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Prime Constellations in Triangles with Binomial

Coefficient Congruences

Larry Ericksen

Abstract. The primality of numbers, or of a number constellation, will be
determined from residue solutions in the simultaneous congruence equations
for binomial coefficients found in Pascal’s triangle. A prime constellation
is a set of integers containing all prime numbers. By analyzing these con-
gruences, we can verify the primality of any number. We present different
arrangements of binomial coefficient elements for Pascal’s triangle, such as
by the row shift method of Mann and Shanks and especially by the diago-
nal representation of Ericksen. Primes of linear and polynomial forms are
identified from congruences of their associated binomial coefficients.

This method of primality testing is extended to triangle elements created
from q-binomial or Gaussian coefficients, using congruences with cyclotomic
polynomials as a modulus. We apply Kummer’s method of p-ary representa-
tion to binomial coefficient congruences to find prime constellations. Aside
from their capacity to find prime numbers in binomial coefficient triangles,
congruences are used to identify prime properties of composite numbers,
represented as distinct prime factors or as prime pairs.

1 Introduction
1.1 Pascal’s Triangle (n Primes)

The classical Pascal triangle from [16] is described in [1] as a number triangle, with
entries as binomial coefficients

(
n
h

)
. Each element in row n and column h can be

derived as a combinatorial ratio of factorials or generated recursively by(
n

h

)
=

n!
h!(nh)!

=
(

n− 1
h

)
+

(
n− 1
h− 1

)
, (1)

for 0 ≤ h ≤ n and n ≥ 0 with initial conditions
(
0
0

)
=

(
1
0

)
=

(
1
1

)
= 1 and outer

boundary conditions
(
n
0

)
=

(
n
n

)
= 1 for all n ≥ 0.
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The well-known connection between prime numbers and Pascal’s triangle arises
by examining the values of the binomial coefficients

(
n
h

)
in each row n. We can

state this relationship as a theorem: In the n-th row of Pascal’s triangle, the row
number n is a prime number if and only if(

n

h

)
≡ 0 (mod n) for all h over 1 ≤ h ≤ n− 1 . (2)

So excluding the end points at h = 0 and h = n, all n− 1 congruences modulo
n for the binomial coefficients at each column h in any given row n will have zero
residues if and only if n is a prime.

We can further reduce the number of simultaneous equations required to verify
this primality relationship from (2), by restating the theorem: In the n-th row of
Pascal’s triangle, the row number n is a prime number if and only if(

n

h

)
≡ 0 (mod n) for all primes h < n . (3)

Thus, as proven in [5], we need only check the binomial coefficient congruences
modulo n when the column number h is a prime number, in any given row n
of Pascal’s triangle. In this case, we need examine only π(n − 1) simultaneous
equations, where π(x) is the number of primes that are less than the number x.
Every congruence will still have zero residues if and only if n is a prime.

1.2 Dilcher-Stolarsky Twin Primes (2n ± 1 Primes)

In [5], Dilcher and Stolarsky came up with two sets of simultaneous equations,
which together could identify twin primes. These two congruence sets can be
summarized for modulus 2n − 1 and 2n + 1 both being prime. Their twin prime
theorem can be described for the separate congruence equations by the following
theorem: Entries in the n-th rows of two related triangles, satisfying two sets of
congruences with modulus 2n − 1 and 2n + 1, will identify numbers p∗ = 2n − 1
and p = 2n + 1 as being prime if and only if terms D∗

n,h and Dn,h are given by(
n + h

2h + 1

)
(2n− 1)(2n + 1)

2h + 3
≡ 0 (mod 2n±1) for all h over 0 ≤ h ≤ n−1 , (4)

with exactly one exception of a nonzero residue in the n-th row of each triangle.

1.3 Mann-Shanks Primality (h Primes)

1.3.1 Mann-Shanks Shift

As illustrated in [1] and proven in [15], Mann and Shanks used binomial coefficients
as shifted elements in the rows of the Pascal triangle to obtain a criterion for
determining the primality of a natural number, according to the following theorem:
A natural number p = h is prime if and only if

Mn,h =
(

n

h− 2n

)
≡ 0 (mod n) for all n over

⌈h

3

⌉
≤ n ≤

⌊h

2

⌋
. (5)
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Thus in the Mann-Shanks triangle, each row of the Pascal triangle is displaced
successively two places to the right. Then at each candidate column h, the congru-
ences modulo the set of row numbers n are examined for the requirement that all
residues must be zero for h to be prime.

