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SPATIO–TEMPORAL MODELLING
OF A COX POINT PROCESS SAMPLED BY A CURVE,
FILTERING AND INFERENCE

Blažena Frcalová and Viktor Beneš

The paper deals with Cox point processes in time and space with Lévy based driving
intensity. Using the generating functional, formulas for theoretical characteristics are avail-
able. Because of potential applications in biology a Cox process sampled by a curve is
discussed in detail. The filtering of the driving intensity based on observed point process
events is developed in space and time for a parametric model with a background driving
compound Poisson field delimited by special test sets. A hierarchical Bayesian model with
point process densities yields the posterior. Markov chain Monte Carlo “Metropolis within
Gibbs” algorithm enables simultaneous filtering and parameter estimation. Posterior pre-
dictive distributions are used for model selection and a numerical example is presented.
The new approach to filtering is related to the residual analysis of spatio-temporal point
processes.

Keywords: Cox point process, filtering, spatio-temporal process

AMS Subject Classification: 60G55, 60D05, 62M30

1. INTRODUCTION

Spatio-temporal point processes (see [10, 26]) are of great interest in applications.
In seismological data studies they help to solve problems in the prediction of large
earthquakes with clusters of aftershocks [20]. The local random nature of forest fire
ignitions as well as its dynamics in time enable to idealize the occurrence of fires as
a space-time point process [19, 22]. In epidemiology records of spatial locations of
incident cases are naturally developing in time, cf. [7] motivated by gastrointestinal
infections. Experience dependent changes and dynamic representations of biological
signals are characteristic features of neural systems. E.g. in [11] the evaluation of
spike trains from rat hippocampus enables to detect a temporal evolution (caused by
adaptation) of locations of firing fields. A classical approach to stochastic modelling
is to consider a temporal point process with spatial marks [10, 11, 20, 22] and to
employ the conditional intensity. In the present paper we develop another approach
which consists in the modelling of spatio-temporal events, cf. [6, 7, 13, 19]. Specially,
it is devoted to Cox processes which are suitable in a variety of situations when
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overdispersion and clustering takes place. A parametric model based on Lévy jump
basis [13] is used for the driving intensity. Such tools are applied in finance [2, 9],
physics (turbulence) [3], agriculture [6]. In hierarchical models they may serve as
priors [8].

The nonlinear filtering problem for Cox point processes consists in the inference
of random driving intensity based on observed events of the process. It was studied
for temporal point processes by many authors, early solutions [5, 15, 25] were based
on stochastic differential equations which led in practice to serious numerical difficul-
ties. These references also contain statistical techniques concerning the parameter
estimation and model testing.

First attempts to filtering of spatio-temporal point processes [12] were still based
on stochastic differential equations. Modern approaches use stochastic simulations,
either sequential Monte Carlo [11] or MCMC, typically in the Bayesian paradigm.
In [7] the log-Gaussian spatio-temporal Cox point process is investigated and the
values of driving intensity evaluated on a grid using the Markov property. Filter-
ing and transition together enable prediction. The hierarchical Bayesian approach
to filtering was used for temporal point processes with known parameters in [17].
Representation of the driving intensity by finite point processes and the use of their
density with respect to Poisson process in Markov chain Monte Carlo (MCMC) leads
to simple Metropolis birth-death algorithm, cf. [18, 24]. The spatio-temporal mod-
eling developed below is more complex. Moreover, simultaneously the parameters
of the model are estimated within MCMC. The method developed is directed to a
biological application [11, 16], where a special case of a spatio-temporal Cox process,
sampled by a curve, has to be investigated. We consider first a fixed curve and than
develop the case of a random curve. The filtering algorithm is presented in a sim-
ulation study. It arises that in three-dimensions (space and time) with edge effect
corrections the algorithm is computationally satisfactorily fast. Thanks to ergodicity
properties of the chain the estimation based on posterior mean leads to acceptable
results. The posterior predictive distributions enable to quantify the model selec-
tion. The residual analysis of spatio-temporal point processes was developed in [20],
based on the conditional intensity which is not available in a closed form for Cox
processes. By repeating the MCMC it is also possible to perform the residual analy-
sis in our approach despite the fact that our model is based on the driving intensity
rather than on the conditional intensity.

Section 2 of the paper is devoted to the theoretical background of Lévy based Cox
processes of the type investigated. In Section 3 a Cox process on a curve in space
and time is developed. This theory is extended to sampling of a spatio-temporal
Cox process by means of a random curve in Section 4 together with the filtering
algorithm. In Section 5 the model selection and parameter estimation is discussed
and demonstrated in a synthetic example. Finally in Section 6 the residual analysis
is described and brief conclusions end the paper.

