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CONSTRUCTING COPULAS BY MEANS OF PAIRS
OF ORDER STATISTICS

Ali Dolati and Manuel Úbeda-Flores

In this paper, we introduce two transformations on a given copula to construct new
and recover already-existent families. The method is based on the choice of pairs of order
statistics of the marginal distributions. Properties of such transformations and their effects
on the dependence and symmetry structure of a copula are studied.
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1. INTRODUCTION

The construction of distributions with given marginals has been a problem of interest
to statisticians for many years. Today, in view of Sklar’s theorem [25, 26], this
problem can be reduced to the construction of a copula. Copulas are a special type
of aggregation functions, and nowadays are of interest in fuzzy set theory [5, 6, 12,
14, 16].

Nelsen [22] summarizes different methods of constructing copulas. Recently, vari-
ous authors provide construction methods from the class of copulas to itself, or from
a more general class of functions to another (see, for instance, [2, 8, 10, 11, 13, 18,
19, 20]). One of the purposes for such constructions is to increase the availability of
copulas for modeling purposes.

In this paper we provide two new transformations of copulas, which recover some
known families of copulas. The method is based on the choice of pairs of order statis-
tics of the marginal distributions. Properties on dependence, symmetry, invariance,
and random number generation of such transformations are also shown. Preliminary
ideas can be found in [3].

2. PRELIMINARIES

A (bivariate) copula is the restriction to [0, 1]2 of a continuous bivariate distribution
function whose margins are uniform on [0, 1]. The importance of copulas as a tool for
statistical analysis and modeling stems largely from the observation that the joint
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distribution H of the random vector (X,Y ) with respective margins F and G can
be expressed by H(x, y) = C(F (x), G(y)), (x, y) ∈ [−∞,∞]2, where C is a copula
that is uniquely determined on RangeF×Range G (Sklar’s theorem).

Equivalently, a copula is a function C : [0, 1]2 −→ [0, 1] which satisfies:

(C1) the boundary conditions C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) = t for all
t ∈ [0, 1],

(C2) the 2-increasing property, i. e., C(x2, y2)−C(x2, y1)−C(x1, y2)+C(x1, y1) ≥ 0
for all x1, x2, y1, y2 in [0, 1] such that x1 ≤ x2 and y1 ≤ y2.

Let Π denote the copula for independent random variables, i. e., Π(x, y) = xy for
all (x, y) ∈ [0, 1]2. For any copula C we have W (x, y) = max(0, x+y−1) ≤ C(x, y) ≤
min(x, y) = M(x, y) for all (x, y) in [0, 1]2, where M and W are themselves copulas.
For a complete survey on copulas, see [22].

Given a copula C, let C (respectively, Ĉ) denote the survival function (respec-
tively, survival copula) associated with C, i. e., C(x, y) = 1−x−y +C(x, y) (respec-
tively, Ĉ(x, y) = C(1 − x, 1 − y)). Whereas Ĉ is always a copula, C never is since
condition (C1) does not hold.

In the following, given bivariate functions A and B with a common domain K,
let A ≤ B denote the pointwise inequality A(x, y) ≤ B(x, y) for every (x, y) in K
(and similarly for “≥” and “=”).

3. THE TRANSFORMATIONS

3.1. Constructions and examples

Let (X1, Y1) and (X2, Y2) be two independent vectors of uniform (0, 1) random vari-
ables with common copula D. Let X(1), X(2) and Y(1), Y(2) be their corresponding
order statistics. Consider the random vector

(Z1, Z2) =

{
(X(1), Y(2)), with probability 1/2

(X(2), Y(1)), with probability 1/2.

The distribution of (Z1, Z2) is then given by

H1(x, y) =
1

2
P(X(1) ≤ x, Y(2) ≤ y) +

1

2
P(X(2) ≤ x, Y(1) ≤ y)

=
1

2
{P(Y(2) ≤ y) − P(X(1) > x, Y(2) ≤ y) + P(X(2) ≤ x)

−P(X(2) ≤ x, Y(1) > y)}

=
1

2

{
y2 − (y − D(x, y))2 + x2 − (x − D(x, y))2

}

= D(x, y) {x + y − D(x, y)}
= D(x, y) {1 − (1 − x − y + D(x, y))}
= D(x, y)

{
1 − D(x, y)

}
.
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Now, for α ∈ [0, 1], consider the random pair (T1, T2), defined by

(T1, T2) =

{
(Z1, Z2), with probability α

(X1, Y1), with probability 1 − α.

Then the distribution of (T1, T2), denoted by Cα [D], is given by

Cα [D] (x, y) = αD(x, y)
{
1 − D(x, y)

}
+ (1 − α)D(x, y)

= D(x, y)
{
1 − αD(x, y)

}
.

Note that the bivariate distribution function Cα [D] satisfies the boundary conditions
(C1), and hence it is a copula.

If we consider the random vector

(Z1, Z2) =

{
(X(1), Y(1)), with probability 1/2

(X(2), Y(2)), with probability 1/2,

then the distribution function of (Z1, Z2) is given by

H2(x, y) =
1

2
P(X(1) ≤ x, Y(1) ≤ y) +

1

2
P(X(2) ≤ x, Y(2) ≤ y)

=
1

2

{
1 − P(X(1) > x) − P(Y(1) > y) + P(X(1) > x, Y(1) > y) + D2(x, y)

}

=
1

2

{
1 − (1 − x)2 − (1 − y)2 + (1 − x − y + D(x, y))2 + D2(x, y)

}

= Π(x, y) + D(x, y)D(x, y).

