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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , NU MB ER 3 , P AG E S 5 0 7 – 5 2 8

OPTIMAL SEQUENTIAL MULTIPLE HYPOTHESIS
TESTING IN PRESENCE OF CONTROL VARIABLES

Andrey Novikov

Suppose that at any stage of a statistical experiment a control variable X that affects
the distribution of the observed data Y at this stage can be used. The distribution of Y
depends on some unknown parameter θ, and we consider the problem of testing multiple
hypotheses H1 : θ = θ1, H2 : θ = θ2, . . ., Hk : θ = θk allowing the data to be controlled by
X, in the following sequential context. The experiment starts with assigning a value X1

to the control variable and observing Y1 as a response. After some analysis, another value
X2 for the control variable is chosen, and Y2 as a response is observed, etc. It is supposed
that the experiment eventually stops, and at that moment a final decision in favor of one
of the hypotheses H1, . . ., Hk is to be taken. In this article, our aim is to characterize
the structure of optimal sequential testing procedures based on data obtained from an
experiment of this type in the case when the observations Y1, Y2, . . . , Yn are independent,
given controls X1, X2, . . . , Xn, n = 1, 2, . . ..

Keywords: sequential analysis, sequential hypothesis testing, multiple hypotheses, control
variable, independent observations, optimal stopping, optimal control, optimal
decision, optimal sequential testing procedure, Bayes, sequential probability
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1. INTRODUCTION. PROBLEM SET–UP

Let us suppose that at any stage of a statistical experiment a “control variable”
X can be used, that affects the distribution of the observed data Y at this stage.
“Statistical” means that the distribution of Y depends on some unknown parameter
θ, and we have the usual goal of statistical analysis: to obtain some information
about the true value of θ. In this work, we consider the problem of testing multiple
hypotheses H1 : θ = θ1, H2 : θ = θ2, . . ., Hk : θ = θk allowing the data to be
controlled by X, in the following “sequential” context.

The experiment starts with assigning a value X1 to the control variable and
observing Y1 as a response. After some analysis, we choose another value X2 for
the control variable, and observe Y2 as a response. Analyzing this, we choose X3 for
the third stage, get Y3, and so on. In this way, we obtain a sequence X1, . . . , Xn,
Y1, . . . , Yn of experimental data, n = 1, 2, . . .. It is supposed that the experiment
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eventually stops, and at that moment a final decision in favor of one of H1, . . ., Hk

is to be taken.
In this article, our aim is to characterize the structure of optimal sequential pro-

cedures, based on this type of data, for testing the multiple hypotheses H1, . . . ,Hk.
We follow [5] and [11] in our interpretation of “control variables”. For example,

in a regression experiment, with a dependent variable Y and an independent vari-
able X, the variable X is a control variable in our sense, whenever the experimenter
can vary its value before the next observation is taken. Another classical context for
“control variables” in our sense is the experimental design, when one of some alterna-
tive treatments is assigned to every experimental unit before the experiment starts.
The randomization, which is frequently used with both these type of “controlled”
experiments, can be easily incorporated in our theory below as well.

There exist yet another concept of “control variables” introduced by Haggstrom
[3], and largely used in [10] and many subsequent articles (see also [1] for results,
closely related to [10], where “control variables” are not used). In the context of
[10], a control variable, roughly speaking, is an integer variable whose value, at every
stage of the experiment, is a prescription of a number of the additional observations
to be taken at the next stage, if any. To some extent, it is related to our control
variables as well, because it affects the distribution of subsequently observed data.
It is very likely that our method will work for this type of “sequentially planned”
experiments as well, but formally it does not fit our theory below, mainly because
we do not allow that the cost of observations depend on X.

In this article, we follow very closely our article [6], where the case of k = 2
simple hypotheses was considered, and use a method based on the same ideas as in
[7], where multiple hypothesis testing for experiments without control variables was
studied.

For data vectors, let us write, briefly, X(n) instead of (X1, . . . , Xn), Y (n) instead
of (Y1, . . . , Yn), n = 1, 2, . . ., etc. Let us define a (randomized) sequential hypothesis
testing procedure as a triplet (χ, ψ, φ) of a control policy χ, a stopping rule ψ, and
a decision rule φ, with

χ = (χ1, χ2, . . . , χn, . . .) , ψ = (ψ1, ψ2, . . . , ψn, . . .) , φ = (φ1, φ2, . . . , φn, . . .) ,

with the components described below.
The functions

χn = χn(x(n−1), y(n−1)), n = 1, 2, . . .

are supposed to be measurable functions with values in the space of values of the
control variable. The functions

ψn = ψn(x(n), y(n)), n = 1, 2, . . .

are supposed to be some measurable functions with values in [0, 1]. Finally,

φn = (φn1, φn2, . . . , φnk),

with
φni = φni(x

(n), y(n)), i = 1, . . . , k,
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are supposed to be measurable non-negative functions such that

k∑

i=1

φni(x
(n), y(n)) ≡ 1 for any n = 1, 2 . . . .

The interpretation of all these functions is as follows.
The experiments starts at stage n = 1 applying χ1 to determine the initial control

x1. Using this control, the first data y1 is observed.
At any stage n ≥ 1: the value of ψn(x(n), y(n)) is interpreted as the conditional

probability to stop and proceed to decision making, given that we came to that
stage and that the observations were (y1, y2, . . . , yn) after the respective controls
(x1, x2, . . . , xn) have been applied. If there is no stop, the experiments continues
to the next stage (n + 1), defining first the new control value xn+1 by applying the
control policy:

xn+1 = χn+1(x1, . . . , xn; y1, . . . , yn)

and then taking an additional observation yn+1 using control xn+1. Then the rule
ψn+1 is applied to (x1, . . . , xn+1; y1, . . . , yn+1) in the same way as as above, etc.,
until the experiment eventually stops.

It is supposed that when the experiment stops, a decision to accept one and only
one of H1, . . ., Hk is to be made. The function φni(x

(n), y(n)) is interpreted as the
conditional probability to accept Hi, given that the experiment stops at stage n
being (y1, . . . , yn) the data vector observed and (x1, . . . , xn) the respective controls
applied.

The control policy χ generates, by the above process, a sequence of random
variables X1, X2, . . . , Xn, recursively by

Xn+1 = χn+1(X
(n), Y (n)).

