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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , N U MBE R 6 , P AG E S 9 3 1 – 9 4 5

ON ESTIMATION OF INTRINSIC VOLUME DENSITIES
OF STATIONARY RANDOM CLOSED SETS
VIA PARALLEL SETS IN THE PLANE

Tomáš Mrkvička and Jan Rataj

A method of estimation of intrinsic volume densities for stationary random closed sets
in Rd based on estimating volumes of tiny collars has been introduced in T. Mrkvička
and J. Rataj, On estimation of intrinsic volume densities of stationary random closed sets,
Stoch. Proc. Appl. 118 (2008), 2, 213–231. In this note, a stronger asymptotic consistency
is proved in dimension 2. The implementation of the method is discussed in detail. An
important step is the determination of dilation radii in the discrete approximation, which
differs from the standard techniques used for measuring parallel sets in image analysis.
A method of reducing the bias is proposed and tested on simulated data.
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1. INTRODUCTION

Let Ξ ⊆ Rd be a random closed set that takes values in the extended convex ring (i. e.,
Ξ is a locally finite union of convex bodies). For k = 0, 1, . . . , d, the kth curvature
measure Ck(Ξ; ·) is a random signed Radon measure (see [8]); hence, Ck(Ξ;B) is
defined and finite for any bounded Borel set B ⊆ Rd.

We shall assume throughout the paper that Ξ is stationary (i. e., its distribution
is invariant w.r.t. all shifts). Let Cd = [0, 1]d denote the unit d-cube. Under the
condition

E|Ck|(Ξ;Cd) < ∞, (1)

where |Ck| is the total variation measure of Ck, we can introduce the intrinsic volume
densities of Ξ as

V k(Ξ) = ECk(Ξ; Cd), k = 0, . . . , d,

cf. [2]. Note that we have by stationarity

V k(Ξ) =
ECk(Ξ;B)

λd(B)
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for any bounded Borel set B with positive Lebesgue measure λd(B).
The following estimation procedure of the vector

V (Ξ) = (V d−1(Ξ), . . . , V 0(Ξ))T

was suggested in [2]. Consider for ε > 0 the ε-parallel set

Ξε = {z ∈ Rd : dist (z, Ξ) ≤ ε}

and the closure to its complement

Ξ∗
ε = Rd \ Ξε.

Since Ξ∗
ε has locally positive reach for any ε > 0 by [6, Theorem 2], its curvature

measures are defined and the local Steiner formula holds for any bounded Borel set
B ⊆ Rd and δ > 0 small enough:

λd
(
((Ξ∗

ε)δ \ Ξ∗
ε) ∩ Π−1

Ξ∗
ε
(B)

)
=

d∑

i=1

δiωiCd−i(Ξ
∗
ε; B); (2)

here ωi = πi/2/Γ(1+i/2) is the volume of the unit i-ball and the mapping ΠΞ∗
ε

assigns
to a point z its unique nearest neighbour in Ξ∗

ε (ΠΞ∗
ε

is defined almost everywhere
in Rd and everywhere on a neighbourhood of Ξ∗

ε ∩ B, see [2] for more details).
We choose as measured data the volume fractions

v(Ξ; ε, δ, B) = λd
(
((Ξ∗

ε)δ \ Ξ∗
ε) ∩ Π−1

Ξ∗
ε
(B)

)
/λd(B)

for δ > 0. In particular, we choose for a fixed ε > 0 a set

∆ = {0 < δ1 < · · · < δn < ε}

of n ≥ d distances and estimate the vector of volume fractions

V (Ξ; ε, ∆, B) = (v(Ξ; ε, δ1, B), . . . , v(Ξ; ε, δn, B))T.

The local Steiner formula (2) with the values δ1, . . . , δn can be considered as a linear
regression model with coefficient matrix

M∆ =




δ1ω1 , δ2ω1 , . . . , δnω1

δ2
1ω2 , δ2

2ω2 , . . . , δ2
nω2

...
...

...
δd
1ωd , δd

2ωd , . . . , δd
nωd


 .

Using the standard least-squares method, we find that

(M∆MT
∆)−1M∆V (Ξ; ε, ∆, B)

agrees with
(λd(B))−1(Vd−1(Ξ

∗
ε;B), . . . , V0(Ξ

∗
ε; B))T
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if max∆ is small enough (more precisely, if the local reach of Ξ∗
ε is greater than

max∆ on B, see [2, p. 216]). As estimator of V (Ξ), we consider the vector

V̂ (Ξ; ε,∆, B) = Σd(M∆MT
∆)−1M∆V (Ξ; ε,∆, B),

where Σd is the diagonal d × d matrix with diagonal elements Σd(i, i) = (−1)i−1,
i = 1, . . . , d. The estimation procedure is justified by the vague convergence result
(see [6, Theorem 2])

lim
ε→0

(−1)d−1−kCk(Ξ∗
ε; ·) = Ck(Ξ; ·).

