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On a Generalization of Helmholtz Conditions

Radka Maĺıková

Abstract. Helmholtz conditions in the calculus of variations are necessary
and sufficient conditions for a system of differential equations to be vari-
ational ‘as it stands’. It is known that this property geometrically means
that the dynamical form representing the equations can be completed to
a closed form. We study an analogous property for differential forms of
degree 3, so-called Helmholtz-type forms in mechanics (n = 1), and obtain
a generalization of Helmholtz conditions to this case.

1 Introduction
This article is a contribution to the study of properties of morphisms in the vari-
ational sequence. The variational sequence, introduced by Krupka in 1989 [8], is
a quotient sequence of the De Rham sequence, such that one of the morphisms
is the Euler-Lagrange mapping of the calculus of variations, assigning to a La-
grangian its Euler-Lagrange form. The idea of the variational sequence reflects
and further extends a close relationship beetwen the Euler-Lagrange mapping and
the exterior derivative operator, observed earlier by Lepage [17] and Dedecker [3].
The Euler-Lagrange morphism has been recently extensively investigated, and its
properies are very-well known. On the other hand, much less or almost nothing
is yet known about other variational morphisms. Namely, two morphisms in the
sequence, the first one mapping dynamical forms (possibly Euler-Lagrange forms)
to Helmholtz forms, and the next one, are very interesting, since they distinguish
variational equations from the non-variational ones, and it seems that they could
be used to study non-variational equations by variational techniques (see e.g. [12]).
It is known that the kernel of the Helmholtz mapping is the family of differential
(n + 1)-forms which come from a Lagrangian as its Euler-Lagrange forms. The
study of the kernel then provides the solution of the so-called Covariant Inverse
Problem of the Calculus of Variations: necessary and sufficient conditions for a dy-
namical form be variational, called Helmholtz conditions if n = 1. In this paper we
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study for the case of one independent variable (n = 1, ordinary differential equa-
tions) properies of the morphism from the third column of the first order variational
sequence (Helmholtz-type forms) to 4-forms. The result is an explicit character-
ization of the kernel, we obtain a generalization of the Helmholtz conditions to
this case. We also construct a Lepage equivalent of a Helmholtz form which is a
closed 3-form. This new form represents non-variational equations, similarly as the
famous Cartan 2-form (or a symplectic form) represents variational equations.

In Section 2 we recall basic structures and notations: for more details we refer
to [6], [7], [14] or [18]. In Section 3 we briefly introduce the variational sequence,
according to [8], [9]. In Section 4 we present the theorem which is an important
result for variational sequence and the inverse problem of the calculus of variations
[13], [14]. We ask a question on a possible generalization of this result to the third
column of the variational sequence. We show that a Helmholtz-like form can be
completed to a closed form if and only if it is a Helmholtz form, and find the
corresponding necessary and sufficient conditions explicitly.

2 Differential Forms in Jet Bundles
Throughout this article, manifolds and mappings are smooth, summation over
repeated indices is always assumed.

Y is a fibred manifold with base X and projection π : Y → X where dim X = 1
and dim Y = m + 1, m > 0. A mapping γ : W → Y , where W is an open subset
of X, is called a section of the manifold π : Y → X if π ◦ γ = idW . Two sections
γ1, γ2 defined on an open set W ⊂ X are called r-equivalent at a point t ∈ W
if γ1(t) = γ2(t), and if there is a fiber chart around γ1(t) = γ2(t) such that the
derivatives of the components of the sections γ1 and γ2 at the point t coincide up
to the order r. The equivalence class containing a section γ is called the r-jet of
γ at t and is denoted by Jr

t γ. Denote by Jr
t Y the set of all r-jets at t and put

JrY =
⋃

t Jr
t Y , t ∈ X. Projection πr : JrY → X has the structure of a smooth

manifold and it is called r-jet prolongation of π. Fibred projection of JrY onto
JkY , 0 ≤ k ≤ r − 1, are denoted by πr,k. The mapping t → Jr

t γ is a section of
πr and it is called the r-jet prolongation of the section γ and denoted by Jrγ. A
section δ of πr is called holonomic if there exists a section γ of π such that δ = Jrγ.
Fibred coordinates on Y are denoted by (t, qi), 1 ≤ i ≤ m, associated coordinates
on JrY are denoted by (t, qi

k), 1 ≤ i ≤ m, 0 ≤ k ≤ r. We usually use the notation
qi
0 = qi, qi

1 = q̇i, qi
2 = q̈i, qi

3 = ...
q i.