The stopping rule ψ generates, by the above process, a random variable τψ (stopping
time) whose distribution is given by

Pχ
θ (τψ = n) = Eχ

θ (1 − ψ1)(1 − ψ2) . . . (1 − ψn−1)ψn. (1)

Here, and throughout the paper, we interchangeably use ψn both for

ψn(x(n), y(n))

and for

ψn(X(n), Y (n)),

and so do we for any other function

Fn = Fn(x(n), y(n)).

This does not cause any problem if we adopt the following agreement: when Fn is un-
der probability or expectation sign, it is Fn(X(n), Y (n)), otherwise it is Fn(x(n), y(n)).
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For a sequential testing procedure (χ, ψ, φ) let us define

αij(χ, ψ, φ) = Pθi( accept Hj) =
∞∑

n=1

Eχ
θi

(1 − ψ1) . . . (1 − ψn−1)ψnφnj (2)

and

βi(χ, ψ, φ) = Pθi( accept any Hj different fromHi) =
∑

j 6=i

αij(χ, ψ, φ). (3)

The probabilities αij(χ, ψ, φ) for j 6= i can be considered “individual” error proba-
bilities and βi(χ, ψ, φ) “gross” error probability, under hypothesis Hi, i = 1, 2, . . . , k,
of the sequential testing procedure (χ, ψ, φ).

Another important characteristic of a sequential testing procedure is the average
sample number:

N(θ; χ, ψ) = Eχ
θ τψ =





∞∑

n=1

nPχ
θ (τψ = n), if Pχ

θ (τψ < ∞) = 1,

∞ otherwise.

(4)

In this article, we solve the two following problems:

Problem I. Minimize N(χ, ψ) = N(θ1;χ, ψ) over all sequential testing procedures
(χ, ψ, φ) subject to

αij(χ, ψ, φ) ≤ αij , for any i = 1, . . . k, and for any j 6= i, (5)

where αij ∈ (0, 1) (with i, j = 1, . . . k, j 6= i) are some constants.

Problem II. Minimize N(χ, ψ) = N(θ1; χ, ψ) over all sequential testing proce-
dures (χ, ψ, φ) subject to

βi(χ, ψ, φ) ≤ βi, for any i = 1, . . . k, (6)

with some constants βi ∈ (0, 1), i = 1, . . . , k.

In Section 2, we reduce the problem of minimizing N(χ, ψ) under constraints (5)
(or (6)) to an unconstrained minimization problem. The new objective function is
the Lagrange-multiplier function L(χ, ψ, φ).

Then, finding
L(ψ, φ) = inf

φ
L(χ, ψ, φ)

we reduce the problem further to a problem of finding optimal control policy and
stopping rule.

In Section 3, we solve the problem of minimization of L(χ, ψ) in a class of control-
and-stopping strategies.

In Section 4, the likelihood ratio structure for optimal strategy is given.
In Section 5, we apply the results obtained in Sections 2 – 4 to the solution of

Problems I and II.
The final Section 6 contains some additional results, examples and discussion.
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2. REDUCTION TO A PROBLEM OF OPTIMAL CONTROL
AND STOPPING

In this section, Problems I and II will be reduced to unconstrained optimization
problems using the idea of the Lagrange multipliers method.

2.1. Reduction to non-constrained minimization in Problems I and II

The following two theorems are practically Theorem 1 and Theorem 2 in [7]. They
reduce Problem I and Problem II to respective unconstrained minimization prob-
lems, using the idea of the Lagrage multipliers method.

For Problem I, let us define L(χ, ψ, φ) as

L(χ, ψ, φ) = N(χ, ψ) +
∑

1≤i,j≤k; i 6=j

λijαij(χ, ψ, φ) (7)

where λij ≥ 0 are some constant multipliers.
Let ∆ be a class of sequential testing procedures.

Theorem 1. Let exist λij > 0, i = 1, . . . , k, j = 1, . . . , k, j 6= i, and a testing
procedure (χ∗, ψ∗, φ∗) ∈ ∆ such that for any other testing procedure (χ, ψ, φ) ∈ ∆

L(χ∗, ψ∗, φ∗) ≤ L(χ, ψ, φ) (8)

holds (with L(χ, ψ, φ) defined by (7)), and such that

αij(χ
∗, ψ∗, φ∗) = αij for any i = 1, . . . k, and for any j 6= i. (9)

Then for any testing procedure (χ, ψ, φ) ∈ ∆ such that

αij(χ, ψ, δ) ≤ αij for any i = 1, . . . k, and for any j 6= i, (10)

it holds
N(χ∗, ψ∗) ≤ N(χ, ψ). (11)

The inequality in (11) is strict if at least one of the equalities (10) is strict.

For Problem II, let now L(χ, ψ, φ) be defined as

L(χ, ψ, φ) = N(χ, ψ) +
k∑

i=1

λiβi(χ, ψ, φ), (12)

where λi ≥ 0 are the Lagrange multipliers.

Theorem 2. Let exist λi > 0, i = 1, . . . , k, and a testing procedure (χ∗, ψ∗, φ∗) ∈ ∆
such that for any other testing procedure (χ, ψ, φ) ∈ ∆

L(χ∗, ψ∗, φ∗) ≤ L(χ, ψ, φ) (13)

holds (with L(χ, ψ, φ) defined by (12)), and such that

βi(χ
∗, ψ∗, φ∗) = βi for any i = 1, . . . k. (14)
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Then for any testing procedure (χ, ψ, φ) ∈ ∆ such that

βi(χ, ψ, δ) ≤ βi for any i = 1, . . . k, (15)

it holds
N(χ∗, ψ∗) ≤ N(χ, ψ). (16)

The inequality in (16) is strict if at least one of the equalities (15) is strict.

2.2. Optimal decision rules

Due to Theorems 1 and 2, Problem I is reduced to minimizing (7) and Problem II
is reduced to minimizing (12). But (12) is a particular case of (7), namely, when
λij = λi for any j = 1, . . . , k, j 6= i (see (2) and (3)). Because of that, we will only
solve the problem of minimizing L(χ, ψ, φ) defined by (7).