1.3.2 Mann-Shanks Criterion Extended

The Mann and Shanks primality criterion can be extended, as shown in [13],
for certain other shift factor values by the following theorem: For shift integer
γ ∈ {1, 2, 3, 4}, the natural number p = h is an odd prime if and only if

Mn,h =
(

n

h− γn

)
≡ 0 (mod n) for all n over

⌈ h

1 + γ

⌉
≤ n ≤

⌊h− δ

γ

⌋
, (6)

where δ = 1 if γ = 1, otherwise δ = 0 for 2 ≤ γ ≤ 4. In the case for γ = 3, only the
odd values of h are evaluated, with the only exception occurring for odd h = 25
where all residues are zero. In [13], Hudson and Williams presented the binomial
coefficient triangle for γ = 1 and proved the case for γ = 3. Harborth gave details
for primality at γ ≤ 2 in [10], at γ = 3 in [11] and at γ = 4 in [12].

1.4 Ericksen Diagonal Primality (n + 2 Primes)

In [7] we examined the binomial coefficients of the upward diagonals of the Pascal
triangle and presented the following theorem: In the n-th rows of the related
diagonal triangle with binomial coefficient terms

(
n−h

h

)
at columns h, the number

p = n + 2 is prime if and only if

En,h =
(

n− h

h

)
≡ 0 (mod h + 1) for all h over 0 ≤ h ≤

⌊n

2

⌋
. (7)

The terms of the binomial coefficient
(
n−h

h

)
can be obtained variously by the

combinatorial and recursive rules in (8), from Chebyshev polynomials of the second
kind Un(z) in (9), and by the generating function in (10), displayed as(

n− h

h

)
=

(n− h)!
h!(n− 2h)!

=
(

n− h− 1
h

)
+

(
n− h− 2

h− 1

)
, (8)

(−x)n/2Un

( 1√
−4x

)
=

bn/2c∑
h=0

(
n− h

h

)
xh, (9)

1
1− x− qx2

=
∑
n≥0

xn

n/2∑
h=0

(
n− h

h

)
qh. (10)

Incidentally it is also well known that the sum of these binomial coefficients gives
the Fibonacci numbers Fm, according to Fn+1 =

∑n/2
h=0

(
n−h

h

)
.

In [9] we proved that it is not necessary to examine all columns h in the diagonal
triangle to prove primality, only those where h + 1 is prime. Therefore we were
able to restate (7) by the theorem: In the n-th rows of the related diagonal triangle



70 Larry Ericksen

with binomial coefficient terms
(
n−h

h

)
at select columns h, the number p = n + 2 is

prime if and only if

En,h =
(

n− h

h

)
≡ 0 (mod h + 1) for all h over

{
0 ≤ h ≤ bn

2 c ,

h + 1 is prime .
(11)

2 Diagonal Primality Generalized
2.1 Diagonal Terms Extended

We generalize the diagonal triangle from (11) with the binomial coefficient terms
En,h by respectively weighting the row number n and column number h with integer
factors of λ > 0 and any γ value. Thus we can extend (11) to a more general
theorem: In the n-th rows of a diagonal triangle with binomial coefficient terms(
λn−γh

h

)
at select columns h, the number t = λn + γ + 1 is prime if and only if

En,h =
(

λn− γh

h

)
≡ 0 (mod h + 1) for each h over

{
0 ≤ h ≤ hmax ,

h + 1 is prime ,
(12)

where the largest value for h is

hmax = λn + γ − 1 when γ ≤ 0 for all t > 2 ,

hmax =
λn

1 + γ
when γ > 0 for all t > γ2 . (13)

Of course, along with the minimal conditions that hmax ≥ 0 and λn ≥ 0, we need
enough simultaneous congruences to make a valid analysis of primality. In the cases
γ < 0, we are looking at downward diagonals from Pascal’s triangle, where we can
get any necessary number of binomial coefficient entries for the congruences, as
long as λn > 1+ |γ|. But in the cases γ > 0, we are looking at upward diagonals in
the Pascal triangle, which might yield an insufficient number of binomial coefficient
entries at low values of λn. So for γ > 0, we require the number t to be sufficiently
large (t > γ2) to guarantee a minimum number of simultaneous equations for the
general theorem to be effective.