2. BACKGROUND

Consider Rd with the Borel σ-algebra Bd = B. Let Z = {Z(A); A ∈ B} be an
independently scattered random measure. That means for every sequence {An}
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of disjoint sets in B, the random vectors Z(An) are mutually independent and
Z(∪nAn) =

∑
n Z(An) almost surely. Assume that Z(A) is moreover infinitely

divisible for all A ∈ B, in this case Z is called a Lévy basis.
The following background comes from [23]. A Lévy measure χ on B1 is defined

by conditions χ({0}) = 0 and
∫

R(|x|2 ∧ 1)χ(dx) < ∞. Let (a, 0, ν) be a generating
triplet of a Lévy jump basis [13]. Here a is a signed measure, ν(dx, A) is a Lévy
measure for fixed A ∈ B and a measure on B in the second variable. It is interpreted
as the mean number of jumps in A with sizes in dx. Zero in the second place of the
triplet implies that the cumulant transform defined as C{ζ ‡Z(A)} = log E(eiζZ(A))
is

C{ζ ‡ Z(A)} = iζa(A) +

∫

R
{eiζx − 1 − iζx1|x|≤1}ν(dx,A),

ζ ∈ R. It is important that ν can be factorized as

ν(dx,dξ) = µ(dx, ξ)U(dξ), (1)

where µ(dx, ξ) is a Lévy measure on R for fixed ξ ∈ Rd and U(dξ) is a measure on
B. Then assuming that the density a′ exists, a(dη) = a′(η)U(dη), η ∈ Rd, we can
write

C{ζ ‡ Z ′(η)} = iζa′(η) +

∫

R
{eiζx − 1 − iζx1|x|≤1}µ(dx, η), (2)

ζ ∈ R, for an additive process Z ′(η). For a fine discussion about the correspondence
of Z and Z ′ see [21].

An integral of a deterministic function f with respect to a Lévy basis is defined
as a limit (in probability) of integrals of simple functions fn → f. Necessary and
sufficient conditions for the existence are known [23].

Lemma 2.1. Assuming that the following integrals exist for a measurable function
f, it holds

C{ζ ‡
∫

Rd

f dZ} =

∫

Rd

C{ζf(ξ) ‡ Z ′(ξ)}U(dξ). (3)

We will apply Lévy bases to the theory of simple point processes in Rd [18] and
specially in space and time [10]. Consider a Lévy basis Z on Rd with triplet (a, 0, ν)
and assume that a nonnegative locally integrable random field is obtained as

Λ(ξ) =

∫

Rd

g(ξ, η) Z(dη), ξ ∈ Rd, (4)

where g is a measurable function on R2d. For a compound Poisson process Z ′ a
sufficient condition for local integrability follows from the Campbell theorem [18]: the
mean jump size has to be finite and h(ξ) =

∫
g(ξ, η)U(dη) should be an integrable

function of ξ on each bounded set.
A Cox point process X with driving (random) measure Λm is a point process such

that conditionally on Λm = λm it is the Poisson process with intensity measure λm.
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We will assume that the density Λ of Λm with respect to Lebesgue measure exists, it
is called the driving intensity function. The generating functional of a point process
is defined as

G(u) = E

(
N∏

i=1

u(xi)

)
,

for measurable functions u : Rd 7→ [0, 1] with bounded support, where xi are the N
events of the point process observed within the support of u. For a Cox process X
with random driving intensity function Λ(s), s ∈ Rd, the generating functional has
form

G(u) = E exp

(
−

∫

Rd

(1 − u(σ))Λ(σ) dσ

)
.

Theorem 2.2. Consider a Lévy jump basis Z on Rd with triplet (a, 0, ν) and a
nonnegative locally integrable random field (4). Then the generating functional of
a Cox point process X driven by Λ is

G(u) = exp

[
−

∫

Rd

f(ξ)a′(ξ) U(dξ) (5)

+

∫

Rd

∫

R

(
e−rf(ξ) − 1 + rf(ξ)1[−1,1](r)

)
µ(dr, ξ) U(dξ)

]
,

where

f(ξ) =

∫

Rd

(1 − u(σ))g(σ, ξ) dσ. (6)

P r o o f . A direct consequence of Lemma 1, see [16]. ¤

Corollary 2.3. Specially for a′(ξ) =
∫ 1

−1
rµ(dr, ξ) (zero drift) it holds

G(u) = exp

[∫

Rd

∫

R
(e−rf(ξ) − 1)µ(dr, ξ) U(dξ)

]
. (7)

The distribution of a point process is determined by void probabilities. The void
probabilities

P(X(D) = 0) = G(1 − 1D) = Ee−Λ(D), D ∈ B,

have under the assumptions of Theorem 1 form (5) with u = 1 − 1D, i. e.

f(ξ) =

∫

D

g(σ, ξ) dσ.