In particular, in this section we find

inf
φ

L(χ, ψ, φ),

and the corresponding decision rule φ, at which this infimum is attained.
Let IA be the indicator function of the event A.
From this time on, we suppose that for any n = 1, 2, . . . , the random variable Y ,

when a control x is applied, has a probability “density” function

fθ(y|x) (17)

(Radon–Nikodym derivative of its distribution) with respect to a σ-finite measure
µ on the respective space. We are supposing as well that, at any stage n ≥ 1,
given control values x1, x2, . . . xn applied, the observations Y1, Y2, . . . , Yn are inde-
pendent, i. e. their joint probability density function, conditionally on given controls
x1, x2, . . . xn, can be calculated as

fn
θ (x1, . . . , xn; y1, . . . , yn) =

n∏

i=1

fθ(yi|xi), (18)

with respect to the product-measure µn = µ ⊗ . . . ⊗ µ of µ n times by itself. It is
easy to see that any expectation, which uses a control policy χ, can be expressed as

Eχ
θ g(Y (n)) =

∫
g(y(n))fn,χ

θ (y(n)) dµn(y(n)),

where
fn,χ

θ (y(n)) =
n∏

i=1

fθ(yi|xi)

with
xi = χi(x

(i−1), y(i−1)) (19)

for any i = 1, 2, . . ..
Similarly, for any function Fn = Fn(x(n), y(n)) let us define

Fχ
n (y(n)) = Fn(x(n), y(n))

where x1, . . . , xn are defined by (19).

As a first step of minimization of L(χ, ψ, φ), let us prove the following
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Theorem 3. For any λij ≥ 0, i = 1, . . . , k, j 6= i, and for any sequential testing
procedure (χ, ψ, φ)

L(χ, ψ, φ) ≥ N(χ, ψ) +
∞∑

n=1

∫
(1 − ψχ

1 ) . . . (1 − ψχ
n−1)ψ

χ
n lχn dµn, (20)

where
ln = min

1≤j≤k

∑

i 6=j

λijf
n
θi

. (21)

The right-hand side of (20) is attained if

φnj ≤ In

P

i 6=j λijfn
θi

=ln
o (22)

for any n = 1, 2, . . . and for any j = 1, . . . k.

P r o o f . Let us suppose that N(χ, ψ) < ∞, otherwise (20) is trivial. Then let us
prove an equivalent to (20) inequality:

∑

1≤i,j≤k; j 6=i

λijαij(χ, ψ, φ) ≥
∞∑

n=1

∫
(1 − ψχ

1 ) . . . (1 − ψχ
n−1)ψ

χ
n lχn dµn. (23)

The left-hand side of it can be represented as
∑

1≤i,j≤k; j 6=i

λijαij(χ, ψ, φ)

=
∞∑

n=1

∫
(1 − ψχ

1 ) . . . (1 − ψχ
n−1)ψ

χ
n

k∑

j=1


 ∑

1≤i≤k; i 6=j

λijf
n,χ
θi


φχ

nj dµn

(24)

(see (2)).
Applying Lemma 1 [7] to each summand on the right-hand side of (24) we imme-

diately have:

∑

1≤i,j≤k; j 6=i

λijαij(χ, ψ, φ) ≥
∞∑

n=1

∫
(1 − ψχ

1 ) . . . (1 − ψχ
n−1)ψ

χ
n lχn dµn (25)

with an equality if
φnj ≤ I{P

i 6=j λijfn
θi

=ln}

for any n = 1, 2, . . . and for any 1 ≤ j ≤ k. ¤

Remark 1. It is easy to see, using (4) and (25), that

L(χ, ψ) = inf
φ

L(χ, ψ, φ) =

∞∑

n=1

∫
(1 − ψχ

1 ) . . . (1 − ψχ
n−1)ψ

χ
n

(
nfn,χ

θ1
+ lχn

)
dµn, (26)

with ln defined by (21), if Pχ
θ1

(τψ < ∞) = 1, and L(χ, ψ) = ∞ otherwise.
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Problem I is reduced now to the problem of finding strategies (χ, ψ) which mini-
mize L(χ, ψ). Indeed, if there is a (χ∗, ψ∗) such that

L(χ∗, ψ∗) = inf
(χ,ψ)

L(χ, ψ),

then for any φ∗ satisfying

φ∗
nj ≤ In

P

i 6=j λijfn
θi

=ln
o

(see (22)), by Theorem 3 for any (χ, ψ, φ)

L(χ∗, ψ∗, φ∗) = L(χ∗, ψ∗) ≤ L(χ, ψ) = L(χ, ψ, φ∗),

thus, the conditions of Theorem 1 are fulfilled with αij = αij(χ
∗, ψ∗, φ∗) for i, j =

1, . . . , k, i 6= j.
Because of this, in what follows we solve the problem of minimizing L(χ, ψ).
Let us denote, for the rest of this article,

sψ
n = (1 − ψ1) . . . (1 − ψn−1)ψn and cψ

n = (1 − ψ1) . . . (1 − ψn−1)

for any n = 1, 2, . . . (being sψ
1 ≡ ψ1 and cψ

1 ≡ 1). Respectively,

sψ,χ
n = (1 − ψχ

1 ) . . . (1 − ψχ
n−1)ψ

χ
n and cψ,χ

n = (1 − ψχ
1 ) . . . (1 − ψχ

n−1)

for any n = 1, 2, . . . (being sψ,χ
1 ≡ ψχ

1 and cψ,χ
1 ≡ 1 as well).

Let also

Cψ,χ
n = {y(n) : (1 − ψχ

1 (y(1))) . . . (1 − ψχ
n−1(y

(n−1))) > 0},

for any n ≥ 2, and let Cψ,χ
1 be the space of all y(1), and finally let

C̄ψ,χ
n = {y(n) : (1 − ψχ

1 (y(1))) . . . (1 − ψχ
n(y(n))) > 0},

for any n ≥ 1.

3. OPTIMAL CONTROL AND STOPPING

In this section, the problem of finding strategies (χ, ψ) minimizing L(χ, ψ) (see (26))
will be solved.

3.1. Truncated stopping rules

In this section, we solve, as an intermediate step, the problem of minimization of
L(χ, ψ) over all strategies (χ, ψ) with truncated stopping rules, i. e. such ψ that

ψ = (ψ1, ψ2, . . . , ψN−1, 1, . . .). (27)

Let ∆N be the class of stopping rules ψ of type (27), where N is any integer, N ≥ 2.

