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Abstract

Compositional data, multivariate observations that hold only relative
information, need a special treatment while performing statistical anal-
ysis, with respect to the simplex as their sample space ([1], [2], [3], [8],
[9], [10], [11], [18]). For the logratio approach to the statistical analysis
of compositional data the so called Aitchison geometry was introduced
and confirmed to be the meaningful one. It was shown in [7], [17] that it
is quite easy to express simple geometric objects like compositional lines,
this is however not the case for ellipses, although they play a fundamental
role within most statistical methods, for example in outlier detection ([8]).
The aim of the paper is to introduce a way, based on coordinate repre-
sentations of compositions, how to obtain an analytical representation of
ellipses in the Aitchison geometry.

Key words: Aitchison geometry on the simplex, coordinates, el-
lipse.
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1 Compositional data

At first, we briefly summarize all the basic properties of compositional data as
well as the geometry on the simplex, called in the following Aitchison geometry.
More detailed insight is available e.g. in [7]:
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Definition 1 A row vector x = (x1, . . . , xD), is called D-parts composition
when all its components are strictly positive real numbers and they carry only
relative information.

The assertion that D-parts compositions (or only compositions in short)
carry only relative information means that all the relevant information is con-
tained in the ratios among the parts, i.e. if c is a nonzero real number, (x1, . . . , xD)
and (cx1, . . . , cxD) convey essentially the same information. A way to simplify
the use of compositions is to represent them in closed form, i.e. as positive
vectors with constant sum κ (usually 1 or 100 in case of percentages) of the
parts ([7]). As a consequence, D-parts compositions can be identified with the
following vector:

Definition 2 For any composition x, the closure operation of x to the constant
κ is defined as

C(x) =

(
κx1∑D
i=1 xi

, . . . ,
κxD∑D
i=1 xi

)
.

Proposition 1 The sample space of compositional data is the simplex, defined
as

SD = {x = (x1, . . . , xD), xi > 0,

D∑
i=1

xi = κ}.

The basics of the Aitchison geometry on the simplex are mentioned below:

Definition 3 Perturbation of a composition x = C(x1, . . . , xD) ∈ SD by a
composition y = C(y1, . . . , yD) ∈ SD is a composition

x ⊕ y = C(x1y1, . . . , xDyD).

Power transformation of a composition x ∈ SD by a constant α ∈ R is a
composition

α � x = C(xα
1 , . . . , xα

D).

The inner product of x, y ∈ SD can be expressed as

〈x, y〉A =
1
D

D−1∑
i=1

D∑
j=i+1

ln
xi

xj
ln

yi

yj
.

Proposition 2 The simplex with the perturbation operation and the power
transformation, (SD,⊕,�), is a linear vector space. Moreover, the Aitchison
inner product induces a (D − 1)-dimensional Hilbert space.

Definition 4 If compositions e1, . . . , eD−1 are independent (in terms of the
Aitchison geometry), they constitute a (simplicial) basis of SD, i.e. each com-
position x ∈ SD can be expressed as

x = (α1 � e1) ⊕ · · · ⊕ (αD−1 � eD−1)

for some coefficients αi, i = 1, . . . , D − 1, that are termed coordinates with
respect to the basis.
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Obviously, using orthonormal bases on the simplex, all operations and metric
concepts like perturbation, power transformation, inner product and norm are
translated into coordinates as ordinary vector operations (sum of two vectors
and multiplication of a vector by a scalar), see [6], [7] and [17] for details. For
a composition x, we denote h(x) its representation in coordinates. Thus, for
α, β ∈ R it holds that

h(α � x ⊕ β � y) = α · h(x) + β · h(y);

〈x, y〉A = 〈h(x), h(y)〉E , ‖x‖A =
√
〈x, x〉A = ‖h(x)‖E . (1)

Example 1 Let us denote the coordinate representation of x as z = (z1, . . . ,
zD−1). Coefficients for a chosen simplicial basis ([5]) can be expressed as

zi =

√
i

i + 1
ln

i

√∏i
j=1 xj

xi+1
for i = 1, . . . , D − 1.

The inverse transformation, i.e. h−1(z) = x = C(x1, . . . , xD), is then obtained
using

xi = exp

⎛
⎝ D∑

j=i

zj√
j(j + 1)

−
√

i − 1
i

zi−1

⎞
⎠ with z0 = zD = 0 for i = 1, . . . , D.