2.2 Proof of the General Theorem

We define a natural number t = λn + γ + 1, make the substitution for λn in the
binomial coefficient in (14), and expand this into a ratio of factorials in (15).(

λn− γh

h

)
=

(
t− (1 + γ)− γh

h

)
(14)

=
(

t− (1 + γ)− (1 + γ)h + h

h

)
=

(
t + h− (1 + γ)(h + 1)

h

)
=

(t + h− (1 + γ)(h + 1)) . . . (t + 1− (1 + γ)(h + 1))
h!

. (15)

In (12), we are interested in the divisibility properties for En,h when h + 1 is
prime. We know that π = h+1 does not divide the denominator h! in (15) because
of Wilson’s Theorem, described in [2], which states

(π − 1)! ≡ −1 (mod π) if and only if π is prime .
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Therefore the question of divisibility is the same for the binomial coefficient in (14)
as for its numerator. So when we apply the congruence in (12) to the binomial
coefficients, we can focus the congruence on the numerator of (15), given in reduced
form as

h factors︷ ︸︸ ︷
(t + h) . . . (t + 1) (mod h + 1) . (16)

Because the residue in (16) has h consecutive factors and the modulus is h + 1
for all 1 ≤ h + 1 ≤ hmax + 1 < t, we can quickly evaluate the possible primality
conditions. If t is composite, then there will be a factor h + 1 that divides t and
thus does not divide any of the h factors in (16); thus En,h 6≡ 0 (mod h+1). If t is
prime, then no factor h + 1 ≤ hmax + 1 < t can divide that value t, so h + 1 must
divide one of the h factors in (16); therefore En,h ≡ 0 (mod h + 1). In the reverse
direction, we evaluate the residues of En,h (mod h+1) and obtain the same results
corresponding to the primality of the t terms. The combination of these primality
and congruence conditions completes the proof of the general theorem (12).

3 Prime Constellations

3.1 Definition of J-Tuples

As in [7] and [9], we define the J-tuple set T = {t1, t2, . . . , tJ} of natural numbers tj
by a constellation of a form {p+k0, p+k1, . . . , p+kJ−1} for p = t1 and separation set
K = {kj} where kj = tj+1− p for 0 ≤ j ≤ J − 1. If all integers in the constellation
are prime numbers, we call them generalized Prime Constellations [20] of the Prime
J-tuples. We will further allow the outer difference tJ − t1 between the first and
last prime to be greater than the least possible separation.

Based on values of the separation set K = {kj}, we add together rows of
the individual binomial coefficient triangles to create constellation triangles. The
congruences of the sum of these binomial coefficients yield the primality test for
the whole number constellation.

3.2 Mann-Shanks Constellations

As an example, we state a constellation version of the Mann-Shanks triangle of (5)
as a proposition: The n-th row elements Mn,h in a J-tuple triangle have congru-
ences

Mn,h ≡ 0 (mod n) for all n over
⌈h

3

⌉
≤ n ≤

⌊h + kJ−1

2

⌋
, (17)

with Mn,h =
J−1∑
j=0

(
n

h + kj − 2n

)
,

if and only if all terms tj are prime in the J-tuple set, with p = t1 = h as the initial
prime and the constellation values given by

{t1, t2, . . . , tJ} = {h, h + k1, . . . , h + kJ−1} .
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3.3 Diagonal Constellations

3.3.1 Constellations with Primes of Linear Form

By including the weight factors λ and γ as in (12), we extend the prime constellation
theorem of [7] and [9] by stating a diagonal constellation theorem: The nth row
elements En,h in the J-tuple triangle have congruences

En,h ≡ 0 (mod h + 1) for each h over

{
0 ≤ h ≤ hmax ,

h + 1 is prime ,
(18)

with En,h =
J−1∑
j=0

(
λn− γh + kj

h

)
,

if and only if all terms tj are prime in the J-tuple set, with p = t1 = λn + γ + 1 as
the initial prime and the constellation values given by

{t1, t2, . . . , tJ} = {λn + γ + 1, λn + γ + 1 + k1, . . . , λn + γ + 1 + kJ−1} . (19)

As in (12), the maximum allowed h value depends on the γ value, according to

hmax =

{
λn + kJ−1 + γ − 1 for γ ≤ 0 ,
λn+kJ−1

1+γ for γ > 0 .
(20)

The proof of the constellation theorem (18) follows that of the previous section
by using a typical prime candidate t = tj = λn+γ+1+kj−1, and then invoking the
fact that the individual terms in the summation for En,h are additive. In every term
congruence with prime modulus, the residues must be zero for the constellation to
be prime.