The following Theorem can be proved in the same way as Theorem 4.2 in [6].
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Theorem 4. Let ψ ∈ ∆N be any (truncated) stopping rule, and χ any control
policy. Then for any 1 ≤ r ≤ N − 1 the following inequalities hold true

L(χ, ψ) ≥
r∑

n=1

∫
sψ,χ

n (nfn,χ
θ1

+lχn) dµn+

∫
cψ,χ
r+1

(
(r + 1)fr+1,χ

θ1
+ V N,χ

r+1

)
dµr+1 (28)

≥
r−1∑

n=1

∫
sψ,χ

n (nfn,χ
θ1

+ lχn) dµn +

∫
cψ,χ
r

(
rfr,χ

θ1
+ V N,χ

r

)
dµr, (29)

where V N
N ≡ lN , and recursively for n = N,N − 1, . . . 2

V N
n−1 = min{ln−1, f

n−1
θ1

+ RN
n−1}, (30)

with

RN
n−1 = RN

n−1(x
(n−1); y(n−1)) = min

xn

∫
V N

n (x1, . . . , xn; y1, . . . , yn) dµ(yn). (31)

The lower bound in (29) is attained if and only if

I{lχn<fn,χ
θ1

+RN,χ
n } ≤ ψχ

n ≤ I{lχn≤fn,χ
θ1

+RN,χ
n } (32)

µn-almost everywhere on Cψ,χ
n and

RN,χ
n (y(n)) =

∫
V N,χ

n+1 dµ(yn+1) (33)

µn-almost everywhere on C̄ψ,χ
n , for any n = r, . . . , N − 1.

Remark 2. It is supposed in Theorem 4, and in what follows in this article, that
all the functions RN

n−1 defined by (31) are well-defined and measurable, for any
n = 2, . . . , N , and for any N = 1, 2, . . ..

The following Corollary characterizes optimal strategies with truncated stopping
rules. It immediately follows from Theorem 4 applied for r = 1.

Corollary 1. For any truncated stopping rule ψ ∈ ∆N , and for any control rule χ

L(χ, ψ) ≥ 1 + RN
0 , (34)

where
RN

0 = min
x1

∫
V N

1 (x1; y1) dµ(y1). (35)

The lower bound in (34) is attained if and only if (32) is satisfied µn-almost ev-
erywhere on Cψ,χ

n and (33) is satisfied µn-almost everywhere on C̄ψ,χ
n , for any

n = 1, 2, . . . , N − 1 and, additionally,

RN
0 =

∫
V N

1 (χ1; y1) dµ(y1). (36)
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Remark 3. It is obvious that the testing procedure attaining the lower bound in
(34) is optimal among all truncated testing procedures with ψ ∈ ∆N . But it only
makes practical sense if

l0 = min
1≤j≤k

∑

i 6=j

λij > 1 + RN
0 .

The reason is that l0 can be considered as “the L(χ, ψ)” function for a trivial
sequential testing procedure (χ0, ψ0, φ0) which, without taking any observations,
applies any decision rule φ0 such that φ0j ≤ I{P

i 6=j λij=l0} for any j = 1, . . . , k. In

this case there are no observations (N(θ; ψ0) = 0), χ0 is nothing, and it is easily
seen that

L(χ0, ψ0, φ0) =
k∑

j=1

∑

i6=j

λijφ0j = l0.

Thus, the inequality
l0 ≤ 1 + RN

0

means that the trivial testing procedure (χ0, ψ0, φ0) is not worse than the best testing
procedure with ψ from ∆N .

Because of this, we may think that

V N
0 = min{l0, 1 + RN

0 }
is the minimum value of L(χ, ψ) when taking no observations is permitted. It is
obvious that this is a particular case of (30) with n = 1, if we define f0

θ ≡ 1.

3.2. General stopping rules

In this section we characterize the structure of general sequential testing procedures
minimizing L(χ, ψ).

Let us define for any stopping rule ψ and any control policy χ

LN (χ, ψ) =
N−1∑

n=1

∫
sψ,χ

n (nfn,χ
θ1

+ lχn) dµn +

∫
cψ,χ
N

(
NfN,χ

θ1
+ lχN

)
dµN . (37)

This is the Lagrange-multiplier function corresponding to ψ truncated at N , i. e. the
rule with the components ψN = (ψ1, ψ2, . . . , ψN−1, 1, . . .), LN (χ, ψ) = L(χ, ψN ).

Since ψN is truncated, the results of the preceding section apply, in particular,
the inequalities of Theorem 4.

The idea of what follows is to make N → ∞, to obtain some lower bounds for
L(χ, ψ) from (28) - (29). Obviously, we need that LN (χ, ψ) → L(χ, ψ) as N → ∞.
A manner to guarantee this is using the following definition.

Let us denote by F the set of all strategies (χ, ψ) such that

lim
n→∞

Eχ
θi

(1 − ψ1) . . . (1 − ψn) = 0 for any i = 1, 2, . . . , k. (38)

It is easy to see that (38) is equivalent to

Pχ
θi

(τψ < ∞) = 1 for any i = 1, 2, . . . , k

(see (1)).
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Lemma 1. For any strategy (χ, ψ) ∈ F

lim
N→∞

LN (χ, ψ) = L(χ, ψ).

P r o o f . Practically coincides with that of Lemma 5.1 in [6] (with fn
θ1

instead of
fn

θ0
), except that in order to show the convergence

∫
cψ,χ
N lχN dµN → 0, N → ∞,

we use the following estimate:

∫
cψ,χ
N lχN dµN ≤ max

i 6=j
λij

k∑

i=1

∫
cψ,χ
N fN,χ

θi
dµN = max

i 6=j
λij

k∑

i=1

Eχ
θi

cψ
N → 0 (39)

as N → ∞, because of (38). ¤
The second fact we need is about the behaviour of the functions V N

r which par-
ticipate in the inequalities of Theorem 4, as N → ∞.