Moment characteristics of a point process are obtained by means of differentiation
of the generating functional, the intensity measure

M(D) = EX(D) = − ∂

∂z
G(1 − z1D) |z=0, D ∈ Bd, (8)
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and the factorial second moment measure

α(2)(C) = E

6=∑

ξ,η∈X

1[(ξ,η)∈C], C ⊂ R2d, (9)

as

α(2)(D1, D2) =
∂

∂z1

∂

∂z2
G(1 − z11D1 − z21D2) |z1=z2=0, (10)

D1, D2 ∈ Bd.
By [3] positive Lévy bases have Lévy–Itô representation

Z(D) = ā(D) +

∫

R+

xΦ(dx,D),

where ā is a diffuse measure on Rd and Φ is a Poisson random measure on R+ × Rd.
This leads to an expression

Λ(ξ) =

∫

Rd

g(ξ, σ)

(
ā(dσ) +

∫

R+

rΦ(dr,dσ)

)
(11)

and a connection with the class of shot-noise Cox processes (SNCP), cf. [18].
The class of non-Gaussian Ornstein–Uhlenbeck processes was extended in [2] by

means of superpositions to achieve possibly a long range dependence. For spatio-
temporal Cox processes this property (still in temporal sense) can be studied by
means of second order characteristics. Superposition for driving intensities

Λ = Λ1 + Λ2,

where Λi is driven according to (4) by Zi, i = 1, 2 independent, respectively, leads
to the corresponding relation

G(u) = G1(u)G2(u)

for Cox process generating functionals. Using (10) we obtain for u = 1−z11A−z21B

α
(2)
Λ (A, B) = α

(2)
Λ1

(A, B) + α
(2)
Λ2

(A, B) (12)

+

[
∂

∂z1
G1(u)

∂

∂z2
G2(u) +

∂

∂z1
G2(u)

∂

∂z2
G1(u)

]

z1=z2=0

.

In the following we will mainly study a special case of the model (4) suggested for
the purpose of spatio-temporal modelling by [3]. They define an Ornstein–Uhlenbeck
(OU) type process Λ(t, σ), t ∈ R (time), σ ∈ Rd (space) by

Λ(t, σ) =

∫ t

−∞
eγ(s−t)Z(Bs−t(σ) × ds), σ ∈ Rd, t ∈ R, (13)
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γ > 0 a parameter, where Z is a Lévy basis and {Bs(σ)}, s ≤ 0 is a family of subsets
on Rd which we will assume to be of the form

Bs(σ) = {ρ ∈ Rd; χ(ρ, σ) ≤ −ωs}

for a metric χ on Rd, ω > 0 is a parameter. A spatio-temporal Cox process driven by
nonnegative locally integrable Ornstein–Uhlenbeck type process is denoted OUCP.
Further Leb denotes the Lebesgue measure in Rd.

Corollary 2.4. On Rd × R consider a Cox process X with driving intensity (13).
Then the generating functional has form (5) with

f(s, ρ) =

∫ ∞

s

∫

Bs−t(ρ)

(1 − u(t, σ))eγ(s−t)dσ dt. (14)

Denote Dt = {σ ∈ Rd; (t, σ) ∈ D}, t ∈ R. Void probabilities of X have form
G(1 − 1D) in (5) with

f(s, ρ) =

∫ ∞

s

Leb(Bs−t(ρ) ∩ Dt)e
γ(s−t)dt.

P r o o f . (13) is of type (4) with

g(ξ, η) = g((t, σ), (s, ρ)) = 1[−∞,t](s)1Bs−t(σ)(ρ)eγ(s−t) (15)

and so

f(s, ρ) =

∫ ∞

s

∫

Rd

(1 − u(σ, t))1Bs−t(σ)(ρ)eγ(s−t)dσ dt

and using the properties of Bs(σ) we obtain the result. ¤

Corollary 2.5. Let

Λj(t, σ) =

∫ t

−∞
eγj(s−t)Zj(Bs−t(σ) × ds), j = 1, 2,

Zj be independent identically distributed. Under the conditions (7) and ν(dx, dξ)
= µ(dx) dξ for the superposition Λ = Λ1 + Λ2 it holds

α
(2)
Λ (A,B) = α

(2)
Λ1

(A,B) + α
(2)
Λ2

(A, B) + m2
1[F1(A)F2(B) + F1(B)F2(A)],

where m1 =
∫

R xµ(dx) and for C = C1 × C2, C1 ⊂ R

Fj(C) =

∫ ∫ ∫

C1∩[s,∞]

eγj(s−t)Leb(Bs−t(φ) ∩ C2) dt dφ ds.

P r o o f . Use (12), (7) and (14). ¤
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3. SPATIO–TEMPORAL COX POINT PROCESS ON A CURVE

Consider a continuous map y : [0, T ] 7→ Rd, where [0, T ] ⊂ R is a compact interval.
Denote

Y = {(t, yt), t ∈ [0, T ]}
the curve in Rd+1. Further consider a nonnegative locally integrable random function

Λ = {Λ(t, u), u ∈ Rd, t ∈ [0, T ]} (16)

of form (4), i. e. Λ =
∫

g dZ. We define a spatio-temporal Cox point process XY

with events on Y so that conditionally on a realization Λ = λ the number of points
in Y ∩ B, B ∈ B within 0 ≤ t1 < t2 ≤ T is Poisson distributed with mean

∫ t2

t1

1B(yt)λ(t, yt) dt.