The following consistency results have been shown in [2]. Given a polyconvex
set Z ⊆ Rd, let N(Z) denote the minimum number N of convex bodies K1, . . . ,KN

such that Z = K1 ∪ · · · ∪ KN .

Theorem 1.1. Let Ξ be a stationary random closed set in Rd with values in the
extended convex ring and assume that

E2N(Ξ∩Cd) < ∞. (3)

Then
lim
ε→0

ΣdV (Ξ∗
ε) = V (Ξ). (4)

Let further B be a bounded Borel set in Rd with positive Lebesgue measure and
such that λd(∂B) = 0. Then

lim
ε→0

lim
max ∆→0

EV̂ (Ξ; ε,∆, B) = V (Ξ). (5)

If Ξ is, furthermore, ergodic and (Bj) is a sequence of convex bodies with inradii
growing to infinity then

lim
ε→0

lim
j→∞

lim
max ∆→0

V̂ (Ξ; ε,∆, Bj) = V (Ξ) a.s. and in L1. (6)

Note that in order to control the estimation error, it might be necessary to de-
crease the maximum radius max∆ in dependence not only on ε > 0, but also on the
observation window B. This is not satisfactory for practical use since we usually
plan the experiment (i. e., choose ∆ in our case) and wish to get convergence with
expanding window. The main task of this note is to prove a stronger consistency
result overcoming this difficulty at least in R2.

Another slightly simpler estimator of V (Ξ) was introduced in [2], namely,

Ŵ (Ξ; ε,∆, B) = Σd(M∆MT
∆)−1M∆W (Ξ; ε, ∆, B),

where
W (Ξ; ε,∆, B) = (w(Ξ; ε, δ1, B), . . . , w(Ξ; ε, δn, B))T

and
w(Ξ; ε, δ, B) = λd (((Ξ∗

ε)δ \ Ξ∗
ε) ∩ B) /λd(B), δ > 0.

The asymptotic equivalence of V̂ and Ŵ in R2 was shown in [2, Theorem 3].
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2. ASYMPTOTIC CONSISTENCY IN THE PLANAR CASE

Let
X =

⋃

i

Xi (7)

be a (deterministic) set from the extended convex ring in R2 with convex bodies Xi,
i ∈ N. We shall find an upper bound for the bias

∣∣∣∣V̂ (X; ε,∆, B) − C(X∗
ε ; B)

λ2(B)

∣∣∣∣ ,

where C(X∗
ε ;B) is the vector (C1(X

∗
ε ; B), C0(X

∗
ε ; B))T.

This will be expressed by means of the following quantity:

µε(X; A) =
∑

i<j: Xi∩Xj=∅
card (∂Xi

ε ∩ ∂Xj
ε ∩ ∂(Xi

ε ∪ Xj
ε ) ∩ A).

Note that µε(X; ·) is a counting measure over certain intersection points of bound-
aries of the convex bodies Xi

ε. Of course, µε(X; ·) depends not only on X but on
the particular representation (7).

Proposition 2.1. Let X be a set from the extended convex ring in R2 with rep-
resentation (7). Then for any ε > 0, ∆ ⊆ (0, ε) and bounded Borel set B ⊆ R2 with
positive Lebesgue measure we have

∣∣∣∣Σ2V̂ (X; ε, ∆, B) − C(X∗
ε ; B)

λ2(B)

∣∣∣∣ ≤
√

1 +
π2ε2

4
q(∆)

µε(X; B)

λ2(B)
,

where

q(∆) =
(
∑

i δ2
i )(

∑
i δ4

i ) + (
∑

i δ3
i )2

(
∑

i δ2
i )(

∑
i δ4

i ) − (
∑

i δ3
i )2

.

Remark. The denominator in the definition of q is positive, which can be shown
by using the Jensen inequality. Note that the function q of ∆ is scaling invariant,
i. e., q(s∆) = q(∆) for any s > 0 and any finite set ∆ ⊆ (0, ∞). For the “uniformly
distributed” δi’s, δi = iδ, i = 1, . . . , n, we obtain q(∆) = 31+ 15

n−1 − 15
n+2 − 15

3n2+3n+2 .

P r o o f . The main problem with the approximation method is that the local Steiner
formula (2) is valid only for sufficiently small δ. Here we use a generalization of (2)
valid for all δ > 0, where the volume of the collar is replaced with the integral of an
index function, see [2, Lemma 1]. We thus have

C(X∗
ε ; B) =

(
M∆MT

∆

)−1
M∆Ṽ (X; ε,∆, B)

with
Ṽ (X; ε,∆, B) = (ṽ(X; ε, δ1, B), . . . , ṽ(X; ε, δn, B))

T
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and

ṽ(X; ε, δ, B) =
1

λ2(B)

∫

Rd

Iδ(X
∗
ε ; z,B) dz.