Lemma 2. For any n ≥ 1 and for any N ≥ n

V N
n ≥ V N+1

n . (40)

P r o o f . Completely analogous to the proof of Lemma 5.2 [6] (with fn
θ1

instead of
fn

θ0
). ¤

It follows from Lemma 2 that for any fixed n ≥ 1 the sequence V N
n is non-

increasing. So, there exists
Vn = lim

N→∞
V N

n . (41)

Now, passing to the limit, as N → ∞, in (28) and (29) with ψ = ψN , we have
the following Theorem. The left-hand side of (28) tends to L(χ, ψ) by Lemma
1. Passing to the limit on the right hand side of (28) and in (29) is possible by
Lebesgue’s monotone convergence theorem, by virtue of Lemma 2.

Theorem 5. Let (χ, ψ) ∈ F be any control-stopping strategy. Then for any r ≥ 1
the following inequalities hold

L(χ, ψ) ≥
r∑

n=1

∫
sψ,χ

n (nfn,χ
θ1

+ lχn) dµn+

∫
cψ,χ
r+1

(
(r+1)fr+1,χ

θ1
+V χ

r+1

)
dµr+1 (42)

≥
r−1∑

n=1

∫
sψ,χ

n (nfn,χ
θ1

+ lχn) dµn +

∫
cψ,χ
n

(
rfr,χ

θ1
+ V χ

r

)
dµr, (43)

where
Vr = min{lr, f

r
θ1

+ Rr}, (44)



518 A. NOVIKOV

being

Rr = Rr(x
(r), y(r)) = min

xr+1

∫
Vr+1(x

(r+1), y(r+1)) dµ(yr+1). (45)

In particular, for r = 1, the following lower bound holds true:

L(χ, ψ) ≥ 1 +

∫
V χ

1 dµ(y1) ≥ 1 + R0, (46)

where, by definition,

R0 = min
x1

∫
V1(x1, y1) dµ(y1).

Exactly as in [6] (see Lemma 5.4 [6]) it can be proved that the right-hand side of
(46) coincides with

inf
(χ,ψ)∈F

L(χ, ψ).

In fact, this is true for any F such that (χ, ψ) ∈ F implies LN (χ, ψ) → L(χ, ψ) as
N → ∞.

The following theorem characterizes the structure of optimal strategies.

Theorem 6. If there is a strategy (χ, ψ) ∈ F such that

L(χ, ψ) = inf
(χ′,ψ′)∈F

L(χ′, ψ′), (47)

then
I{lχr <fr,χ

θ1
+Rχ

r } ≤ ψχ
r ≤ I{lχr ≤fr,χ

θ1
+Rχ

r } (48)

µr-almost everywhere on Cψ,χ
r , and

∫
V χ

r+1(y
(r+1)) dµ(yr+1) = Rχ

r (49)

µr-almost everywhere on C̄ψ,χ
r , for any r = 1, 2 . . ., where χ1 is defined in such a

way that ∫
V χ

1 dµ(y1) = R0. (50)

On the other hand, if a strategy (ψ, χ) satisfies (48) µr-almost everywhere on
Cψ,χ

r , and satisfies (49) µr-almost everywhere on C̄ψ,χ
r , for any r = 1, 2 . . ., where

χ1 is such that (50) is fulfilled, and (ψ, χ) ∈ F , then (47) holds.

P r o o f . Almost literally coincides with the proof of Theorem 5.5 [6] (substituting
fn

θ0
by fn

θ1
), with the omission of the proof that (ψ, χ) ∈ F in the “if”-part (see (76)

and (77) in [6]), because now it is a condition of Theorem 6. ¤

Remark 4. Theorem 6 treats the optimality among strategies which take at least
one observation. If we allow to take no observations, there is a possibility that the
trivial testing procedure (see Remark 3) gives a better result. It is easy to see that
this happens if and only if

l0 < 1 + R0.
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4. LIKELIHOOD RATIO STRUCTURE OF OPTIMAL STRATEGY

In this section, we will give to the optimal strategy in Theorem 6 an equivalent form
related to the likelihood ratio process, supposing that all the distributions given by
fθi are absolutely continuous with respect to that given by fθ1 . More precisely, we
will suppose that for any x

{y : fθ1(y|x) = 0} ⊂
∩

i>1

{y : fθi(y|x) = 0}. (51)

Let us start with defining the likelihood ratios:

Zr
n = Zr

n(x(n), y(n)) =

n∏

i=1

fθr (yi|xi)

fθ1(yi|xi)
, r > 1,

and let Zn = (Z2
n, . . . , Zk

n).
Let us introduce then the following sequence of functions ρr = ρr(z), r = 0, 1, . . .,

where z = (z2, . . . zk).
Let

ρ0(z) = g(z) ≡ min
j

∑

i 6=j

λijzi, (52)

where, by definition, z1 ≡ 1. Let for r = 1, 2, 3, . . ., recursively,

ρr(z) = min

{
g(z), 1+min

x

∫
fθ1(y|x)ρr−1

(
z2

fθ2(y|x)

fθ1(y|x)
, . . . , zk

fθk
(y|x)

fθ1(y|x)

)
dµ(y)

}
(53)

(we are supposing that all ρr, r = 0, 1, 2, . . . are well-defined and measurable func-
tions of z). It is easy to see that (see (30), (31))

V N
N = fN

θ1
ρ0(ZN ),

and for r = N − 1, N − 2, . . . , 1

V N
r = fr

θ1
ρN−r(Zr). (54)

It is not difficult to see (very much like in Lemma 2) that

ρr(z) ≥ ρr+1(z)

for any r = 0, 1, 2, . . ., so there exists

ρ(z) = lim
n→∞

ρn(z). (55)

Using arguments similar to those used for obtaining Theorem 5, it can be shown,
starting from (53), that

ρ(z) = min {g(z), 1 + R(z)} , (56)
where

R(z) = min
x

∫
fθ1(y|x)ρ

(
z2

fθ2(y|x)

fθ1(y|x)
, . . . , zk

fθk
(y|x)

fθ1(y|x)

)
dµ(y). (57)

Let us pass now to the limit, as N → ∞, in (54). We see that

Vk = fk
θ1

ρ(Zk).