3.3.2 Constellations with Primes of Polynomial Form

We saw that the J-tuple terms tj in (19) were linear in variable n. We can also
construct a J-tuple where the integer terms tj are given in polynomial form with
integer value Pj(n). We state our objective that the J-tuple is prime by the poly-
nomial constellation theorem: Given polynomials fj(x) =

∑
i≥0 ai,jx

i, we can find
a number n such that the J-tuple triangle in En,h terms satisfy the congruences

En,h ≡ 0 (mod h + 1) for each h over

{
0 ≤ h ≤ hmax ,

h + 1 is prime ,
(21)

with En,h =
J−1∑
j=0

(
nfj(n) + kj − γh

h

)
,

if and only if all terms tj are prime in the J-tuple set T = {t1, . . . , tJ}, with
p = t1 = nf0(n) + 1 + γ as the initial prime and the constellation values given by

T = {nf0(n) + 1 + γ, nf1(n) + k1 + 1 + γ, . . . , nfJ−1(n) + kJ−1 + 1 + γ} . (22)
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In its most general polynomial form, we define the J-tuple set τ(x, y, z) of
functions Fj(x), Kj(y) and Aj(z) for 0 ≤ j ≤ J − 1. We take functional variables
at integer values, such that x = n, y = c and z = b, so that the number set T = {tj}
can be evaluated for primality. We generalize the polynomial constellation theorem
in (21) for the number constellation T to be prime if and only if the congruences
in (21) are satisfied for the En,h terms given by

En,h =
J−1∑
j=0

(
Fj(n) + Kj(c)−Aj(b)h

h

)
,

with hmax =

{
F ∗(n) + K∗(c) + A∗(b)− 1 for Aj ≤ 0 ,
F∗(n)+K∗

1+A∗ for Aj > 0 ,

with the notation G∗(m) = max{Gj(m)} and where each constellation element
tj = Fj(n) + Kj(c) + Aj(b) + 1 with the requirement that tj > A2

j (b) if Aj(b) > 0.

3.4 Examples for Primes of Special Form

Primes of a linear form, like the specific arithmetic progression ax+b, can be found
as in (12) by using congruence terms

En,h =
(

an− (b− 1)h
h

)
.

Dirichlet’s Theorem from [6] on primes in arithmetic progression proves that there
are an infinite number of these primes t = an + b contained within the infinite set
for n ≥ 0, as long as a and b are coprime.

To obtain individual primes of the quadratic form x2 + 1 + γ, the congruence
in (21) might use

En,h =
(

nf(n)− γh

h

)
=

(
n2 − γh

h

)
.

To find primes of a cyclotomic polynomial form Φi(x), we could examine con-
gruences with

En,h =
(

Φi(n) + h

h

)
.

The two term constellations for Sophie Germain primes of the form {x, 2x + 1}
can use congruences with

En,h =
(

n + h

h

)
+

(
2n + 1 + h

h

)
.

The prime constellations of a four term J-tuple, containing a minimal total
separation between the smallest and largest primes in the set, would be found
using the congruence from (18) with congruence terms

En,h =
(

n− h

h

)
+

(
n− h + 2

h

)
+

(
n− h + 6

h

)
+

(
n− h + 8

h

)
.
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3.5 An Infinity of Prime Constellations

In the terminology of this paper, we mention two outstanding conjectures about
the infinitude of prime constellations of special forms. In [4] Dickson posed a
conjecture that a J-tuple set of numbers in linear form {ajn + bj} as in (19) will
constitute a prime constellation for infinitely many integers n. In [18] Schinzel
and Sierpinski gave a conjecture called hypothesis H which generalized Dickson’s
Conjecture to cover a J-tuple set of functions {Pj(x)} evaluated as irreducible
polynomials {Pj(n)} as in (22) which will create a prime constellation for infinitely
many integers n.