The index function is defined as

Iδ(X
∗
ε ; z,B) = card (σδ(X

∗
ε ; z) ∩ B) ,

where σδ(X
∗
ε ; z) denotes the set of all points x ∈ X∗

ε with 0 < |x − z| < δ and such
that z −x is an outer normal vector to X∗

ε at x (for details, see [2, Lemma 1], where
the sign in the definition of the index function is superfluous since it is always equal
to +1).

We shall show later that for any 0 < δ < ε,

λ2(B)|v(X; ε, δ, B) − ṽ(X; ε, δ, B)| ≤ πδ2µε(X; B). (8)

We have by the definition of M∆

M∆(V − Ṽ ) =

(
2

∑

i

δi(vi − ṽi), π
∑

i

δ2
i (vi − ṽi)

)T

with vi = v(X; ε, δi, B), ṽi = ṽ(X; ε, δi, B), and

(
M∆MT

∆

)−1
=

1

4π2((
∑

i δ2
i )(

∑
i δ4

i ) − (
∑

i δ3
i )2)

(
π2

∑
i δ4

i , −2π
∑

i δ3
i

−2π
∑

i δ3
i , 4

∑
i δ2

i

)
.

Hence we get using (8)

λ2(B)
∣∣∣
(
M∆MT

∆

)−1
M∆(V (X; ε, ∆, B) − Ṽ (X; ε,∆, B))

∣∣∣

=

∣∣∣∣∣

(
π2

∑
i δ4

i · 2
∑

i δi(vi − ṽi) − 2π
∑

i δ3
i · π

∑
i δ2

i (vi − ṽi)

−2π
∑

i δ3
i · 2

∑
i δi(vi − ṽi) + 4

∑
i δ2

i · π
∑

i δ2
i (vi − ṽi)

)∣∣∣∣∣
4π2((

∑
i δ2

i )(
∑

i δ4
i ) − (

∑
i δ3

i )2)

≤
2π · πµε(X; B)

∣∣∣∣
(

π(
∑

i δ4
i

∑
i δ3

i +
∑

i δ3
i

∑
i δ4

i )
2(

∑
i δ3

i

∑
i δ3

i +
∑

i δ2
i

∑
i δ4

i )

)∣∣∣∣
4π2((

∑
i δ2

i )(
∑

i δ4
i ) − (

∑
i δ3

i )2)

≤ 1

2

√
π2ε2 + 4 q(∆)µε(X;B),

which yields the required inequality.
In order to prove (8), note that we have by definitions

λ2(B)|ṽ − v| ≤
∫ ∣∣Iδ(X

∗
ε ; z,B) − 1(X∗

ε )δ\X∗
ε
(z)1B(ΠX∗

ε
(z))

∣∣ dz.

We shall show that
∣∣Iδ(X

∗
ε ; z,B) − 1(X∗

ε )δ\X∗
ε
(z)1B(ΠX∗

ε
(z))

∣∣ ≤ µε(X; B ∩ B(z, δ)). (9)
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Then, since
∫

µε(X; B ∩ B(z, δ)) dz =

∫ ∫

B(z,δ)

1B(x)µε(X; dx) dz

=

∫
1B(x)

∫

B(x,δ)

dz µε(X; dx)

= πδ2µε(X;B),

we shall have∫ ∣∣Iδ(X
∗
ε ; z,B) − 1(X∗

ε )δ\X∗
ε
(z)1B(ΠX∗

ε
(z))

∣∣ dz ≤ πδ2µε(X; B),

from which (8) follows and the proof will be complete.

In order to prove (9), denote ι(x) = {i : x ∈ ∂Xi
ε} and write

σδ(X
∗
ε ; z) = Γ1 ∪ Γ2

with Γ1 = {x ∈ σδ(X
∗
ε ; z) : i, j ∈ ι(x) =⇒ Xi ∩ Xj 6= ∅} and Γ2 = σδ(X

∗
ε ; z) \ Γ1.

Claim 2.2. cardΓ1 ≤ 1.

P r o o f . Take x ∈ Γ1 such that

|x − z| = sup{|y − z| : y ∈ Γ1}.

Note that ι(x) is finite and let ni(x) be the (unique) unit outer normal vector to Xi
ε

at x. Denote the closed convex cone

V =





∑

i∈ι(x)

αin
i(x) : αi ≥ 0



 .