Using this expression in Theorem 6 we get
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Theorem 7. If there exists a strategy (χ, ψ) ∈ F such that

L(χ, ψ) = inf
(χ′,ψ′)∈F

L(χ′, ψ′), (58)

then
I{g(Zχ

r )<1+R(Zχ
r )} ≤ ψχ

r ≤ I{g(Zχ
r )≤1+R(Zχ

r )} (59)

Pχ
θ1

-almost sure on

{y(r) : (1 − ψχ
1 (y(1))) . . . (1 − ψχ

r−1(y
(r−1))) > 0}, (60)

and
∫

fθ1(y|χr+1)ρ

(
Z2,χ

r

fθ2(y|χr+1)

fθ1(y|χr+1)
, . . . , Zk,χ

r

fθk
(y|χr+1)

fθ1(y|χr+1)

)
dµ(y) = R(Zχ

r ) (61)

Pχ
θ1

-almost sure on

{y(r) : (1 − ψχ
1 (y(1))) . . . (1 − ψχ

r (y(r))) > 0}, (62)

where χ1 is defined in such a way that

∫
fθ1(y|χ1)ρ

(
fθ2(y|χ1)

fθ1(y|χ1)
, . . . ,

fθk
(y|χ1)

fθ1(y|χ1)

)
dµ(y) = R(1). (63)

On the other hand, if (χ, ψ) satisfies (59) Pχ
θ1

-almost sure on (60) and satisfies (61)
Pχ

θ1
-almost sure on (62), for any r = 1, 2, . . ., where χ1 satisfies (63), and (χ, ψ) ∈ F ,

then (χ, ψ) satisfies (58).

5. APPLICATION TO THE CONDITIONAL PROBLEMS

In this section, we apply the results obtained in the preceding sections to minimizing
the average sample size N(χ, ψ) = Eχ

θ1
τψ over all sequential testing procedures with

error probabilities not exceeding some prescribed levels (see Problems I and II in
Section 1).

Combining Theorems 1, 3 and 6, we immediately have the following solution to
Problem I.

Theorem 8. Let (χ, ψ) ∈ F satisfy the conditions of Theorem 6 with λij > 0,
i, j = 1, . . . , k, i 6= j (recall that ln, Vn, and Rn are functions of λij), and let φ be
any decision rule satisfying (22).

Then for any sequential testing procedure (χ′, ψ′, φ′) ∈ F such that

αij(χ
′, ψ′, φ′) ≤ αij(χ, ψ, φ) for any i, j = 1, . . . , k, i 6= j, (64)

it holds N(χ′, ψ′) ≥ N(χ, ψ). (65)

The inequality in (65) is strict if at least one of the inequalities in (64) is strict.
If there are equalities in all of the inequalities in (64) and (65), then (χ′, ψ′)

satisfies the condition of Theorem 6 as well (with χ′ instead of χ and ψ′ instead
of ψ).
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P r o o f . The only thing to be proved is the last assertion.
Let us suppose that

αij(χ
′, ψ′, φ′) = αij(χ, ψ, φ), for any i, j = 1, . . . , k, i 6= j,

and
N(χ′, ψ′) = N(χ, ψ).

Then, obviously,

L(χ, ψ, φ) = L(χ, ψ) = L(χ′, ψ′, φ′) ≥ L(χ′, ψ′) (66)

(see (7)) and Remark 1.
By Theorem 6, there can not be strict inequality in the last inequality in (66),

so L(χ, ψ) = L(χ′, ψ′). From Theorem 6 it follows now that (χ′, ψ′) satisfies the
conditions of Theorem 6 as well. ¤

Analogously, combining Theorems 2, 3 and 6, we also have the following solution
to Problem II.

Theorem 9. Let (χ, ψ) ∈ F satisfy the conditions of Theorem 6 with λij = λi > 0
for any i = 1, . . . k and for any j = 1, . . . , k, and let φ be any decision rule such that

φnj ≤ In

P

i 6=j λifn
θi

=minj

P

i6=j λifn
θi

o

for any j = 1, . . . , k and for any n = 1, 2, . . ..
Then for any sequential testing procedure (χ′, ψ′, φ′) ∈ F such that

βi(χ
′, ψ′, φ′) ≤ βi(χ, ψ, φ) for any i = 1, . . . , k, (67)

it holds
N(χ′, ψ′) ≥ N(χ, ψ). (68)

The inequality in (68) is strict if at least one of the inequalities in (67) is strict.
If there are equalities in all of the inequalities in (67) and (68), then (χ′, ψ′)

satisfies the conditions of Theorem 6 with λij = λi, i, j = 1, . . . , k, i 6= j, as well
(with χ′ instead of χ and ψ′ instead of ψ).

6. ADDITIONAL RESULTS, EXAMPLES AND DISCUSSION

6.1. Some general remarks

Remark 5. The class F defined by (38) can be extended in such a way that
Theorem 6 remains valid. It can be defined as the class of all the strategies (χ, ψ)
for which

lim
n→∞

Eχ
θi

(1 − ψ1) . . . (1 − ψn) = 0 (69)

for at least k − 1 different values of θi. To see this it is sufficient to notice that for
any strategy in this extended class

LN (χ, ψ) → L(χ, ψ), as N → ∞,
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because (see the proof of Lemma 1)

∫
cψ,χ
N lχN dµN ≤

∑

1≤i≤k,i 6=j

λij

∫
cψ,χ
N fN,χ

θi
dµN =

∑

1≤i≤k,i 6=j

λijE
χ
θi

cψ
N → 0, N → ∞,

if j corresponds to θj for which (69) does not hold.
Obviously, Theorem 6 remains valid with this extension of F .
Moreover, in the same way, Theorem 6 remains valid if F is defined as the class

of all strategies (χ, ψ) for which

LN (χ, ψ) → ÃL(χ, ψ), N → ∞.

But the statistical meaning of this class is not clear, so we prefer for F one of the
definitions above.

Remark 6. In the same way as in the preceding sections, a more general problem
than just minimizing N(θ1; χ, ψ) can be treated (see (4) and Problems I and II
thereafter).