2 Simplicial ellipses

A (D − 1)-dimensional real vector μ = (μ1, . . . , μD−1) and a positive definite
real matrix Σ = (sij) determine an ellipse ED−1(z) with centre μ,

ED−1(z) : (z − μ)Σ (z − μ)T = c2, c > 0. (2)

The ellipse ED−1(z) can be equivalently expressed in analytical form

D−1∑
i=1

D−1∑
j=1

sijzizj − 2
D−1∑
i=1

D−1∑
j=1

sijμizj + k = 0

with k = μΣμT − c2. Using (2) and spectral decomposition of the matrix Σ,

Σ =
D−1∑
i=1

λif
T
i f i,

where λi and f i denote eigenvalues (in descending order) and orthonormal eigen-
vectors of Σ, respectively, the ellipse ED−1(z) can also be expressed in terms of
the Euclidean inner product as

D−1∑
i=1

λi(〈f i, z〉E)2 − 2
D−1∑
i=1

λi〈f i, μ〉E〈f i, z〉E + k = 0. (3)
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It is easy to see that the spectral decomposition of Σ represents only one chosen,
nevertheless the most convenient, decomposition of Σ in order to obtain (3).
Namely, the vectors f i determine the ellipse axes’ directions, and their lengths
are functions of the eigenvalues λi.
Let h(x) = z, h(γ) = μ and h(ei) = f i, i = 1, . . . , D − 1. Considering

(1), the simplicial counterpart to ED−1(z), denoted in the following as ES
D(x),

is given by

D−1∑
i=1

λi(〈ei, x〉A)2 − 2
D−1∑
i=1

λi〈ei, γ〉A〈ei, x〉A + k = 0. (4)

The following theorem is thus a simple consequence of the above mentioned
considerations and definition of the Aitchison inner product:

Theorem 1 The analytical form of the simplicial ellipse ES
D(x) is uniquely de-

termined as

D−1∑
i=1

D∑
j=i+1

D−1∑
k=1

D∑
l=k+1

aijkl ln
xi

xj
ln

xk

xl
+

D−1∑
i=1

D∑
j=i+1

bij ln
xi

xj
+ k = 0,

where

aijkl =
1

D2

D−1∑
m=1

λm ln
emi

emj
ln

emk

eml
, bij = − 2

D

D−1∑
m=1

λm〈ei, γ〉A ln
emi

emj

and

k =
D−1∑
i=1

λi(〈em, γ〉A)2 − c2.

The compositions γ and ei = (ei1, . . . , eiD) represent centre of ES
D(x) and

the ellipse axes’ directions, respectively. Theorem 1 provides a procedure how
to construct an analytical representation of an ellipse on the simplex, obtained
as a result of statistical computations in coordinates.

Example 2 A simplicial ellipse in coordinates (see Example 1) is given by

μ = (1, 1), Σ =
(

2.5, 1.5
1.5, 2.5

)
, c = 1,

i.e. with centre μ = (1, 1), eigenvalues λ1 = 4, λ2 = 1 and axis directions

f1 =
1√
2
(1, 1) and f2 =

1√
2
(1,−1).

The analytical form of the ellipse ES
3 (x) in coordinates, i.e. E2(z), is thus

2.5z2
1 + 2.5z2

2 + 3z1z2 − 8z1 − 8z2 + 7 = 0.
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Using (4) and Theorem 1 and after an adjustment we obtain the analytical
form of ES

3 (x) as

0.56 ln2 x1

x2
+ 0.84 ln2 x1

x3
+ 0.27 ln2 x2

x3
+ 1.13 ln

x1

x2
ln

x1

x3
+ 0.02 ln

x1

x2
ln

x2

x3

+ 0.56 ln
x1

x3
ln

x2

x3
− 3.77 ln

x1

x2
− 5.15 ln

x1

x3
− 1.38 ln

x2

x3
+ 7 = 0.

Here, the centre γ = (0.72, 0.18, 0.10) and axis directions are e1 = (0.61, 0.23, 0.16)
and e2 = (0.36, 0.13, 0.51), respectively. Fig. 1 shows the simplicial ellipse dis-
played in a ternary diagram as well as in coordinates.

x1 x2

x3

e1

e2

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
0.

5
0.

0
0.
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z1

z 2
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f2

Fig. 1. The simplicial ellipse displayed in a ternary diagram (left) and in coordinates
(right) together with the directions of the ellipse axes.

Let us remark that the existence of an analytical expression for ellipses on the
simplex opens also a possibility for further generalizations in many directions,
e.g. [13], [14].