Note that there is no pair ni(x), nj(x) with ni(x) + nj(x) = 0 (since otherwise,
Xi and Xj could not intersect). If V = R2 then x would be an interior point of
Xε which is impossible since x ∈ σδ(X

∗
ε , z). Thus V is a cone of angle less than

π, Nor(X∗
ε , x) = −V and, thus, x − z ∈ V . Hence, there exist i, j ∈ ι(x) (not

necessarily different) such that x − z = αini(x) + αjnj(x) with some αi, αj ≥ 0.
Since Xi

ε is an ε-neighbourhood, the ball B(x − εni(x), ε) is contained in Xi
ε and,

similarly, B(x − εnj(x), ε) is contained in Xj
ε . Let further y be a point of Xi ∩ Xj

(clearly x − y ∈ V ), so that B(y, ε) is contained in both Xi
ε and Xj

ε . Then, by
convexity,

conv (B(x − εni(x), ε) ∪ B(y, ε)) ∪ conv (B(x − εnj(x), ε) ∪ B(y, ε)) ⊆ Xi
ε ∪ Xj

ε

and, hence, B(z, |x−z|)\{x} is contained in the interior of Xi
ε∪Xj

ε , since |x−y| < ε.
But then there can be no other point in Γ1.

It is easy to see that if cardΓ1 = 1 then z ∈ (X∗
ε )δ \ X∗

ε . The inequality (9) thus
follows from the fact card (Γ2 ∩ B) ≤ µε(X; B(z, δ) ∩ B).

We are now able to prove a stronger version of Theorem 1 in the planar case.
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Theorem 2.3. Let Ξ be a stationary random closed set in R2 with values in the
extended convex ring and fulfilling (3). Then we have for any q > 0 and any bounded
Borel set B with positive Lebesgue measure

lim
ε→0

sup
∆⊆(0,ε)
q(∆)≤q

∣∣∣EV̂ (Ξ; ε,∆, B) − V (Ξ)
∣∣∣ = 0. (10)

If Ξ is, furthermore, ergodic and (Bj) is a sequence of convex bodies with inradii
growing to infinity then

lim
ε→0

lim sup
j→∞

sup
∆⊆(0,ε)
q(∆)≤q

∣∣∣V̂ (Ξ; ε,∆, Bj) − V (Ξ)
∣∣∣ = 0 a.s. and in L1. (11)

P r o o f . As in [2], we can represent Ξ as the union set of a stationary point process
Φ on the space of convex bodies in R2, see [8, § 4.4.2] (the representation is not
unique, we simply choose one). Condition (3) can now be expressed in the form

E2Φ(KC2 ) < ∞, (12)

where KC2 is the set of all convex bodies hitting the unit square C2. Condition (12)
implies, in particular, that the second order moment measure

EΦ2 = E(Φ ⊗ Φ)

is locally finite in the sense that

EΦ2(KB × KB) < ∞
for any bounded Borel set B. Of course, Ξ is ergodic whenever Φ is.

In order to prove (10), we apply Proposition 1 and it suffices to show that

lim
ε→0

Eµε(Ξ, B) = 0. (13)

We can express Eµε(Ξ, B) as follows:

Eµε(Ξ, B) =
1

2
E

∫ ∫
1L∩K=∅card (∂Kε ∩ ∂Lε ∩ ∂(Kε ∪ Lε) ∩ B)Φ2(d(K,L)).

The integrated function clearly tends to zero as ε → 0, for any fixed K,L. Further,
assuming that ε ≤ 1 and, using Claim 2.4 below, we find that the integrated function
is bounded by 2 · 1KB̃

(K)1KB̃
(L), with B̃ = B1, which is integrable. Hence, (13)

follows by the Lebesgue dominated theorem.
In order to prove (11) we apply the mean and individual ergodic theorems for

spatial processes, see e. g. [4, Corollaries (4.9), (4.20)] to find that

lim sup
j→∞

sup
∆⊆(0,ε)
q(∆)≤q

∣∣∣V̂ (Ξ; ε,∆, Bj) − V (Ξ)
∣∣∣

is bounded by Eµε(Ξ, C2) a.s. and in the mean. The assumptions of the above
mentioned ergodic theorems are fulfilled since we have for any Borel subset B ⊆ C2

µε(Ξ, B) ≤ Φ2(KC2
ε

× KC2
ε
) ≤ Φ2(KC2

1
× KC2

1
)

for ε ≤ 1, and the random variable on the right hand side is integrable by (12).
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Claim 2.4. If K ∩ L = ∅ then card (∂Kε ∩ ∂Lε ∩ ∂(Kε ∪ Lε)) ≤ 2.

P r o o f . Let H be a line strictly separating K and L and let there be three different
points x, y, z ∈ ∂Kε ∩ ∂Lε. Then, any of the three balls centred at x, y, z and with
common radius ε hit both K and L, but their interiors are disjoint with K∪L. Then
the points x, y, z must line on a line. This shows that the set ∂Kε ∩∂Lε is contained
in a line segment and only the two of them of greatest distance are boundary points
of Kε ∪ Lε.