Namely, we can minimize any convex combination of the average sample numbers,
or k∑

i=1

ciN(θi; χ, ψ),

where ci ≥ 0, i = 1, . . . , k, are arbitrary but fixed constants. More exactly, if we
modify the definition of the functions V N

r in (30) to

V N
r−1 = min

{
lr−1,

k∑

i=1

cif
r−1
θi

+ RN
r−1

}
, (70)

for r = N, . . . , 2, being, as before,

Vr = lim
N→∞

V N
r ,

and, respectively, change (48) in Theorem 6 to

I{lχr <
Pk

i=1 cif
r,χ
θi

+Rχ
r } ≤ ψχ

r ≤ I{lχr ≤Pk
i=1 cif

r,χ
θi

+Rχ
r } (71)

then Theorem 6 remains valid. Theorems 4, 7, 8 and 9 can be modified respectively.

6.2. An example

In this Section we show how our results can be applied to a concrete statistical
model.

Let us suppose that any stage of our experiment is a regression experiment with
a normal response. More specifically, we are supposing that the distribution of Y ,
given a value of the control variable X, is normal with mean value θX and a know
variance σ2, say σ2 = 1.
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Thus,
fθ(y|x) =

1√
2π

exp

{
− (y − θx)2

2

}
, −∞ < y < ∞ (72)

For simplicity, let us take k = 2 simple hypotheses, for example, H1 : θ = 1 and
H2 : θ = 2, and suppose that the control variable takes only two values, say, x = 1
and x = 2.

Condition (51) is fulfilled in an obvious way.
Let λ12 > 0 and λ21 > 0 be two arbitrary constants. We start with defining

ρ0(z) = g(z) ≡ min{λ12, λ21z},

(see (52)).
Next, we calculate

f2(y|x)

f1(y|x)
= exp{xy − 3x2/2},

and

ρn+1(z) = min{g(z), 1 + min
x=1,2

∫ ∞

−∞
ρn(z exp{xy − 3x2/2})

exp{−(y − x)2/2}√
2π

dy,

for n = 0, 1, 2, . . . (see (53)).
Let ρ(z) = limn→∞ ρn(z), and

R(z) = min
x=1,2

∫ ∞

−∞
ρ(z exp{xy − 3x2/2})

exp{−(y − x)2/2}√
2π

dy.

Now, by Theorem 7, an optimal strategy will be defined on the basis of the
likelihood ratio process

Zn = exp

{
n∑

i=1

(XiYi − 3X2
i /2)

}
,

being the optimal stopping time τ = min{n : g(Zn) ≤ 1 + R(Zn)}, whereas at each
stage n = 1, 2, . . . the next control value Xn+1 = x (x = 1 or x = 2) is defined in
such a way that

R(Zn) =

∫ ∞

−∞
ρ(Zn exp{xy − 3x2/2})

exp{−(y − x)2/2}√
2π

dy,

starting from X1 defined as x (x = 1 or x = 2) for which

R(1) =

∫ ∞

−∞
ρ(exp{xy − 3x2/2})

exp{−(y − x)2/2}√
2π

dy.

When the test terminates at some stage τ = n, we should reject H1, if λ21Zn ≥ λ12,
and accept H1 otherwise (see Theorem 4).

One can vary the error probability levels of this test by changing the values of
λ12 and λ21.
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6.3. Bayesian testing of multiple hypotheses

In this section we characterize the structure of Bayesian multiple hypothesis tests.
Let πi > 0, i = 1, . . . , k be prior probabilities of Hi, i = 1, . . . , k, respectively,∑k
i=1 πi = 1, and let wij ≥ 0, i, j = 1, . . . , k, be some losses due to incorrect

decisions (we assume that wii = 0 for any i = 1, . . . , k). Then, for any sequential
testing procedure (χ, ψ, φ), we define the Bayes risk as

r(χ, ψ, φ) =
k∑

i=1

πi


cEχ

θi
τψ +

k∑

j=1

wijαij(χ, ψ, φ)


 , (73)

where c > 0 is some unitary observation cost (cf. Section 9.4 of [13], see also Chap-
ter 5 of [2] for a more general sequential Bayesian decision theory, both monographs
treating non-controlled experiments). Let us call Bayesian any testing procedure
(χ, ψ, φ) minimizing (73).

In this section, we show that the Bayesian testing procedures always exist, and
characterize the structure of both truncated and non-truncated Bayesian testing
procedures for the controlled experiments.

To formulate our results, we use the notation of Sections 1 – 5, but we have to
re-define some elements have been defined therein.

First of all, it is easy to see from Theorem 3 that the optimal decision rule φ has
the following form. Let

ln = min
1≤j≤k

k∑

i=1

πiwijf
n
θi

. (74)

(cf. (21)). Then the decision rule φ is optimal (infφ′ r(χ, ψ, φ′) = r(χ, ψ, φ) for any
χ and ψ) if

φnj ≤ I{Pk
i=1 πiwijfn

θi
=ln} (75)

for any j = 1, . . . , k and for any n = 1, 2, . . . (see Theorem 3).
Let Π be the prior distribution defined by πi, i = 1, . . . , k, and let, by definition,

fn
Π =

k∑

i=1

πif
n
θi

for any n = 1, 2, . . ..
For any N = 1, 2, . . . let us define

V N
N = lN , (76)

and for any n = N − 1, N − 2, . . . , 1, recursively,

V N
n = min{ln, cfn

Π + Rn}, (77)

where

RN
n = RN

n (x(n), y(n)) = min
xn+1

∫
V N

n+1(x1, . . . , xn+1; y1, . . . , yn+1) dµ(yn+1). (78)
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Let also

RN
0 = min

x1

∫
V N

1 (x1; y1) dµ(y1). (79)

The following Theorem characterizes Bayesian procedures with truncated stopping
rules and can be proved in exactly the same way as Corollary 1.

Theorem 10. Let χ be any control policy, ψ ∈ ∆N be any (truncated) stopping rule
and φ any decision rule satisfying (75) for any j = 1, . . . , k and for any n = 1, 2, . . ..
Then

r(χ, ψ, φ) ≥ c + RN
0 . (80)

There is an equality in (80) if and only if

I{lχn<cfn,χ
Π +RN,χ

n } ≤ ψχ
n ≤ I{lχn≤cfn,χ

Π +RN,χ
n } (81)

µn-almost everywhere on Cψ,χ
n and

RN,χ
n (y(n)) =

∫
V N,χ

n+1 (y(n+1)) dµ(yn+1) (82)

µn-almost everywhere on C̄ψ,χ
n , for any n = 1, . . . , N − 1, and, additionally,

RN
0 =

∫
V N

1 (χ1; y1) dµ(y1). (83)

Let now Vn = limN→∞ V N
n , n = 1, 2, . . . Respectively, Rn = limN→∞ RN

n , n =
0, 1, 2, . . ..

