ≥ 1.

We now choose a positive integer n1 such that

∞∑
j=n1

(kN
j − 1) <

ε

4M
.

Moreover, we have

‖xn+1 − p‖ ≤ ‖xn − p‖ + M(kN
n − 1).

This implies that

‖xn+m − p‖ ≤ ‖xn+m−1 − p‖ + M(kN
n+m−1 − 1)

≤ ‖xn+m−2 − p‖ + M(kN
n+m−2 − 1) + M(kN

n+m−1 − 1)

≤ ‖xn − p‖ + M

n+m−1∑
j=n

(kN
j − 1) (23)

for all n, m ≥ 1. From (23) it follows that, for all n > n1 and m ≥ 1,

‖xn+m − xn‖ ≤ ‖xn+m − p‖ + ‖xn − p‖

≤ 2‖xn1 − p‖ + M

n+m−1∑
j=n1

(kN
j − 1) + M

n−1∑
j=n1

(kN
j − 1)

≤ 2‖xn1 − p‖ + 2M

n+m−1∑
j=n1

(kN
j − 1)

≤ 2‖xn1 − p‖ + 2M

∞∑
j=n1

(kN
j − 1)

< 2
ε

4
+ 2M

ε

4M
= ε.

Hence {xn} is a Cauchy sequence in K. In virtue of the completeness of K, we
assume that xn → p′ ∈ K as n → ∞. By the continuities of Si and Ti and (22),
we have Sip

′ = p′ = Tip
′ for all i = 1, 2, . . . , N , so p′ ∈ F . This completes the

proof. �
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5 Weak convergence theorems

Lemma 10 Under the assumptions of Lemma 6 and suppose that (8) holds.
Let {xn} be the sequence defined by (1). Then for all u, v ∈ F , the limit
limn→∞ ‖txn + (1 − t)u − v‖ exists for all t ∈ [0, 1].

Proof Since {xn} is bounded, there exists R > 0 such that {xn} ⊂ C :=
BR(0)∩K. Then C is a nonempty closed convex bounded subset of E. Basically,
we shall follow the idea of [17]. Let

an(t) = ‖txn + (1 − t)u − v‖, where t ∈ [0, 1].

Then an(0) = ‖u − v‖, and from Lemma 6, limn→∞ an(1) = limn→∞ ‖xn − v‖
exists. We now assume that t ∈ (0, 1). Define Un : C → C by

x(1) = a(1)
n T n

1 x + (1 − a(1)
n )S1x, x ∈ K

x(2) = a(2)
n T n

2 x(1) + (1 − a(2)
n )S2x,

x(3) = a(3)
n T n

3 x(2) + (1 − a(3)
n )S3x,

...

x(N−1) = a(N−1)
n T n

N−1x
(N−2) + (1 − a(N−1)

n )SN−1x,

Unx = a(N)
n T n

Nx(N−1) + (1 − a(N)
n )SNx.

Then
‖Unx − Uny‖ ≤ kN

n ‖x − y‖.
Set

Wn,m = Un+m−1 ◦ Un+m−2 ◦ · · · ◦ Un, m ≥ 1,

bn,m = ‖Wn,m(txn + (1 − t)u) − (tWn,mxn + (1 − t)Wn,mu)‖.

Then observing that Wn,mxn = xn+m, we get

an+m(t) = ‖txn+m + (1 − t)u − v‖
≤ bn,m + ‖Wn,m(txn + (1 − t)u) − v‖

≤ bn,m +

⎛
⎝

n+m−1∏
j=n

kN
j

⎞
⎠ an(t)

≤ bn,m + Lnan(t),

where Ln =
∏∞

j=n kN
j . By Lemma 5 we have

bn,m ≤ Lnφ−1(‖xn − u‖ − L−1
n ‖Wn,mxn − u‖)

≤ Lnφ−1(‖xn − u‖ − ‖xn+m − u‖ + (1 − L−1
n )d),
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where φ : [0,∞) → [0,∞) is a strictly increasing continuous function depending
only on the diameter of K and φ(0) = 0. Since limn→∞ Ln = 1, it follows from
Lemma 6 that limn,m→∞ bn,m = 0. Therefore,

lim sup
m→∞

am(t) ≤ lim
n,m→∞ bn,m + lim inf

n→∞ Lnan(t) = lim inf
n→∞ an(t).

This completes the proof. �

Recall that a Banach space E has the Kadec–Klee property if for every
sequence {xn} in E, xn ⇀ x and ‖xn‖ → ‖x‖ it follows that ‖xn − x‖ → 0.

Theorem 2 Let K be a nonempty closed convex subset of a uniformly con-
vex Banach space E such that its dual E∗ has the Kadec–Klee property. Let
S1, S2, . . . , SN : K → K be nonexpansive mappings, T1, T2, . . . , TN : K → K be
asymptotically nonexpansive mappings with the sequence {kn} and suppose that

F =
N⋂

i=1

F (Si) ∩ F (Ti) 
= ∅.

If (3), (8) and (18) hold, then the sequence {xn} defined by (1) converges weakly
to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .

Proof Let q ∈ F . Then by Lemma 6, limn→∞ ‖xn−q‖ exists. Since E is reflex-
ive and {xn} is bounded sequence inK, there exists a subsequence {xnj} of {xn}
which converges weakly to some p ∈ K. Moreover limj→∞ ‖xnj − Sixnj‖ = 0
and limj→∞ ‖xnj − Tixnj‖ = 0 for all i = 1, 2, . . . , N , by Lemma 9. From
Lemma 1, we have that (I − Si)p = (I − Ti)p = 0 for all i = 1, 2, . . . , N . Thus,
p ∈ F .
Now, we show that {xn} converges weakly to p. Suppose that {xnk

} is
another subsequence of {xn} which converges weakly to some p′ ∈ K. By
the same method as above, we have p′ ∈ F and so p, p′ ∈ ωw(xn). Then by
Lemma 10,

lim
n→∞ ‖txn + (1 − t)p − p′‖

exists for all t ∈ [0, 1]. Now, Lemma 4 guarantees that p = p′. As a result, the
whole sequence {xn} converges weakly to p. This completes the proof. �

6 Some analogues and corollaries

With a little effort, we have the following analogues to Theorems 1 and 2.

Theorem 3 Let K be a nonempty closed convex subset of a uniformly con-
vex Banach space E. Let S1, S2, . . . , SN : K → K be nonexpansive mappings,
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T1, T2, . . . , TN : K → K be asymptotically nonexpansive mappings with the se-
quence {kn} and suppose that

⋂N
i=1 F (Si) ∩ F (Ti) 
= ∅. Let {xn} be the se-

quence defined by

x1 ∈ K,

x
(0)
n = xn,

x
(1)
n = a

(1)
n T n

1 x
(0)
n + b

(1)
n S1xn + c

(1)
n u

(1)
n ,

x
(2)
n = a

(2)
n T n

2 x
(1)
n + b

(2)
n S2xn + c

(2)
n u

(2)
n ,

...

x
(N−1)
n = a

(N−1)
n T n

N−1x
(N−2)
n + b

(N−1)
n SN−1xn + c

(N−1)
n u

(N−1)
n ,

x
(N)
n = a

(N)
n T n

Nx
(N−1)
n + b

(N)
n SNxn + c

(N)
n u

(N)
n ,

xn+1 = x
(N)
n , n ≥ 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

where {u(i)
n } are bounded sequences in K and {a(i)

n }∞n=1, {b(i)
n }∞n=1, {c(i)

n }∞n=1 ⊂
[0, 1] such that a

(i)
n + b

(i)
n + c

(i)
n = 1 for all i = 1, 2, . . . , N .

Suppose that
∑∞

n=1 c
(i)
n < ∞ for all i = 1, 2, . . . , N ,

(i)
∑∞

n=1(kn − 1) < ∞,
(ii) there is δ > 0 such that δ ≤ a

(i)
n ≤ 1 − δ for all n ≥ 1, i = 1, 2, . . . , N,

(iii) ‖x − Tiy‖ ≤ ‖Six − Tiy‖ for all x, y ∈ K and i = 1, 2, . . . , N .

(a) If the family {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies condition (B), then
{xn} converges strongly to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .
(b) If the dual E∗ has the Kadec–Klee property, then {xn} converges weakly

to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .

Remark
1. If, moreover S1 = S2 = · · · = SN = S, then by Lemma 7

lim
n→∞ ‖Sxn − Tix

(i−1)
n ‖ = 0 for all i = 1, 2, . . . , N.

The assumption (iii) in Theorem 3 can be weakened by assuming that there
is i0 ∈ {1, 2, . . . , N} such that

‖x − Ti0y‖ ≤ ‖Sx − Ti0y‖ for all x, y ∈ K.

2. If, moreover S1 = S2 = · · · = SN = I, then Theorems 2.3 and 2.9 of [18]
become a corollary of Theorem 3.

3. Theorem 3 is not only an extension of [9] and [10] but also obtained under
the different assumptions.

Theorem 4 Let K be a nonempty closed convex subset of a uniformly convex
Banach space E. Let S1, S2, . . . , SN , T1, T2, . . . , TN : K → K be nonexpansive
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mappings and suppose that
⋂N

i=1 F (Si) ∩ F (Ti) 
= ∅. Let {xn} be the sequence
defined by

x1 ∈ K,

x
(0)
n = xn,

x
(1)
n = a

(1)
n T1x

(0)
n + b

(1)
n S1xn + c

(1)
n u

(1)
n ,

x
(2)
n = a

(2)
n T2x

(1)
n + b

(2)
n S2xn + c

(2)
n u

(2)
n ,

...

x
(N−1)
n = a

(N−1)
n TN−1x

(N−2)
n + b

(N−1)
n SN−1xn + c

(N−1)
n u

(N−1)
n ,

x
(N)
n = a

(N)
n TNx

(N−1)
n + b

(N)
n SNxn + c

(N)
n u

(N)
n ,

xn+1 = x
(N)
n , n ≥ 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

where {u(i)
n } are bounded sequences in K and {a(i)

n }∞n=1, {b(i)
n }∞n=1, {c(i)

n }∞n=1 ⊂
[0, 1] such that a

(i)
n + b

(i)
n + c

(i)
n = 1 for all i = 1, 2, . . . , N .

Suppose that
∑∞

n=1 c
(i)
n < ∞ for all i = 1, 2, . . . , N ,

(i) there is δ > 0 such that δ ≤ a
(i)
n ≤ 1 − δ for all n ≥ 1, i = 1, 2, . . . , N,

(ii) ‖x − Tiy‖ ≤ ‖Six − Tiy‖ for all x, y ∈ K and i = 1, 2, . . . , N .

(a) If the family {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies condition (B), then
{xn} converges strongly to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .
(b) If the dual E∗ has the Kadec–Klee property, then {xn} converges weakly

to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .
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