Combining Theorem 2.3 with [2, Theorem 3], we get:

Corollary 2.5. Under the assumptions of Theorem 2.3 we have,

lim
ε→0

lim sup
j→∞

sup
∆⊆(0,ε)
q(∆)≤q

∣∣∣Ŵ (Ξ; ε, ∆, Bj) − V (Ξ)
∣∣∣ = 0 a.s. and in L1. (14)

3. DIGITIZATION IN THE PLANE

Assume that the random closed set Ξ is observed as a digital 0-1 image with square
pixels. As a digitization model, we choose

GtΞ := Ξ ∩ t Z2, t > 0,

which is called the Gauss digitization in [1]. In the following, we shall introduce esti-

mators V̂t(GtΞ; ε, ∆, B) and Ŵt(GtΞ; ε, ∆, B), which will be versions of V̂ (Ξ; ε,∆, B)

and Ŵ (Ξ; ε, ∆, B), respectively, applied to the digital image GtΞ.

The estimators V̂ (Ξ; ε, ∆, B) and Ŵ (Ξ; ε,∆, B) are obtained by measuring the
collar set

(Ξ∗
ε)δ \ Ξ∗

ε =
(
(Ξ ⊕ Bε)

C ⊕ Bδ

)
\ (Ξ ⊕ Bε)

C

= (Ξ ⊕ Bε) \
(
(Ξ ⊕ Bε) ª Bδ

)
,

where Bε = B(0, ε) denotes the centred disc of radius ε. For the discretized version,
we simply replace Ξ with its Gauss digitization GtΞ and Bε, Bδ with appropriate
digitizations Ht(ε),Ht(δ) ⊂ t Z2 which will be specified later. We denote for 0 <
δ < ε two subsets of t Zd:

Ξt,ε := GtΞ ⊕ Ht(ε)

and
Ξt,ε,δ :=

(
GtΞ ⊕ Ht(ε)

)
\

(
(GtΞ ⊕ Ht(ε)) ª Ht(δ)

)
,

and define
wt(GtΞ; ε, δ, B) := λ2(B)−1t2#(Ξt,ε,δ ∩ B) ,

Wt(GtΞ; ε,∆, B) := (wt(GtΞ; ε, δ1, B), . . . , wt(GtΞ; ε, δn, B))

and
Ŵt(GtΞ; ε, ∆, B) := Σd(M∆MT

∆)−1M∆Wt(GtΞ; ε, ∆, B).
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Before defining the discrete analogue of V̂ , notice that, although the nearest point
of Ξ∗

ε is uniquely determined for almost all points of (Ξ∗
ε)δ \ Ξ∗

ε in the continuous
case, this need not be the case in the discrete version. Hence, we need not be able
to determine whether the nearest point lies in the window B, and we shall use an
average count instead:

JB(x) :=
#(ξ(x) ∩ B)

#ξ(x)
,

ξ(x) being the set of all points of t Zd \ Ξt,ε with smallest distance from x. We set
then

vt(GtΞ; ε, δ, B) := λ2(B)−1t2
∑

x∈Ξt,ε,δ

JB(x),

Vt(GtΞ; ε, ∆, B) := (vt(GtΞ; ε, δ1, B), . . . , vt(GtΞ; ε, δn, B))

and
V̂t(GtΞ; ε, ∆, B) := Σd(M∆MT

∆)−1M∆Vt(GtΞ; ε,∆, B).

Multigrid convergence

Let φ be a functional defined on a set class M and let φ̂t(GtX) be an estimator of

φ(X) determined from the discretization GtX of X ∈ M, t > 0. An estimator φ̂t of
φ is called multigrid convergent for a set class M′ ⊆ M if

lim
t→0

φ̂t(GtX) = φ(X), X ∈ M′,

see [1].
We shall show below that given ε > 0, ∆ ⊆ (0, ε) and convex body B with

nonempty interior, the estimator Ŵt(GtX; ε,∆, B) of W (X; ε, ∆, B) is multigrid
convergent for X from the extended convex ring, provided that the digitizations
Ht(ε) satisfy

dH(Ht(ε), Bε) ≤ Ct, t, ε > 0 (15)

for some constant C (dH stands for the Hausdorff metric). Note that (15) is satisfied
e. g. for the Gauss digitization Ht(ε) = GtBε with C =

√
2.

Let N denote the ring generated by convex compact sets, which is closed with
respect to finite unions, intersections and set differences.

Lemma 3.1. For any set K ∈ N there exist constants CK , DK such that for any
t > 0 and any set L ⊆ tZ2,

|t2#L − λ2(K)| ≤ CK(σ + t
2 ) + DK(σ + t

2 )2,

where σ = dH(K,L).