4 Constellations With q-Binomial Coefficients

4.1 Definition of q-Binomial Coefficients

The q-binomial coefficients, also called Gaussian binomial coefficients, are defined
in q-series notation by[

m

h

]
q

=
(q)m

(q)m−h(q)h
=

h−1∏
i=0

1− qm−i

1− qi+1
, (23)

where we define
[
m
h

]
q

= 0 when m < 0. The q-binomial coefficient satisfies the
recurrence equation given by[

m + 1
h

]
q

= qh

[
m

h

]
q

+
[

m

h− 1

]
q

.

In the limit q → 1−, the value of the q-binomial coefficient equals the value of
classical binomial coefficient.

4.2 Mann-Shanks q-Constellation

We can extend the Mann-Shanks criterion of (5) to the functional representation
for Gaussian binomial coefficients and select modulus polynomials. We extend
proposition (17) to a q-version of the Mann-Shanks criterion by stating a constel-
lation proposition: The q-binomial coefficient terms Mn,h in the J-tuple triangle
have congruences with modulus polynomials φn(x) given by

Mn,h ≡ 0 (mod φn(q)) at all n over
⌈h

3

⌉
≤ n ≤

⌊h + kJ−1

2

⌋
,

with Mn,h =
J−1∑
j=0

[
n

h + kj − 2n

]
q

and φn(q) =
1− qn

1− q
,

if and only if all terms tj are prime in the J-tuple set, with the initial term p =
t1 = h + k0 (where typically k0 = 0) and the constellation values given by

{t1, t2, . . . , tJ} = {h + k0, h + k1, . . . , h + kJ−1} .
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4.3 Diagonal q-Constellations

We can extend the congruence of (18) to the q-constellation with q-binomial coef-
ficient terms in congruences with a cyclotomic polynomial modulus for any integer
γ. For positive valued γ cases, we offer a q-constellation conjecture: For any integer
γ > 0 and hmax = λn+kJ−1

1+γ , the q-binomial coefficient term En,h satisfies congru-

ences (24), with modulus of irreducible cyclotomic polynomials Φh+1 = Φh+1(q),
according to

En,h ≡ 0 (mod Φh+1) for every h where

{
0 ≤ h ≤ hmax ,

h + 1 is prime ,
(24)

with En,h =
J−1∑
j=0

[
λn− γh + kj

h

]
q

and Φh+1(q) =
1− qh+1

1− q
,

if and only if the J-tuple terms of all tj > γ2 are prime, with all corresponding
cyclotomic integers Φtj likewise being prime and irreducible, given by

{t1, t2, . . . , tJ} = {λn + γ + 1, λn + γ + 1 + k1, . . . , λn + γ + 1 + kJ−1} ,

{Φt1 ,Φt2 , . . . ,ΦtJ
} = {Φλn+γ+1,Φλn+γ+1+k1 , . . . ,Φλn+γ+1+kJ−1} .

The above correspondence uses the fact that cyclotomic polynomials Φp = Φp(q)
of prime index p are irreducible. Cyclotomic polynomials with prime index p can
be written as

Φp(q) =
1− qp

1− q
=

p−1∑
i=0

qi ,

which reduces in the limit q → 1− to the index value p. Combined with the fact
that the q-binomial coefficient equals the classical binomial coefficient in the limit
q → 1−, the congruence of (24) then reduces to the congruence of (18).

Next for non-positive valued γ cases, we have the companion conjecture: For
any integer γ ≤ 0 and hmax = λn + kJ−1 + γ − 1, the q-binomial coefficient En,h

satisfies the congruences (25), with the irreducible cyclotomic polynomials Φh+1 as
modulus, similarly given by

En,h ≡ 0 (mod Φh+1) for every h where

{
0 ≤ h ≤ hmax ,

h + 1 is prime ,
(25)

with En,h =
J−1∑
j=0

[
λn− γh + kj

h

]
q

and Φh+1(q) =
1− qh+1

1− q
,

if and only if all J-tuple terms tj are prime, with all cyclotomic integers Φtj likewise
being prime and irreducible, given by

{t1, t2, . . . , tJ} = {λn + γ + 1, λn + γ + 1 + k1, . . . , λn + γ + 1 + kJ−1} ,

{Φt1 ,Φt2 , . . . ,ΦtJ
} = {Φλn+γ+1,Φλn+γ+1+k1 , . . . ,Φλn+γ+1+kJ−1} .
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5 Reduced Diagonal Triangles
5.1 Residues in Reduced Triangles

The full diagonal triangles were constructed from the Pascal triangle having each
row n with column values h consecutively covering all the integers from zero to
some hmax. However in these diagonal triangles En,h, we concentrated our attention
on congruences with prime modulus h + 1. Because of that selection, we could
identify numbers t to be primes of some form when all the residues were zero.
When the number t is composite, we found that the only residues possible were
zero or one, when the congruences had prime modulus h + 1.