A vector field ξ on JrY is called πr-vertical if Tπr · ξ = 0, and πr-projectable
if there exist a vector field ξ0 on the base X such that Tπr · ξ = ξ0 ◦ πr. In local
coordinates, projectable vector fields have their ∂/∂t component dependent on t
only, and vertical vector fields have this component equal to zero.

Let Λq(JrY ), q ≥ 0, denote the module of smooth q-forms on JrY over the ring
of functions (for q = 0 we have smooth functions on JrY ). A form η ∈ Λq(JrY ), is
called πr-horizontal if iξη = 0 for every πr-vertical vector field ξ on JrY . A form
η ∈ Λq(JrY ), is called πr,k-horizontal, 0 ≤ k < r, if iξη = 0 for every πr,k-vertical
vector field ξ on JrY . The module of πr-horizontal (resp. of πr,k-horizontal) q-forms
on JrY is a submodule of Λq(JrY ) and is denoted by Λq

X(JrY ) (resp. Λq
JkY

(JrY )).
We get that η is πr-horizontal if and only if in coordinates it is represented by
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η = f dt, where f = f(t, qi, . . . , qi
r), πr,k-horizontal q-form η is expressed by means

of dt, dqi, . . . ,dqi
k only, with the components depend on all the t, qi, . . . , qi

k.
Let η ∈ Λq(JrY ). There is a unique horizontal form hη ∈ Λq(Jr+1Y ) such that

for every section γ

Jrγ∗η = Jr+1γ∗hη .

The mapping h : Λq(JrY ) → Λq(Jr+1Y ) is homomorphism of the exterior algebras
and is called horizontalization operator. In particular,

h df =
df

dt
dt, where

df

dt
=

∂f

∂t
+

∂f

∂qi
q̇i +

∂f

∂q̇i
q̈i + · · ·+ ∂f

∂qi
r

qi
r+1 .

Let now r ≥ 1. A form η ∈ Λq(JrY ) is called contact if

Jrγ∗η = 0

for every section γ of π. The form η is contact if and only if hη = 0. On our fibred
manifolds every q-form for q ≥ 2 is contact. Contact forms form a closed ideal in
the exterior algebra on JrY locally generated by the 1-forms

ω0 = dt, ωi = dqi − q̇i dt, ω̇i = dq̇i − q̈i dt, . . . , ωi
r−1 = dqi

r−1 − qi
r dt,

and their exterior derivatives.
Let q ≥ 1 and let η ∈ Λq(JrY ) be a contact form. We say that η is 1-contact if

for every πr-vertical vector field ξ on JrY the (q−1)-form iξη is πr-horizontal. We
say that η is k-contact, 2 ≤ k ≤ q, if iξη is (k − 1)-contact. The following theorem
describes the structure of differential forms on fibred manifolds.

Theorem 1. [6] Every q-form η on JrY, r ≥ 0, admits the unique decomposition

π∗r+1,rη = hη + p1η + · · ·+ pqη

where piη is a i-contact q-form on Jr+1Y, 1 ≤ i ≤ q .

The form piη is called i-contact part of η. We shall consider operators

pi : Λq(JrY ) → Λq(Jr+1Y ) ,

1 ≤ i ≤ q, assigning to every form its i-contact part. Since we consider the base
manifold one dimensional, we have piη = 0 for i < q−1. A contact q-form is called
strongly contact if π∗r+1,rη = pqη.

Contact 1-forms can be completed to a basis of linear forms that is well adapted
to the fibred structure. In what follows, we shall often use for a local expres-
sion of forms on J1Y the adapted basis (dt, ωi,dq̇i) instead of the canonical basis
(dt, dqi,dq̇i), and similarly, for forms on J2Y, the adapted basis (dt, ωi, ω̇i,dq̈i)
instead of (dt, dqi,dq̇i,dq̈i).