That means XY is a Cox point process with random driving measure

ΛY ([t1, t2] × B) =

∫ t2

t1

1B(yt)Λ(t, yt) dt. (17)

Denote the intensity measure M(·) = EXY (·) = EΛY (·). We will assume in the
following zero drift condition (7) for the Lévy jump basis Z and a special form of
(1)

ν(dx,dξ) = µ(dx)ρ(ξ) dξ, (18)

where the Lévy measure µ is finite which corresponds to the compound Poisson
process Z ′. We can normalize the right hand side of (18) so that µ is the jump size
distribution and ρ the spatio-temporal intensity (density of the measure U). Denote
mj the jth moment of µ, i. e.

mj =

∫
xjµ(dx), j = 1, 2, . . . .

We will use in the following product sets C1 × C2 where C1 ⊂ [0, T ] is a temporal
set (typically an interval) and C2 ⊂ Rd is a bounded spatial set.

Theorem 3.1. Denote

fC(ξ) =

∫

C1

1C2(yt)g((t, yt), ξ) dt, ξ ∈ Rd+1 (19)

C = C1 × C2, similarly fD, D = D1 × D2. It holds

M(C) = m1

∫
fC(ξ)ρ(ξ) dξ, (20)

and the factorial second moment measure of XY

α(2)(C, D) = M(C)M(D) + m2

∫
fC(ξ)fD(ξ)ρ(ξ) dξ. (21)
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P r o o f . Using the formula for the generating functional of a Cox process we have

G(1 − z1C) = E exp

(
−z

∫

C1

1C2(yt)λ(t, yt) dt

)
.

Using (4) and Fubini theorem we obtain

G(1 − z1C) = exp

(
C

{
iz ‡

∫
fC dZ

})

and from Lemma 1 we have

G(1 − z1C) = exp

{∫ ∫
(e−zrfC(ξ) − 1) µ(dr)ρ(ξ) dξ

}
.

By differentiating the result for intensity follows. Analogously we obtain

G(1 − z1C − v1D) = exp

{∫ ∫
(e−r(zfC(ξ)+vfD(ξ)) − 1)µ(dr)ρ(ξ) dξ

}

and by differentiating the factorial second moment measure. ¤

Since the measure µ is finite we get from (4) a representation

Λ(ξ) =
∑

j

wjg(ξ, ηj) (22)

where ηj are events of a Poisson process with intensity function ρ and wj are jump
sizes. In fact formula (20) follows then from the Campbell theorem

EΛ(ξ) = m1

∫
g(ξ, η)ρ(η) dη.

We can extend the definition of OUCP to a Cox process on a curve Y by using
an Ornstein–Uhlenbeck type process Λ in (16). Specially we have

Corollary 3.2. Consider the random function Λ from (13) and an OUCP XY . For
the intensity measure M(·) = EXY (·) of a product set C = C1 × C2 and for the
factorial second moment measure formulas (20), (21) of Theorem 2 hold, respectively,
with

fC(s, σ) =

∫

C1∩[s,∞)

eγ(s−t)1C2∩Bs−t(σ)(yt) dt. (23)

P r o o f . Put (15) into (19). ¤
For the model in R3 of a piecewise constant ρ

ρ(ξ) =
∑

ijk

ρijk1Aijk
(ξ), (24)

where Aijk = Ai × Ajk, Ai a temporal interval, Ajk ⊂ R2 we obtain specially



920 B. FRCALOVÁ AND V. BENEŠ

Corollary 3.3. Under the assumptions of Corollary 4 and with the model (24) it
holds

M(C) = m1

∫

C1

1C2(yt)
∑

ijk

ρijk

∫

(−∞,t]∩Ai

eγ(s−t)Leb(Bs−t(yt) ∩ Ajk) dsdt (25)

and

α(2)(C,D) = m2

∫

C1

1C2(yt)

∫

D1

1D2(yu)
∑

ijk

ρijk (26)

×
∫

Ai∩[−∞,min(u,t)]

eγ(2s−t−u)Leb(Ajk ∩Bs−t(yt)∩Bs−u(yu)) dsdu dt+M(C)M(D).

P r o o f . Formula (25) follows putting (24) and (23) in (20) and similarly using
Fubini theorem we obtain (26). ¤

4. FILTERING AND BAYESIAN MCMC

One of important questions in the analysis of Cox point processes is the inference on
the driving intensity Λ and its characteristics. A rigorous approach to this problem
is the filtering, see [12, 17]. Filtering and transition together yield prediction, cf. [7]
for a log-Gaussian spatio-temporal point process. Transition density is available for
the OU processes which are Markov (in time), e. g. for Λ(t, σ) in (13).