Now we will construct a reduced triangle with only residue elements rn,h from
the full diagonal triangle whose columns h where h + 1 is prime. For this reduced
residue triangle, we state the following conjectures, dependent on the value of the
variable γ.

Residue Conjecture 1: For any integer γ ≤ 0 and hmax = λn + γ − 1, the only
possible residues are rn,h ∈ {0, 1} in the congruence:

En,h =
(

λn− γh

h

)
≡ rn,h (mod h+1) for any h such that

{
0 ≤ h ≤ hmax ,

h + 1 is prime .

Residue Conjecture 2: For any integer γ > 0 and hmax = λ n
1+γ , the only possible

residues are rn,h ∈ {0, 1} in the congruence:

En,h =
(

λn− γh

h

)
≡ rn,h (mod h+1) for any h such that

{
0 ≤ h ≤ hmax ,

h + 1 is prime .

So in a reduced diagonal triangle of residue rn,h values, we get a primality rule:
From the above congruences, a number t = λn + γ + 1 is prime if all rn,h = 0 in
row n, and the number t is composite if any rn,h = 1 in row n.

5.2 Distinct Prime Factors from Residue Triangles

Using congruence terms En,h with weight factors λ = 1 and γ = 0, we build reduced
residue triangles rn,h from each congruence given by

En,h =
(

n

h

)
≡ rn,h (mod h + 1) for any h such that

{
0 ≤ h ≤ hmax ,

h + 1 is prime .

Next we observe that the set H of all primes h+1 for which the residues rn,h = 1
constitutes a survey of all the distinct prime factors of a composite number t. By
the fundamental theorem of arithmetic, we write the factorization of the natural
number t as

t =
∏
i≥1

pei
i for pi ∈ H .

We define a variable ω(n) to be number of distinct prime factors of the number t.
Consequently the ω(n) value will equal the cardinality of the set H. We let a
variable Gn count of the total number of residues rn,h = 1 in the reduced triangle,
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containing all the rows up to row number n, so that Gn =
∑n

2 ω(n). We have
determined experimentally that

n(log log n− cB1) < Gn < n(log log n + cB1) , (26)

where B1 = 0.261497 . . . is the Mertens constant and c has a value is 0 ≤ c < 1. In
the limit as n →∞, we get Gn → n log log n. This result (26) compares favorably
with bracketing inequalities for

∑n
2 ω(n) from [19], including ω(p) = 1 for primes p,

which thus has another term in the upper limit given as O( n
log n ).

6 Diagonal Triangles in p-Ary Representation
6.1 Kummer’s Theorem for Binomial Coefficients

A divisibility property for binomial coefficients from [14] can be stated by Kummer’s
Theorem: The power to which prime p divides the binomial coefficient

(
n
m

)
is given

by the number of ‘carries’ when we add m and n−m in the base p. As mentioned
in [1], Kummer gave a formula for determining the highest power s of the prime p
for which

(
n
m

)
is exactly divisible by ps, by using the summation formula with

s = sn,m as:

s =
1

p− 1

r∑
k=0

(ck + bk − ak) , (27)

where the p-ary representations of integers n, m and n−m are given by

n = (arar−1 . . . a0) , m = (brbr−1 . . . b0) , n−m = (crcr−1 . . . c0) .