The basic objects for the calculus of variations are horizontal 1-forms on JrY ,
called Lagrangians of order r, and 1-contact 2-forms horizontal with respect to
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the projection onto Y , called dynamical forms. In every fibred chart a Lagrangian
λ ∈ Λ1(JrY ) and a dynamical form E ∈ Λ2(JrY ) take the form

λ = Ldt, L = L(t, qj , q̇j , . . . , qj
r),

and
E = Eiω

i ∧ dt, Ei = Ei(t, qj , q̇j , . . . , qj
r) .

A special case is a dynamical form Eλ associated with a Lagrangian λ, called the
Euler-Lagrange form of λ. If λ is of order r then Eλ is of order ≤ 2r, and its
components Ei(L), called Euler-Lagrange expression, are defined by

Ei(L) =
∂L

∂qi
− d

dt

∂L

∂q̇i
+ · · ·+ (−1)r dr

dtr
∂L

∂qi
r

.

The mapping Λ1(JrY ) 3 λ → Eλ ∈ Λ2(J2rY ) is called the Euler-Lagrange map-
ping.

3 The Variational Sequence
A general framework for our exposition is the variational sequence [8], [9].

Let Ωr
0,c = {0}, and let Ωr

p,c be the sheaf of contact p-forms, if p ≤ n, or the
sheaf of strongly contact p-forms, if p > n, on JrY . Set

Θr
p = Ωr

p,c + dΩr
p−1,c ,

where dΩr
p−1,c is the image sheaf of Ωr

p−1,c by the exterior derivative d. We get an
exact sequence of soft sheaves

0 −→ Θr
1 −→ Θr

2 −→ Θr
3 −→ · · · ,

where the morphisms are the exterior derivative, i.e., a subsequence of the De Rham
seguence

0 −→ R −→ Ωr
0 −→ Ωr

1 −→ Ωr
2 −→ Ωr

3 −→ · · · .

The quotient sequence

0 −→ R −→ Ωr
0 −→ Ωr

1/Θr
1 −→ Ωr

2/Θr
2 −→ Ωr

3/Θr
3 −→ · · ·

is also exact. It is called the variational sequence of order r on π, see Figure 1. The
variational sequence is an acyclic resolution of the constant sheaf R over Y . The
quotient sheaves Ωr

p/Θr
p are not forms, but classes of (local) p-forms (of order r).

We denote by
Ep : Ωr

p/Θr
p → Ωr

p+1/Θr
p+1

the quotient mapping. The class of a form ρ ∈ Ωr
p is denoted by [ρ]. Hence Ep([ρ]) =

[dρ].
The quotient mapping

E1 : Ωr
1/Θr

1 → Ωr
2/Θr

2

then identifies with the Euler-Lagrange mapping. The quotient mapping

E2 : Ωr
2/Θr

2 → Ωr
3/Θr

3
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is called the Helmholtz mapping. The image of a class [ρ] ∈ Ωr
2/Θr

2, i.e., the class
[dρ] ∈ Ωr

3/Θr
3 is called Helmholtz class.

By exactness of the variational sequence, the condition E1([ρ]) = 0 means that
there exists f ∈ Ωr

0 such that [ρ] = [df ]. Hence, we get a (local) function f,
such that E1([df ]) = 0. In other words, the class [df ] has the meaning of a null
Lagrangian. The condition E2([α]) = 0 gives us a class [ρ] ∈ Ωr

1/Θr
1 such that

[α] = [dρ] = E1([ρ]), i.e., [α] is the image by the Euler-Lagrange mapping of a
class [ρ]. Thus, condition E2([α]) = [dα] = 0 means that [α] is locally variational.