Generally given a realization of a spatio-temporal Cox point process X driven
by Λ, the solution of the nonlinear filtering problem is the conditional expectation
E[Λ|X]. Typically conditioning up to a real time t has been considered, we will get
back to this situation later in Section 6. Here we develop another approach based
on filtering global point processes. Since E[Λ|X] is not explicitly available the Bayes
formula for probability densities enters:

f(λ|x) ∝ f(x|λ)f(λ),

and from the definition of the Cox process f(x|λ) is a density of an inhomogeneous
Poisson process with intensity λ. The aim is to simulate samples from the density
f(λ|x) which enables to solve the filtering problem and estimate empirically any
characteristics of Λ. Simulation is possible using Markov chain Monte Carlo (MCMC)
techniques.

For a spatio-temporal Cox process on a curve, given a realization X and given a
curve Y, the solution of the nonlinear filtering problem is the conditional expectation
E[Λ|X,Y ]. Here

f(λ|x, y) ∝ f(x|λ, y)f(λ|y), (27)

and f(x|λ, y) is a density of an inhomogeneous Poisson process with intensity mea-
sure λY , cf. (17), given Λ = λ.
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We will consider a more general situation than in the previous section here,
namely that the curve Y is random, but independent of Λ. The presented model
may be useful in neurophysiology [4, 16] where an experimental rat is moving in an
arena along a random track and electrical impulses (spikes) of its brain are measured
in time and space (location of the rat). Thus Y is a random element (with distri-
bution PY ) in the space of curves in a bounded region A ∈ B, with positive time
derivative on [0, T ]. The velocity is a covariate which is not considered here. Thanks
to independence of Λ and Y formulas for generating functionals and moment mea-
sures are obtained from those in the previous section (which are conditional given
Y = y) by averaging with respect to PY . In this situation we speak about a Cox
process sampled by a curve rather than a Cox process on a curve, since an unknown
spatio-temporal intensity is sampled along a random curve.

An approach to filtering based on the point process densities with respect to the
unit Poisson process is available. Simultaneously the parameters in a parametric
model of Z can be estimated as posterior means. Let W = A × [0, T ], A ∈ B, be a
bounded window where the data x = {τj}, a realization of the Cox process driven by
(22), and the curve Y are observed. Each τj reflects time and location of an event
on Y . We have now

f(ψ, b|x) ∝ f(x|ψ, b, y)f(ψ|b)f(b), (28)

where ψ = {ηj , wj} represents the compound Poisson process Z ′ and b is a vector of
unknown parameters, e. g. those of a model for the intensity function ρ in (18), of a
model for the jump size distribution, etc. Because of the independence of Λ and Y
conditioning on y appears in formula (28) in the term f(x|ψ, b, y) only.

In the spatio-temporal situation ψ = {tj , zj , wj}, where zj are locations and tj
times of events of Z ′. Since the Cox process is conditionally Poisson we have the
likelihood

f(x|ψ, b, y) ∝ exp

(
−

∫ T

0

λ(t, yt) dt

) ∏

τi∈x

λ(τi),

which corresponds to a density (w.r.t. a unit Poisson process on the time axis) of
the inhomogeneous spatio-temporal Poisson process on Y given Λ = λ. There are
two point process densities competing in formula (28).

The second one is

f(ψ|b) ∝ exp

(
−

∫

W

ρ(v) dv

) ∏

(tj ,zj ,wj)∈ψ

ρ(tj , zj)h(wj),

where h is the probability density of jump size. Finally f(b) is a prior distribution
of parameters.

The “Metropolis within Gibbs” method can be used to simulate an MCMC chain
(ψ, b)(l), l = 0, . . . , J, which tends in distribution to the desired conditional distri-
bution (28). The birth-death algorithm [18] is available for variable ψ with e. g. a
uniform proposal distribution for both birth and death of a point. The real param-
eters are updated by a Gaussian random walk or a Langevin–Hastings algorithm.
Geometric ergodicity of the chain follows under mild conditions, in temporal case
cf. [14].
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Example 1. Consider a compound Poisson process Z ′ and the model (13) (with
d = 2). The driving intensity function has from (22) a representation

Λ(t, v) =
∑

tj≤t

wje
γ(tj−t) 1Btj−t(v)(zj). (29)

In practice this formula is an approximation, theoretically unbounded domain of
ρ is substituted by some W0 bounded, W ⊂ W0, containing also events at nega-
tive times tj . Let the jumps have an exponential distribution with density h(a) =
1
α exp(− a

α ), a ≥ 0, where α > 0 is a parameter. Further let

Bs(x1, x2) = [x1 + ωs, x2 − ωs] × [x1 + ωs, x2 − ωs], s ≤ 0.