3 Application in a statistical method

Ellipses frequently occur as a result of many statistical methods. In the case of
compositional data one has to be careful to check whether the given problem
is solvable in coordinates and how the results can be interpreted back on the
simplex. One such problem is to find a regression line (in the compositional
sense) that represents the main trend in the data, e.g. using the first principal
component or equivalently the total least squares problem, computed in coordi-
nates ([4], [15], [19]). In its simplest form it attempts to fit a line that explains
the set of n two-dimensional data points (e.g. three-part compositions in co-
ordinates) in such a way that the sum of squared distances from data points
to the estimated line is minimal. In [12] it was shown that in this case, the
problem is also solvable iteratively using the theory of linear regression models
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with type-II constraints (in the constraints not only parameters of the model
but also additional parameters occur, [16]), see [12] for details. Moreover, this
approach enables to perform deeper statistical analysis like confidence regions
and hypotheses testing. Considering the first mentioned possibility, under the
assumption of normality we can construct confidence ellipses for locations of
the unknown errorless results of the measurement, i.e. for the locations of each
of n points zi = h(xi) = (zi1, zi2), i = 1, . . . , n. The numerical results in the
text below correspond to the statistical analysis of the well known Aphyric Skye
Lavas data set that comes from [1, p. 360] and represents percentages of three
variables (Na2O + K2O, Fe2O3 and MgO) related to the chemistry of 23 lava
samples.
The confidence ellipses for the single errorless results of the measurement

(true concentrations of the chemical compounds) in coordinates are constructed
in such a way that their centers μi (and γi in the Aitchison geometry) lie on the
regression line z2 = β1 + β2z1, where the parameters β1, β2 are estimated using
the iterative algorithm described in [12]. Thus, we can assert that the unknown
errorless results lie in the ellipses with the prescribed probability 1 − α. The
directions f1 of the main half-axes of such ellipses follow the direction given by
the estimated line, f1 = (0.8903,−0.4554), thus f2 = (0.4554, 0.8903) for the
adjacent half-axes.
Although it might not to be visible from the ternary diagram, the unitary

directions of the ellipses’ main and adjacent half-axes are also the same and for
all of them we have e1 = (0.4515, 0.1282, 0.4203), e2 = (0.5654, 0.2969, 0.1377);
note that, of course, 〈e1, e2〉A = 0. Concretely, for a 95%-confidence ellipse,
belonging to x1, we obtain the center of this ellipse in coordinates and on the
simplex as

μ1 = (0.0122, 1.7471), γ1 = (0.4763, 0.4682, 0.0556),

respectively. Here c2 equals 2F2,21(0.95), 95%-quantile of the F distribution
with 2 and 21 degrees of freedom, see again [12] for details. The analytical
representation of the ellipse in coordinates equals to

570.53z2
1 + 233.99z2

2 − 466.44z1z2 + 801.04z1 − 811.93z2 + 697.45 = 0

(the matrix Σ was obtained as inverse of the covariance matrix of the centre
μ1, [12]) and back-transformed to the simplex we obtain for ES

3 (x)

126.79 ln2 x1

x2
+25.81 ln2 x1

x3
+115.58 ln2 x2

x3
+37.02 ln

x1

x2
ln

x1

x3
−216.55 ln

x1

x2
ln

x2

x3

+ 14.61 ln
x1

x3
ln

x2

x3
+ 377.61 ln

x1

x2
− 142.66 ln

x1

x3
− 520.28 ln

x2

x3
+ 697.45 = 0.

Here, the composition x1 = (0.52, 0.42, 0.06) is not contained in the corre-
sponding confidence ellipse, because ES

3 (x1) = 9.85 > 0. The corresponding
results of all compositions x1, . . . , xn are collected in Table 1. Note that there
are many positive values, meaning that the data point is outside the ellipse.



Analytical representation of ellipses in the Aitchison geometry. . . 59

This indicates a poor fit of the model to the data. As a consequence, a more
complex model could be selected.

obs. number i 1 2 3 4 5 6
ES
3 (xi) 9.85 −6.40 −4.20 −6.05 3.70 −3.69

obs. number i 7 8 9 10 11 12
ES
3 (xi) 1.38 13.92 7.42 6.81 21.94 31.44

obs. number i 13 14 15 16 17 18
ES
3 (xi) 13.26 −0.33 −5.71 −1.95 67.19 −3.80

obs. number i 19 20 21 22 23
ES
3 (xi) −6.85 −3.61 −6.44 22.36 −5.20

Tab. 1. Overview of results for the Aphyric Skye Lavas data. The values correspond
to the observed compositions xi, i = 1, . . . , 23, substituted in the corresponding confi-
dence ellipses. A value less than zero indicates that the data point is contained inside
the ellipse and for values greater than zero outside. Exact zero values would mean
that the composition lies on the boundary.

Detailed interpretation of the logratios’ coefficients in the analytical repre-
sentation of ellipses on the simplex is the topic of the author’s research and will
be presented in the future.
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