Classes in the variational sequence can be canonicly represented by source forms
[1], [11], [19]. In the first column the classes are represented by horizontal forms,
i.e., Lagrangians. In the second column the classes are represented by dynamical
forms and in the third column the classes are represented by forms of Helmholtz
type. The corresponding morphisms then take the form E1 : λ → Eλ, E2 : E → HE ,
where λ is a Lagrangian, Eλ is the Euler-Lagrange form of λ, E is a dynamical
form, HE is a Helmholtz form of E. As shown in [10] we have for Helmholtz
form HE the following formula

HE =
1
2

(
∂Ei

∂qj
− ∂Ej

∂qi
− 1

2
d
dt

(
∂Ei

∂q̇j
− ∂Ej

∂q̇i

))
ωj ∧ ωi ∧ dt

+
1
2

(
∂Ei

∂q̇j
+

∂Ej

∂q̇i
− d

dt

(
∂Ei

∂q̈j
+

∂Ej

∂q̈i

))
ω̇j ∧ ωi ∧ dt

+
1
2

(
∂Ei

∂q̈j
− ∂Ej

∂q̈i

)
ω̈j ∧ ωi ∧ dt .

A different representation of classes in the variational sequence is realized by
so-called Lepage forms [11]. A q-form ρ, q ≥ 1, is called Lepage form if pq dρ is
a source form. If σ is a source q-form, we say that ρ is a Lepage equivalent of σ
if ρ is a Lepage q-form and pq−1ρ = σ. A Lepage equivalent of Lagrangian λ is
defined to be a 1-form ρ such that hρ = λ and p1 dρ is horizontal with respect to
the projection onto Y [7]. A direct computation then gives that every Lagrangian
has a unique Lepage equivalent. It is denoted by θλ and called the Cartan form.
In fibred coordinates (if λ ∈ Λ1(JrY )) one gets

θλ = Ldt +
∂L

∂q̇i
ωi.

Note that by definition p1 dθλ = Eλ.

4 Closed Equivalents of Helmholtz Forms
In what follows, we consider a fibred manifold π : Y → X, dim X = 1, dim Y = m,
and its jet prolongations up to the third order, with fibred coordinates denoted
(t, qi, q̇i, q̈i,

...
q i), and with the contact structure generated by contact forms

ωi = dqi − q̇i dt, ω̇i = dq̇i − q̈i dt, ω̈i = dq̈i − ...
q i dt .

A second order dynamical form

E = Ei dqi ∧ dt
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(where summation runs over i = 1, . . . ,m) is variational, i.e., E is an Euler-
-Lagrange form of a Lagrangian L, if and only if the components Ei(t, qj , q̇j , q̈j)
satisfy the famous Helmholtz conditions [4]

∂Ei

∂q̈j
− ∂Ej

∂q̈i
= 0,

∂Ei

∂q̇j
+

∂Ej

∂q̇i
− d

dt

(∂Ei

∂q̈j
+

∂Ej

∂q̈i

)
= 0,

∂Ei

∂qj
− ∂Ej

∂qi
− 1

2
d
dt

(∂Ei

∂q̇j
− ∂Ej

∂q̇i

)
= 0 .

In this case the corresponding (second order ordinary) differential equations

Ei(t, qj(t), q̇j(t), q̈j(t)) = 0, 1 ≤ i ≤ m,

are Euler-Lagrange equations, i.e.,

Ei =
∂L

∂qi
− d

dt

∂L

∂q̇i
.

It is known that variationality is equivalent with the possibility to complete the
dynamical form E to a closed form (see [2], [5], [6], [13], and [14], [16]). We have
the following result characterizing variational dynamical forms:

Theorem 2. [13], [14] Let E be a dynamical form. The following conditions are
equivalent:

(i) E is locally variational, i.e., around every point, E is the Euler-Lagrange
form of a Lagrangian L.

(ii) The components of E satisfy the Helmholtz conditions.

(iii) There exists a unique 2-contact form F such that the form α = E + F is
closed.

(iv) There exists a unique 2-contact form F such that p2 dα = p2 d(E + F ) = 0.

The 2-form in the above theorem is explicitly expressed by means of the dy-
namical form E. For example, if E is a second order dynamical form then

F =
1
4

(
∂Ei

∂q̇j
− ∂Ej

∂q̇i

)
ωi ∧ ωj +

1
2

(
∂Ei

∂q̈j
+

∂Ej

∂q̈i

)
ωi ∧ ω̇j .