Consider a cubic subdivision of W0, denote the cubes Aijk = Ai × Ajk, Ai is a time
interval. For the model (24) the vector of parameters is

b = (α, ω, γ, {ρijk, i, j, k = 1, . . . , n}).

The prior distributions are also chosen one-dimensional exponential with fixed hy-
perparameters lα, lω, lγ , lijk À 0 for random α, ω, γ, ρijk, respectively.

Under these assumptions, denoting Nψ the number of events of ψ in W0, we can
rewrite (28) as

f(ψ, b|x) ∝ exp


−

∫ T

0

∑

tj≤t

wje
γ(tj−t)1Btj−t(yt)(zj) dt


 (30)

×
∏

τi∈x

λ(τi)
∏

ijk

exp(−ρijkLeb(Aijk ∩ W0))α
−Nψ exp

(
−

∑

i

wi

α

)

×


 ∏

(t,z)∈ψ

∑

jlk

ρjlk1Ajlk
(t, z)


 l−1

α e− α
lα l−1

u e− u
lu l−1

γ e
− γ

lγ

∏

jk

l−1
ijke

− ρijk
lijk .

The full-conditional distributions for the Gibbs sampler are then

f(ψ|b, x) ∝ exp


−

∫ T

0

∑

tj≤t

wje
γ(tj−t)1Btj−t(yt)(zj) dt


 ∏

τi∈x

λ(τi)

×α−Nψ exp

(
−

∑

i

wi

α

)
 ∏

(t,z)∈ψ

∑

jlk

ρjlk1Ajlk
(t, z)


 ,

f(ρijk|ψ, ω, α, γ, x) ∝ exp(−ρijkLeb(Aijk ∩ W0))


 ∏

(t,z)∈ψ

∑

jlm

ρjlm1Ajlm
(t, z)




×e
− ρijk

lijk , i, j, k = 1, . . . , n,

f(ω|ψ, ρ, α, γ, x) ∝ exp


−

∫ T

0

∑

tj≤t

wje
γ(tj−t)1Btj−t(yt)(zj) dt


 ∏

τi∈x

λ(τi)e
− u

lu ,
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f(γ|ψ, ρ, α, ω, x) ∝ exp


−

∫ T

0

∑

tj≤t

wje
γ(tj−t)1Btj−t(yt)(zj) dt


 ∏

τi∈x

λ(τi)e
− γ

lγ ,

f(α|ψ, ρ, ω, γ, x) ∝ α−Nψ exp

(
−

∑

i

wi

α

)
e− α

lα .

To draw from these densities we use Metropolis–Hastings steps, i. e. in each itera-
tion proposal distributions yield new candidates, we evaluate Hastings ratios H and
the proposals are accepted with probability equal to min{1,H} each, respectively.

5. ESTIMATION AND MODEL SELECTION

Using ergodicity properties of the MCMC chain we can estimate statistical charac-
teristics of Λ. Denote Λ(l)(t, v) from (29) the lth iteration of the intensity (condi-
tioned on a realization of x, y) of the MCMC chain. J is the number of iterations,
K, 0 < K < J, the burn-in of the chain, put k = J − K. The filtered conditional
expectation of Λ is estimated by the average value

Λ̂(t, v) =
1

k

J∑

l=K+1

Λ(l)(t, v), (31)

analogously we get estimators of higher moments and conditional variance of Λ.

In the Bayesian framework there exist several tools for model selection including
Bayes factors, posterior predictive distributions or an extended Bayesian analysis.
We restrict attention to the consideration of posterior predictive distributions. Con-
sider a summary statistics V (x, y) computed from the data and compare it with
V (X, y) where X is a Cox process with the estimated driving intensity.

We use summary statistics corresponding to the first order and the second order
characteristics of the spatio-temporal point process. Those of the first order are the
counts, i. e. numbers of points N(Cj) of X in subregions Cj ⊂ W, j = 1, . . . , k
hitting Y. A measure of discrepancy of the model is e. g.

k∑

j=1

(M(Cj) − N(Cj))
2.

For the second order analysis usually estimates of K or L-functions have been
used which enable graphical tests based on repeated simulations of the model with
estimated parameters. For inhomogeneous processes these estimators are based on
the assumptions of the second-order intensity reweighted stationarity [16], p. 32.
Since our study is directed to applications where this assumption is not fulfilled and
also since these estimators are not unbiased we proceed another way which does
not yield a straightforward graphical presentation, however it is based on unbiased
estimation and follows the theory for the Cox processes on a curve developed in
Theorem 2. We will evaluate the factorial second moment measure α(2) for pairs of
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subsets of the window and compare it with the estimator

α̂(2)(C,D) =

6=∑

ξ,η∈X

1[ξ∈C,η∈D], C, D ⊂ R2 (32)

unbiased from (9). The statistics

∑

i 6=j

(α(2)(Ci, Cj) − α̂(2)(Ci, Cj))
2

can be compared for various models of ρ.
Also we can apply Monte–Carlo tests for these posterior predictive distributions.