P r o o f . Assume first that K is a convex body and denote L(t) = L ⊕ [−t/2, t/2]2.
Note that t2#L = λ2(L(t)) and dH(K,L(t)) ≤ σ + t/2. Hence, using [2, Lemma 6],
we get

|t2#L − λ2(K)| ≤ λ2(K4L(t)) ≤ 2(σ + t
2 )H1(∂K) + π(σ + t

2 )2,
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where 4 denotes the symmetric difference of sets.
The second step of the proof is to show that the family of sets K satisfying the

assertion of the lemma is closed under unions, intersections and set differences. We
shall verify the closedness under unions only, since the other cases are similar.

Let thus K = K1 ∪ K2, where K1,K2 ∈ N satisfy the assertion, and let L
be a subset of the point grid tZ2 with dH(K,L) = σ. Write L = L1 ∪ L2 with
Li = L ∩ (Ki)σ, Li(t) = Li ⊕ [− t

2 , t
2 ]2, i = 1, 2, L(t) = L ⊕ [− t

2 , t
2 ]2. We have, as

above,

|t2#L − λ2(K)| ≤ λ2(K4L(t)) ≤ λ2(K14L1(t)) + λ2(K24L2(t)),

since K4L(t) ⊆ (K14L1(t)) ∪ (K24L2(t)). But λ2(Ki4Li(t)) ≤ CKi(σ + t
2 ) +

DKi(σ + t
2 )2 by assumption, and the assertion follows.

Proposition 3.2. Let X be a set from the extended convex ring, ε > 0, ∆ =
{δ1, . . . , δn} ⊆ (0, ε) and B a bounded Borel subset of R2 of positive Lebesgue
measure. Assume that digitizations Ht(ε) ⊂ t Zd of Bε satisfy (15). Then

|Ŵt(GtX; ε,∆, B) − Ŵ (X; ε,∆, B)| = O(t), t → 0.

P r o o f . We consider first the set

Xt,ε,δ = (Gt(X) ⊕ Ht(ε)) \ ((Gt(X) ⊕ Ht(ε)) ª Ht(δ))

and its “continuous” counterpart

M = (X ⊕ Bε) \ ((X ⊕ Bε) ª Bδ).

By definition of the Gauss digitization, dH(X, Gt(X)) ≤
√

2t for any X ⊆ R2. This
implies, together with assumption (15),

dH [X ⊕ Bε, Gt(X) ⊕ Ht(ε))] ≤ (
√

2 + C)t,

dH [(X ⊕ Bε) ª Bδ), (Gt(X) ⊕ Ht(ε)) ª Ht(δ)] ≤ (
√

2 + 2C)t

and, thus,
dH [M,Xt,ε,δ] ≤ (2

√
2 + 3C)t.

It follows that also dH [M ∩ B,Xt,ε,δ ∩ B] = O(t) and, applying Lemma 3.1, we get

|wt(GtΞ; ε, δi, B) − w(Ξ; ε, δi, B)| = O(t), t → 0, i = 1, . . . , n,

and the statement follows.

Theorem 3.3. Let Ξ be a stationary, ergodic random closed set in R2 with values
in the extended convex ring and fulfilling (3). Let (Bj) be a sequence of convex
bodies with inradii growing to infinity. Then we have for any q > 0

lim
ε→0

lim sup
j→∞

sup
∆⊆(0,ε)
q(∆)≤q

lim
t→0

∣∣∣Ŵt(GtΞ; ε,∆, Bj) − V (Ξ)
∣∣∣ = 0 a.s. and in L1. (16)
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P r o o f . We use the estimate
∣∣∣Ŵt(GtΞ; ε, ∆, Bj) − V (Ξ)

∣∣∣ ≤
∣∣∣Ŵt(GtΞ; ε,∆, Bj) − Ŵ (Ξ; ε, ∆, Bj)

∣∣∣

+
∣∣∣Ŵ (Ξ; ε,∆, Bj) − V (Ξ)

∣∣∣

The first summand tends to zero due to the Proposition 3.2, whereas the second one
by Corollary 2.5.

Comments on Theorem 3.3

First, it should be noted that an analogous version of Proposition 3.2 and Theo-
rem 3.3 could be shown for V̂t, but the proof would be slightly more technically
complicated.

Second, the consistency result (16) requires that first the resolution of the image
(t) is sent to zero and then ε (which measures the approximation of Ξ by Ξ∗

ε) is
sent to zero. In our implementation below we are, however, limited by the linear
dependence ε = rnt, where rn = 4.327. In this case the error

|vε/rn
(Xε/rn

; ε, δ, Bj) − (v(X; ε, δ, Bj))| = O(δ),

but (as one can see from the proof of Proposition 1) it is necessary to have er-
ror of order o(δ2) to cancel out the limit behaviour of the linear transformation
(M∆MT

∆)−1M∆. Thus it is not possible to prove multigrid convergence of the pro-
posed estimator for the implementation given below.

Implementation of the estimator

The crucial step is to determine the digital sets Ht(δ) which approximate discs Bδ

of small radii δ. The standard and natural way is to use the Gauss digitization GtBδ

again, which would, however, lead to bad results. In fact, if δ is small (comparable
with the resolution t) then there are only few discrete sets in t Zd with comparably
small radii.