The proof of the above theorem gives also necessary and sufficient conditions for a
dynamical form be locally variational (the Helmholtz conditions) [4].

The 2-form α is defined on J1Y , and explicitly expressed by means of the
dynamical form E. It holds

α = Eiω
i ∧ dt +

1
4

(
∂Ei

∂q̇j
− ∂Ej

∂q̇i

)
ωi ∧ ωj +

1
2

(
∂Ei

∂q̈j
+

∂Ej

∂q̈i

)
ωi ∧ ω̇j .

The aim of this paper is to generalize the above theorem from dynamical forms
to forms of degree 3, namely to so-called Helmholtz-type forms, i.e. to the third
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column of the variational sequence. Helmholtz-type forms are 2-contact 3-forms,
belonging to the ideal generated by the contact forms ωi, 1 ≤ i ≤ m.

Behind Lagrangians and Euler-Lagrange forms, Helmholtz-type forms are other
important differential forms appearing in the calculus of variations (see [8], [12],
[15]). In particular, to every dynamical form E one assigns a 3-form of this kind,
called Helmholtz form, HE , with the property that E is variational if and only if
HE vanishes [8], [10].

The following theorem shows under what conditions a Helmholtz-type form H
can be completed to a closed form β. We find necessary and sufficient conditions
for existence of a closed counterpart of H, generalizing the Helmholtz conditions
to 3-forms), as well as the formula for β.

We use the following notation: sym(i, j) = 1
2 (ij + ji), asym(i, j) = 1

2 (ij − ji),
asym(i, j, k) = 1

6 (ijk − ikj + kij − kji + jki− jik).

Theorem 3. Let H be a Helmholtz-type form of order 3. The following conditions
are equivalent:

(i) H is locally Helmholtz, i.e., around every point, H = HE for a dynamical
form E.

(ii) Components of H, defined by

H = H0
ij ωi ∧ ωj ∧ dt + H1

ij ωi ∧ ω̇j ∧ dt + H2
ij ωi ∧ ω̈j ∧ dt,

where H0
ij = −H0

ji, H1
ij = H1

ji, H2
ij = −H2

ji, satisfy the conditions

∂H2
ij

∂
...
q k

= 0, (1)

∂H0
ij

∂
...
q k

+
1
2

∂H2
ik

∂q̇j
= 0, (2)(

∂H1
ij

∂
...
q k

−
∂H2

ij

∂q̈k

)∣∣∣∣
asym(j,k)

= 0, (3)(
∂H1

ij

∂q̈k
− d

dt

∂H1
ij

∂
...
q k

)∣∣∣∣
sym(j,k)

= 0, (4)(
∂H0

ij

∂q̈k
+

1
2

∂H2
ij

∂qk
+

1
2

∂H2
jk

∂qi
− 1

2
d
dt

(
3
∂H0

ij

∂
...
q k

+
∂H2

ij

∂q̇k

))∣∣∣∣
asym(j,k)

= 0, (5)(
∂H1

ij

∂q̇k
− 1

2
d
dt

∂H1
ij

∂q̈k
+

1
2

d2

dt2
∂H1

ij

∂
...
q k

)∣∣∣∣
asym(j,k)

= 0, (6)(
∂H0

ij

∂q̇k
− 1

2

(
∂H1

ik

∂qj
−

∂H1
jk

∂qi

)
− d

dt

(
∂H0

ij

∂q̈k
− 1

2
∂H2

ij

∂qk

)
+

+
d2

dt2
∂H0

ij

∂
...
q k

)∣∣∣∣
sym(j,k)

= 0, (7)
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(
∂H0

ij

∂qk
− 1

3
d
dt

∂H0
ij

∂q̇k
+

1
3

d2

dt2

(
∂H0

ij

∂q̈k
+

∂H2
ij

∂qk

)
−

−1
3

d3

dt3
∂H0

ij

∂
...
q k

)∣∣∣∣
asym(j,k)

= 0 . (8)

(iii) There exists a unique 3-contact form G such that the form β = H + G is
closed.