6.2 Kummer’s Theorem for Diagonal Triangles

In diagonal triangle congruences like (12), we can see that the methodology for the
primality testing relies on binomial coefficients being divisible by all primes h + 1.
In the terminology of the Kummer formula (27), that would imply that s > 0 for
each prime p. Given Kummer’s theorem for primes p = h+1, we can interpret the
diagonal congruence for En,h from (18) and an expanded Kummer’s formula Sn,h

as

En,h =
J−1∑
j=0

(
n + kj − γh

h

)
and Sn,h =

1
h

J−1∏
j=0

r∑
k=0

(cj,k + bj,k − aj,k) . (28)

Thus for the binomial coefficient sum En,h and its p-ary representation Sn,h in (28),
as defined by Kummer’s Theorem in (27), we state the related theorem: The J-tuple
number set {tj} = {n + kj + γ + 1} for 1 ≤ j ≤ J is a prime constellation if and
only if condition (29) is satisfied, according to

Sn−γh,h > 0 for every h such that

{
0 ≤ h ≤ hmax ,

h + 1 is prime ,
(29)

where hmax is the same as defined previously in (20).
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6.3 A Quick p-Ary Primality Test

Because of the special parameters connecting the congruence modulus with the
diagonal binomial coefficients, we can simplify the requirements of theorem (29)
and offer the theorem: The J-tuple number set T = {tj} = {n + kj + γ + 1} is a
prime constellation if and only if condition (30) is satisfied, according to

Cn,h > 0 for every h such that

{
0 ≤ h ≤ hmax ,

h + 1 is prime ,
(30)

where Cn,h =
∏J−1

j=0 cj,0 is the product of the initial terms from the (h + 1)-ary
representations of each integer ηj for 1 ≤ j ≤ J given by

ηj = n + kj − (γ + 1)h = (cj,rcj,r−1 . . . cj,0) . (31)

The proof of (30) relies on the binomial coefficients in En,h being a special case
of the Kummer formula, due to the following conditions:

1. h in base p = h + 1 is h, which leads to the ratio h
p−1 = 1 for the bj,k term

in the Kummer sum.
2. n−m in base h+1 is the top factorial term minus h. The only way to avoid

a carry is to have cj,0 = 0, giving the difference cj,0 − aj,0 = −h. The resulting
contribution −h

p−1 = −1 cancels the bj,k value, so the Kummer sum is equal to zero
as the power of h + 1 that divides the binomial coefficient. Thus a constellation
term tj is a composite number if cj,0 = 0, otherwise it is prime with cj,0 > 0.

We mention the special case for a single binomial coefficient En,h =
(
n+1

h

)
in (28)

for γ = −1 with k0 = 0 at J = 1. In that case, we get the obvious condition that n
is prime if and only if all primes h + 1 < n do not divide the prime t1 = n. In this
situation, the primality test (30) means that, for the integer η1 = n to be prime, we
must have

∏J−1
j=0 cj,0 > 0. For example with the prime t1 = n = 7, we get the p-ary

representations of η1 = n for primes p = h + 1 < t1 = n as {1, 1, 1}, {2, 1}, {1, 2} in
respective bases p = {2, 3, 5}, with each initial term cj,0 > 0 as required.

7 Composites as Prime Pairs
7.1 Prime Pairs in Diagonal Triangles

The primality tests in (12) and (21) for diagonal triangles evaluate the congruences
taken over the triangle columns h < hmax. For individual congruences in (21) with
weight factor γ < 0, we use each prime modulus h + 1 up to hmax = nf(n) + γ− 1.
If any one of the congruences did not have a residue of value zero, the number
t = nf(n) + γ + 1 was determined to be a composite number.

We want to examine a particular composite number t = (n− k)(n + k), which
would be the product of two primes (n− k) and (n + k). Expanding the product,
we get t = n2 − k2. From this, we can restate the formula for the t value with the
substitutions n2 = nf(n) and k2 = γ + 1.

Now we examine the binomial coefficient congruences taken over a maximum
number of columns h chosen to be hmax =

√
n, a smaller number of terms than was

used to identify individual primes. From experimental evidence, we can identify
these numbers t with prime pair factors as satisfying the prime pair conjecture:
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For γ = −k2− 1 < 0 and n > |γ|, then a number t = n2−k2 has two prime factors
(n− k) and (n + k) if and only if the congruence (32) is satisfied and is given by

En,h ≡ 0 (mod h + 1) for each h over

{
0 ≤ h ≤

√
n ,

h + 1 is prime ,
(32)

with En,h =
(

n2 + (k2 + 1)h
h

)
for k ≥ 0 .

The dual factors of these specific composite numbers for t = (n− k)(n + k) are
identified for small k values in the following table.

k factors of t
0 primes,
1 twin primes,
2 cousin primes,
3 sexy primes.
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