Using estimated parameters we simulate 19 realizations of the Cox process model and
evaluate lower and upper value of summary statistics (counts and factorial second
moment measure) for each subset. Then we observe how the quantities obtained
from data (N(Cj) and α̂(2)(Ci, Cj)) fit within these bounds, respectively.

There are two ways of numerical evaluation of model selection procedure using
posterior predictive distribution which we demonstrate on counts. The first one is
based on formula (17) and M(·) = EΛY (·). We approximate the mean value EΛY (·)
as

Λ̂Y ([t, s] × B) ≈ 4
m∑

p=1

1B(ytp)Λ̂(tp, ytp), (33)

where tp = t+ p4, 4 = (s− t)/m, where Λ̂(tp, ytp) is evaluated from (31). Thus we
obtain an estimate of M([t, s] × B) based on the auxiliary process iterations since Λ
comes from (29).

The second way is to involve also parameter estimators. For the numerical eval-
uation of (25) under the discretization tp = p4, sq = q4, p, q integers, 4 > 0, we
can use for D = D1 × D2, D1 ⊂ R an approximation

M(D) ≈ m142
∑

lmn

ρlmn

∑

q:sq∈Al

∑

p:tp∈D1
tp≥sq

eγ(sq−tp)1D2(ytp) Leb(Amn ∩ Bsq−tp(ytp)).

To enumerate (26) we can use either an analogous discretization (there is one more
integration) or we can evaluate integrals (23) separately on a grid of points and then
integrate numerically directly in (21).

Example 2. Let A be a circle b(0, r) ⊂ R2, W = A×[0, T ], consider a deterministic
spiral curve

Y = {t, t cos(βt), t sin(βt)}, 0 < t < r, (34)

β > 0 a parameter. Numerical results are presented in Figure 1. A simulated point
process realization on Y is filtered using MCMC, the model from Example 1 is used.
The posterior predictive distributions in space and time were evaluated using formula
(33). The empirical and theoretical counts are compared in planar subregions and
in time. We observe a reasonably good fit in both space and time for given data.
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Fig. 1. MCMC computations, Example 2. Upper left (data) Simulated realization with

51 events (circles) of a point process on the curve (34) which is projected onto the plane.

Right (filtering) The graph of Λ̂(t, yt), t ∈ [0, T ], cf. (31) after 4 × 106 iterations of

MCMC. Middle (model selection) left – the counts N(D), right – evaluation of M(D)

from (33), here D = [0, T ] × Aij , {Aij} is 10 × 10 planar grid restricted by circular A.

Lower left (model selection) N(C) (grey dotted curve) and M(C) (black curve) from (33)

for C = A × [0, t] with increasing time t (horizontal axis). Right (parameter estimation)

5 × 105 iterations (with step 1000) of γ. The chain is well mixing.
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6. RESIDUAL ANALYSIS

The model selection procedures from the previous section enable to compare various
models but they do not present a proper goodness-of-fit test. The Monte–Carlo test
for summary statistics, when not rejected, does not guarantee the validity of the
model on a given significance level. The residual analysis does a better job in this
direction. For temporal and spatio-temporal point processes it is well developed, see
[17], based on the conditional intensity and martingale theory in time. The purely
spatial case is more complicated and the Papangelou conditional intensity is recom-
mended as the basic tool by [1]. The authors note that spatial Cox processes are hard
to analyze since with the exceptions when the density w.r.t. unit Poisson process
exists in a closed form, the Papangelou conditional intensity is not computationally
tractable.

For a Cox point process X (either temporal, spatial or spatio-temporal) with
driving intensity measure Λm we can define an innovation process generally as

I(B) = X(B) − E[Λm(B) | X], B ∈ B. (35)

It holds
EI(B) = 0.

Given a model for Λm depending on a parameter θ ∈ Rp we obtain its estimator θ̂
and we can observe how the residual process

Rθ̂(B) = X(B) − Eθ̂[Λm(B) | X] (36)

oscillates around zero. A possibility to perform a statistical test depends on the way
how exactly the conditioning in (35),(36) is defined. In the temporal case denoting
Nt, t ≥ 0 the counting process corresponding to X and Λ the density of Λm, assuming
that the conditional intensity λ∗ exists and

λ∗
t = lim

4t↓0

1

4t
E[Nt+4t − Nt | Ns, s < t]

= lim
4t↓0

1

4t
E[E[Nt+4t − Nt | Ns, s < t; Λp, t ≤ p < t + 4t] | Ns, s < t]

= lim
4t↓0

1

4t
E

[∫ t+4t

t

Λ(s) ds | Ns, s < t

]
= E[Λ(t) | Ns, s < t]

the innovation process Nt −
∫ t

0
λ∗

s ds is a martingale [12]. In the spatio-temporal case

denote Ns(C) = card{x ∈ X; x ∈ [0, s] × C}, C ∈ Bd. Analogously the conditional
intensity λ∗