(iv) There exists a unique 3-contact form G such that p3 dβ = p3 d(H + G) = 0.

The form β has the following coordinate expression:

β = H0
ij ωi ∧ ωj ∧ dt + H1

ij ωi ∧ ω̇j ∧ dt + H2
ij ωi ∧ ω̈j ∧ dt+

+
1
3

(
∂H0

ij

∂q̇k
− d

dt

(
∂H0

ij

∂q̈k
+

∂H2
ij

∂qk

)
+

d2

dt2
∂H0

ij

∂
...
q k

)
ωi ∧ ωj ∧ ωk+

+
(

∂H0
ij

∂q̈k
− ∂H2

ik

∂qj
− d

dt

∂H0
ij

∂
...
q k

)
ωi ∧ ωj ∧ ω̇k +

∂H0
ij

∂
...
q k

ωi ∧ ωj ∧ ω̈k+

+
1
2

(
∂H1

ij

∂q̈k
+

∂H2
ij

∂q̇k
− 2

∂H0
ij

∂
...
q k

− d
dt

∂H1
ij

∂
...
q k

)
ωi ∧ ω̇j ∧ ω̇k+

+
∂H1

ij

∂
...
q k

ωi ∧ ω̇j ∧ ω̈k .

Proof. (i) ⇒ (ii) is proved by direct computation.
(ii) ⇒ (iii) The computations are long but standard, therefore we recall here

only basic steps. Let H be a source 3-form of order 3. Then in fibred coordinates β
is expressed in the form

β = H + G = H0
ij ωi ∧ ωj ∧ dt + H1

ij ωi ∧ ω̇j ∧ dt + H2
ij ωi ∧ ω̈j ∧ dt+

+ G000
ijk ωi ∧ ωj ∧ ωk + G001

ijk ωi ∧ ωj ∧ ω̇k + G002
ijk ωi ∧ ωj ∧ ω̈k+

+ G011
ijk ωi ∧ ω̇j ∧ ω̇k + G012

ijk ωi ∧ ω̇j ∧ ω̈k + G111
ijk ω̇i ∧ ω̇j ∧ ω̇k+

+ G112
ijk ω̇i ∧ ω̇j ∧ ω̈k + G022

ijk ωi ∧ ω̈j ∧ ω̈k + G122
ijk ω̇i ∧ ω̈j ∧ ω̈k+

+ G222
ijk ω̈i ∧ ω̈j ∧ ω̈k .

We may assume H0
ij = −H0

ji, H1
ij = H1

ji, H2
ij = −H2

ji. The condition dβ = 0 is
equivalent with p3 dβ = p4 dβ = 0. From p3dβ = 0 we get for the components of
G:

G000
ijk =

1
3

(
∂H0

ij

∂q̇k
− d

dt

(
∂H0

ij

∂q̈k
− ∂H2

ik

∂qj

)
+

d2

dt2
∂H0

ij

∂
...
q k

)∣∣∣∣
asym(i,j,k)

G001
ijk =

∂H0
ij

∂q̈k
− 1

2

(
∂H2

ik

∂qj
−

∂H2
jk

∂qi

)
− d

dt

∂H0
ij

∂
...
q k

G002
ijk =

∂H0
ij

∂
...
q k
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G011
ijk =

1
2

(
∂H1

ij

∂q̈k
+

∂H2
ij

∂q̇k
− 2

∂H0
ij

∂
...
q k

− d
dt

∂H1
ij

∂
...
q k

)∣∣∣∣
asym(j,k)

G012
ijk =

∂H1
ij

∂
...
q k

G022
ijk = G111

ijk = G112
ijk = G122

ijk = G222
ijk = 0

and for H’s we get conditions (1)–(8). Finally, one has to check that the relation
p4dβ = 0 is fulfilled identically.

(iii) ⇒ (iv) is obvious.
(iv) ⇒ (i) We have p3 dβ = p3 d(H + G) = 0. It means that [dβ] = 0 and there

exists α such that [dα] = [β]. From α = αE we obtain H = HE . �
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