We approach the problem from the other side. We start with choosing “small”
symmetric (w.r.t. both axes) subsets D1, . . . , Dn of Z2 and determine their correct
“radii” r1, . . . , rn, see Table 1 for n = 14. Then, we define

Ht(tri) := tDi, i = 1, . . . , n, t > 0.

Thus, Ht(δ) is not defined for all δ > 0 and t > 0. Nevertheless, we can choose for
a given resolution t > 0 the parameters ε = trn and δi = tri, i = 1, . . . , n (so that
ε is a multiple of t and we can not send t independently on ε to 0 as we did in the
previous subsection in the proof of multigrid convergence).

The radii ri are determined as follows. Since the boundary of a ball contains
equally all possible tangent direction as the isotropic process does, the idea is that
the Steiner formula for balls should be as exact as possible. Choose a ball BR of
large radius (we took R = 980) and determine rn from the equation

#
(
(G1BR ⊕Dn)\ ((G1BR ⊕Dn)ªDn)

)
= λ2((BR ⊕Brn)\BR) = π(R+ rn)2 −πR2.
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Table 1. Discretized discs D1, . . . , D14 with their radii

used in the estimating procedure. Each disc is described

by the numbers of its pixels in consecutive horizontal lines.

number discretized disc radius
1 1,3,1 0.899417
2 3,3,3 1.27135
3 1,3,5,3,1 1.79737
4 3,5,5,5,3 2.16832
5 5,5,5,5,5 2.53977
6 1,3,5,7,5,3,1 2.69386
7 1,5,5,7,5,5,1 2.8389
8 3,5,7,7,7,5,3 3.06383
9 5,7,7,7,7,7,5 3.4343
10 1,5,7,7,9,7,7,5,1 3.73316
11 3,5,7,9,9,9,7,5,3 3.95788
12 1,7,7,7,9,7,7,7,1 4.01003
13 3,7,7,9,9,9,7,7,3 4.10273
14 5,7,9,9,9,9,9,7,5 4.32738

Consequently, we determine the radii ri, i < n, by

#
(
(G1BR ⊕ Dn) \ ((G1BR ⊕ Dn) ª Di)

)
= π(R + rn)2 − π(R + rn − ri)

2.

The resulting values are given in Table 1 for n = 14.
In order to be able to decide whether the nearest points lies in B, we have done

minus sampling, i. e., we used a slightly smaller window, which was eroded by 5
pixels from all sides.

Remarks.

1. The discs D1, . . . , D14 satisfy condition (15) which means that when we would
be able to increase the resolution sufficiently for each dilation radius ε, then
this implementation will be multigrid convergent according to Theorem 3.3.

2. The radii ri were determined in a way to minimize in the isotropic case the
difference between the area of the continuous set ((Ξ∗

ε)δi \ Ξ∗
ε) ∩ B and the

t2-multiple of the number of lattice points of Ξε/rn,ε,δi
∩ B.

3. Here the computation of the radii of discretized small discs is slightly different
than in [2], nevertheless the radii of the chosen discs differ in the third decimal
numbers only.

4. REDUCING BIAS OF V̂ (Ξ, ε, ∆, B)

It was shown in [2, Section 6, 7] that the deviation of V̂ (Ξ, ε, ∆, B) is mainly caused
by the bias (the variance is relatively small). When the considered model is Boolean,
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it is possible to calculate the theoretical bias Bk(ε) of V̂ (Ξ, ε, ∆, B) ([2, Section 6])
and eliminate the bias from the estimator.

But when the considered model is not Boolean, it is not easy to calculate the
theoretical bias. The straightforward way of reducing bias is to decrease ε (see
[2, Figure 2]). One way is by increasing the resolution, as it was shown in [2,
Section 7]; it is time consuming and it is less robust. The other way is to break
the assumption max∆ ≤ ε. Then the assumption of Steiner formula for Ξ∗

ε will be
broken, namely that max∆ ≤ infx∈B∩Ξ∗

ε
reach (Ξ∗

ε, x). Thus we will investigate the

estimator V̂ (Ξ, ε, ∆, B) in the case when max∆ > ε in this section.
The following theorem says that the described estimator, in the case when max∆ >

ε, is asymptotically consistent if the random closed set is built from smooth convex
bodies.

Remark. The estimator with max∆ greater than ε applied on convex bodies with
vertices will be asymptotically biased. The bias depend on number of vertices with
acute angle. The obtuse angle brings less bias than acute angle.