λ∗(t, ξ) dt dξ = E[N(dt × dξ) | Ns(C), s < t, C ∈ Bd]

of a Cox process corresponds to

E[Λ(t, ξ) | Ns(C), s < t, C ∈ Bd] (37)
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and

Nt(C) −
∫ t

0

∫

C

λ∗(s, ξ) dsdξ

is a martingale with mean zero, C ∈ B. Scaled innovations

Vh =

∫

R×Rd

H(t, ξ)[N(dt × dξ) − λ∗(t, ξ) dt dξ],

where H is a predictable process, are investigated.
For the Cox process on a curve studied in this paper we have an analogous

argument. Define
λ∗

s = E[Λ(s, ys)|Nu, u < s],

Nt −
∫ t

0
λ∗

s ds is a martingale with mean zero. For C ∈ B, C ⊂ A and a random
process {H(t), t ∈ [0, T ]} the scaled innovation VC is defined as

VC =

∫ T

0

1C(yt)H(t)[N(dt) − λ∗
t dt].

Theorem 6.1. For a nonnegative predictable process {H(t), t ∈ [0, T ]} the scaled
innovation has variance

varVC = E

[∫ T

0

1C(yt)H
2(t)λ∗

t dt

]
.

P r o o f . Denote G(t) = 1C(yt)H(t), {G(t), t ∈ [0, T ]} is a predictable process.
Since by [12], Theorem 4.6.1

E

(∫ T

0

G(t)[N(dt) − λ∗
t dt]

)
= 0

we have (integral limits 0, T are omitted)

varVC = E

([∫
G(t)N(dt)

]2
)

+E

([∫
G(t)λ∗

t dt

]2
)

− 2E

[∫
G(t)N(dt)

∫
G(t)λ∗

t dt

]
.

Using Fubini and Theorem 1 from [25] we have

varVC = E

∫
G2(t)λ∗

t dt

−2E

[∫
G(s)λ∗

sds

∫
G(t)[N(dt) − λ∗

t dt]

]
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and the second term vanishes again by [12], Theorem 4.6.1. ¤

The choice
H(t) = 1D(t)(λ∗

t )
− 1

2 , D ∈ B1

leads to the Pearson innovation

Vp =

∫

D

1C(yt)[(λ
∗
t )

− 1
2 N(dt) − (λ∗

t )
1
2 dt] (38)

with
varVp = Leb{t ∈ D; yt ∈ C}.

The residual data analysis based on a realization of the Cox process on the curve

x = {τj} = {sj , ηj}j=1,...,k, sj ∈ R, ηj ∈ R2

follows. Denote Λ̂(s) the MCMC estimator of λ∗
s. The Pearson residual correspond-

ing to (38), time t and a measurable set C ⊂ A is then

Rθ̂(t, C) =
∑

(sl,ηl)

sl≤t, ηl∈C

Λ̂(sl)
− 1

2 −
∫ t

0

1C(ys)[Λ̂(s)]
1
2 ds. (39)

Evaluation of the sum desires k MCMC chains conditioned up to time sj , j =
1, . . . , k. A problem is the integral approximation in (39) which desires either more
chains (computationally demanding) or the approximation of values of Λ̂(s) from
chains conditioned at times larger than the argument s.

Finally Pearson residuals can be plotted at times 0 < t1 < · · · < tn = T with
bounds 2σi at ti,

σi = [Leb{t ≤ ti; yt ∈ C}]
1
2 .

7. CONCLUSIONS

In the paper a model of a spatio-temporal Cox point process with driving intensity
based on background driving Lévy process is investigated. We derive basic properties
of the model by means of the closed form of the generating functional. An important
case where the events of the process lie on a curve, is studied in detail, under
the assumption that the curve is independent of the driving intensity. Then the
nonlinear filtering problem is solved using the Bayesian approach. Densities with
respect to Poisson process of both the Cox process and the background driving
compound Poisson process are involved. Markov chain Monte Carlo enables to
draw approximately from the posterior distribution and make the desired inference.
Posterior predictive distributions evaluate the model selection.

There have been essentially two approaches to modeling in spatio-temporal point
processes which have played different roles. The use of conditional intensity enables
the residual analysis but less formulas for basic characteristics analysis. Models not
based on conditioning serve in the opposite way. In our paper within the Lévy based
modeling and stochastic simulations we tried to achieve both as is shown in the final
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section. Filtering and statistics can be done simultaneously, the procedures which
have been mainly solely investigated in previous studies. The Bayesian MCMC
of space-time realizations is fast enough for filtering while the residual analysis is
computationally demanding in our setting. This procedure is more easily performed
using sequential Monte Carlo methods [18] within a conditional intensity model.
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