Theorem 11. Let χ be any control policy, ψ any stopping rule, and φ any decision
rule satisfying (75) for any j = 1, . . . , k and for any n = 1, 2, . . .. Then

r(χ, ψ, φ) ≥ c + R0. (84)

There is an equality in (84) if and only if

I{l
χ
n < cfn,χ

Π + Rχ
n} ≤ ψχ

n ≤ I{lχn≤cfn,χ
Π +Rχ

n} (85)

µn-almost everywhere on Cψ,χ
n and

Rχ
n(y(n)) =

∫
V χ

n+1(y
(n+1)) dµ(yn+1) (86)

µn-almost everywhere on C̄ψ,χ
n , for any n = 1, 2 . . ., and, additionally,

R0 =

∫
V1(χ1; y1) dµ(y1). (87)
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P r o o f . First of all we need to prove that (84) holds for any strategy (χ, ψ).
Obviously, it suffices to prove this only for such (χ, ψ) that r(χ, ψ, φ) < ∞. But this

latter fact implies, in particular, that
∑k

i=1 πiE
χ
θi

τψ < ∞ (see (73)). Because πi > 0
for any i = 1, . . . k, it follows that (χ, ψ) satisfies (38), so

r(χ, ψN , φ) → r(χ, ψ, φ), N → ∞,

where ψN , by definition, is (ψ1, ψ2, . . . , ψN−1, 1, . . .) (see the proof of Lemma 1).
The rest of the proof of the “only if”-part is completely analogous to the corre-

sponding part of the proof of Theorem 6 (or Theorem 5.5 [6]).
To prove the “if”-part, first it can be shown, analogously to the proof of Theo-

rem 5.5 [6], that

r∑

n=1

∫
sψ,χ

n (cnfn,χ
Π +lχn) dµn+

∫
cψ,χ
r+1

(
c(r+1)fr+1,χ

Π +V χ
r+1

)
dµr+1 = c+R0, (88)

for any r = 0, 1, 2, . . ., if (ψ, χ) satisfies (85) – (87).
Because c > 0, we have from (88), in particular, that

k∑

i=1

πiP
χ
θi

(τψ ≥ r + 1) =

∫
cψ,χ
r+1f

r+1,χ
Π dµr+1 ≤ c + R0

c(r + 1)
→ 0 as r → ∞.

Because πi > 0 for all i = 1, . . . , k, this implies that for (χ, ψ) (38) is fulfilled. It
follows from (88) now that

lim
r→∞

r∑

n=1

∫
sψ,χ

n (cnfn,χ
Π + lχn) dµn = r(χ, ψ, φ) ≤ c + R0.

Along with (84) this gives that r(χ, ψ, φ) = c + R0, i. e. there is an equality in (84).
¤

6.4. Experiments without control

In this section we draw consequences for statistical experiments without control.
Let us suppose that the density of Y given X does not depend on X: fθ(y|x) ≡

fθ(y) for any y and for any θ, meaning that there is no way to control the flow
of the experiment, and the observations Y1, Y2, . . . are independent and identically
distributed (i.i.d.) random “variables” with probability “density” function fθ(y). We
can incorporate this particular case in the above scheme of controlled experiments
thinking that there is some (fictitious) unique value of control variable at each stage
of the experiment, thus, being any control policy trivial.

Because of this, any (sequential) testing procedure has in effect only two compo-
nents in this case: a stopping rule ψ and a decision rule φ. So we use the notation
of Section 6.3, simply omitting any mention of the control policy. For example, for
any testing procedure (ψ, φ) the Bayesian risk (73) is now:

r(ψ, φ) =
k∑

i=1

πi


cEθiτψ +

k∑

j=1

wijαij(ψ, φ)


 . (89)
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Respectively, fn
θ = fn

θ (y(n)) =
∏n

i=1 fθ(yi) in (74) now, and the functions V N
n , RN

n ,
Vn, Rn, etc. of the preceding section are all functions of y(n) only.

Theorem 11 of Section 6.3 now transforms to

Theorem 12. Let ψ be any stopping rule and φ any decision rule satisfying (75)
for any j = 1, . . . , k and for any n = 1, 2, . . .. Then

r(ψ, φ) ≥ c + R0. (90)

There is an equality in (90) if and only if

I{ln<cfn
Π+Rn} ≤ ψχ

n ≤ I{ln≤cfn
Π+Rn} (91)

µn-almost everywhere on Cψ
n for any n = 1, 2, . . ., where

Rn = Rn(y1, . . . , yn) =

∫
Vn+1(y1, . . . , yn+1) dµ(yn+1),

being, for any n = 1, 2, . . ., Vn(y(n)) = limN→∞ V N
n (y(n)), where V N

N ≡ lN , and

V N
n (y(n)) = min

{
ln(y(n)), cfn

Π(y(n)) +

∫
V N

n+1(y
(n+1)) dµ(yn+1)

}

for any n = N − 1, . . . , 1, N = 1, 2, . . .

In particular, this Theorem gives all solutions to the problem of Bayesian testing
of multiple simple hypotheses for independent and identically distributed observa-
tions when the cost of observations is linear (see Section 9.4 of [13] and suppose
that K(X1, . . . , Xn) ≡ n therein). A more general case of composite hypotheses (as
stated in Section 9.4 [13]), can be treated, using essentially the same method as in
the present article, with the help of the results of [8], even when the observations
are dependent.

In the particular case of two hypotheses (k = 2) a Bayesian test of Theorem 12
given by

ψχ
n = I{ln≤cfn

Π+Rn}, n = 1, 2, . . . ,

has the form of the Sequential Probability Ratio Test (SPRT, see [12]), being all
other Bayesian tests (91) randomizations at its boundaries (see [9] for closely related
results).
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Andrey Novikov, Departamento de Matemáticas, Universidad Autónoma Metropolitana

– Unidad Iztapalapa, San Rafael Atlixco 186, col. Vicentina, C.P. 09340, México D.F.
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