Theorem 4.4. Let Ξ, q and (Bj) be as in Theorem 3.3 and assume additionally
that Ξ can be written as a locally finite union of convex bodies with curvature radii
bounded from below by a constant γ > 0. Then we have for any K > 0,

lim
ε→0

lim
j→∞

sup
∆⊆(0,Kε]

q(∆)≤q

∣∣∣V̂ (Ξ; ε, ∆, Bj) − V (Ξ)
∣∣∣ = 0 a.s. and in L1.

P r o o f . By assumptions, the ball Bγ is a summand of each of the convex particles
and, hence, of Ξ as well. Applying the estimations procedure to Ξ−γ = Ξ ª Bγ , we
get

V̂ (Ξ; ε, ∆, Bj) = V̂ (Ξ−γ ; ε + γ, ∆, Bj), j ∈ N.

Note that max∆ ≤ Kε ≤ ε + γ for sufficiently small ε. We apply now Theorem 3.3
to Ξ−γ , but with limit ε → γ+ instead of ε → 0+ (the proof would be slightly
modified) and obtain

lim
ε→0

lim
j→∞

sup
∆⊆(0,ε+γ]

q(∆)≤q

∣∣∣V̂ (Ξ−γ ; ε + γ, ∆, Bj) − V ((Ξ−γ)γ))
∣∣∣ = 0 a.s. and in L1,

and since (Ξ−γ)γ = Ξ, the proof is finished.

Remark. Theorem 3 for multigrid convergence of the digitized version of the pro-
posed estimator V̂ (Ξ; ε, ∆, B) will be valid in the case when max∆ > ε too.

5. SIMULATION STUDY OF BEHAVIOUR OF V̂ (Ξ; ε,∆, B) IN THE CASE
WHEN max∆ > ε

The simulation study was done on the Boolean model with same parameters as in
[2]. Therefore we can compare the statistical properties of both variations of the
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Table 2. Theoretical and estimated values of specific intrinsic volumes

estimated with resolution 2000 × 2000 and ε = 0.899.

p 0.2 0.5 0.8

V 0(Ξ) × 104 0.477816 0.39153 -0.605932

Ṽ0 × 104 0.490184 0.407404 -0.587746

Ṽ R
0 × 104 0.497216 0.438647 -0.566375

δV 0,eV0
,% 2.59 3.94 -3.00

δV 0,eV R
0

, % 4.06 11.91 -6.53

StandardDeviation(Ṽ0) × 104 0.046429 0.082124 0.123054

Mean square error(Ṽ0) × 108 0.002308 0.006983 0.015473

2V 1(Ξ) 0.011476 0.02228 0.020693

2Ṽ1 0.011537 0.022172 0.020201

2Ṽ R
1 0.011440 0.022291 0.020853

δV 1,eV1
,% 0.53 -0.48 -2.38

δV 1,eV R
1

, % -0.31 0.05 0.77

StandardDeviation(2 × Ṽ1) 0.000962 0.000728 0.000895

Mean square error(2 × Ṽ1) 0.93 × 10−6 0.54 × 10−6 1.04 × 10−6

estimator V̂ (X; ε, ∆, B) and we can compare the reduction of the bias by imple-
menting a theoretical bias and by the presented method. The resolution was set
to 2000 × 2000. The best result was obtained with the smallest possible ε (i. e.,
ε = 0.899) and ∆ as in Table 1 (max∆ = 4.327).

There were made 200 realizations of the planar Boolean model Ξ of discs in
the observation window B = [0, 2000]2. The disc radii are uniformly distributed
in [20, 40]. The intensity of the underlying Poisson point process of the centers of
the discs was chosen to fit the area fractions p = 0.2, 0.5, 0.8. The averages of the
estimates over 200 realizations are denoted by Ṽi for the presented method and Ṽ R

i

for the reduction of the bias by the theoretical one (where the information that the
process is Boolean is used to compute the reduction, for more details see [2]). Its
values are compared with the theoretical counterparts V 0(Ξ), V 1(Ξ) in Table 2. To
compare the precision of all algorithms, the relative error δA,B = B−A

A · 100% of an
estimated quantity B with respect to theoretical value A is given.

6. DISCUSSION

The simulations show that, for the model with no vertices, the presented bias re-
duction method is comparable with method using the reduction by theoretical bias,
which is applied in the Boolean case only.

Furthermore the presented bias reduction method with the resolution 2000×2000
is comparable with the original method with the resolution 10000 × 10000 [2, Table
3] and it gives better results than the estimators proposed by Spodarev and Schmidt
[7] and by Ohser and Mücklich [5], for the model with no vertices (for comparison
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see [2, Table 2]).
For models with vertices (as, e. g., Boolean models of triangles), we recommend

to use the original method with max∆ ≤ ε which is applicable to any stationary
locally finite union of convex bodies.

The open question remains, what happens with the presented bias reduction
method in R3. Some simulation experiments are described in [3].

The computer programme prepared for public use can be downloaded from
http://www.pf.jcu.cz/∼mrkvicka/math.
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