The distribution function of the pair

(T1, T2) =

{
(Z1, Z2), with probability α

(X1, X2), with probability 1 − α,

denoted by C∗
α [D] – and which is copula as well – is then given by

C∗
α [D] (x, y) = α

{
Π(x, y) + D(x, y)D(x, y)

}
+ (1 − α)Π(x, y)

= Π(x, y) + αD(x, y)D(x, y).

In short, we have proved the following result.

Theorem 3.1. For any copula D, the functions defined from [0, 1]2 onto [0, 1] by

Cα [D] (x, y) = D(x, y)[1 − αD(x, y)], (1)

and
C∗

α [D] (x, y) = Π(x, y) + αD(x, y)D(x, y), (2)

where 0 ≤ α ≤ 1, are copulas.



Copulas Based on Pairs of Order Statistics 995

Each transformation (1) and (2) is “unique”, in the sense that given a copula D,
this generates a unique copula – or a family of copulas – (see examples below) under
(1) and (2). We prove it in the following result.

Theorem 3.2. Let D1 and D2 be two copulas such that Cα[D1] = Cα[D2] (respec-
tively, C∗

α[D1] = C∗
α[D2]) for every α ∈ [0, 1]. Then D1 = D2.

P r o o f . Let D1 and D2 be two copulas such that Cα[D1] = Cα[D2] (in the case
C∗

α[D1] = C∗
α[D2] the result can be proved similarly). Suppose α 6= 0 (the case α = 0

is trivial). Then we have D1(1 − αD1) = D2(1 − αD2), which is equivalent to

[D2(x, y) − D1(x, y)] {1 − α(1 − x − y) − α[D2(x, y) + D1(x, y)]} = 0 (3)

for every (x, y) in [0, 1]2. Suppose there exists a point (x0, y0) in [0, 1]2 such that
– without loss of generality – D1(x0, y0) < D2(x0, y0). Then the equality in (3) is
equivalent to 1 − α(1 − x0 − y0) − α[D2(x0, y0) + D1(x0, y0)] = 0, i. e., D2(x0, y0) +
D1(x0, y0) = x0 + y0 − 1 + 1/α. Since 1 ≤ 1/α and D1(x0, y0) < D2(x0, y0) ≤ y0,
we have the following chain of inequalities: D2(x0, y0) ≥ x0 + y0 − D1(x0, y0) >
x0 + y0 − y0 = x0. This is absurd, and we conclude that D1 = D2. ¤

We now provide several examples.

Example 3.3. Consider the copula M . Since M(x, y) = M(1 − x, 1 − y) for every
(x, y) in [0, 1]2, we have M(x, y)M(x, y) = M(x, y)−Π(x, y). The copulas generated
by (1) and (2) are then given by

Cα [M ] (x, y) = αΠ(x, y) + (1 − α)M(x, y), (4)

and

C∗
α [M ] (x, y) = αM(x, y) + (1 − α)Π(x, y), (5)

respectively. Copulas of the form (4) and (5) belong to the known Fréchet–Mardia
family of copulas (see [22] for more details).

Example 3.4. Consider the copula W . Since W (x, y)W (x, y) = 0 for every (x, y)
in [0, 1]2, for each α ∈ [0, 1] we have

Cα [W ] (x, y) = W (x, y),

and

C∗
α [W ] (x, y) = Π(x, y).

Example 3.5. Consider the product copula Π. Then we have

Cα [Π] (x, y) = xy[1 − α(1 − x)(1 − y)], (6)
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and

C∗
α [Π] (x, y) = xy[1 + α(1 − x)(1 − y)]. (7)

Copulas given by (6) and (7) constitute the known Farlie–Gumbel–Morgenstern
(FGM, for short) family of copulas, which is usually written as

E(x, y) = xy[1 + α(1 − x)(1 − y)], (8)

with α ∈ [−1, 1] (see [9] and the references therein).

Remark 3.6. Let J be the family of copulas given by J(x, y) = xy + αf(x)g(y),
with f and g two real functions and α ∈ R\{0}. Conditions under f , g and α in order
that J is a copula are given in [23]. If we compare J with C∗

α[D], i. e., J = C∗
α[D], for

some copula D and appropriate α, we obtain D(x, y)[1−x−y+D(x, y)] = f(x)g(y),
whose solution for D is

D(x, y) =
x + y − 1 +

√
(1 − x − y)2 + 4f(x)g(y)

2
.

For example, taking f(t) = g(t) = t(1 − t) for all t in [0, 1], we obtain D(x, y) = xy
– recall Example 3.5.

3.2. Some properties

In what follows, we provide several properties on symmetry, invariance, ordering,
and measures of association of the copulas given by (1) and (2).

A copula D is Cα-invariant (respectively, C∗
α-invariant) if Cα[D] = D (respec-

tively, C∗
α[D] = D). The following result shows for which copulas D the transfor-

mations (1) and (2) are Cα-invariant and C∗
α-invariant, respectively.

Theorem 3.7. Given a copula D, for each α ∈ [0, 1]:

(i) D is Cα-invariant if, and only if, D = W .

(ii) D is C∗
α-invariant if, and only if, D is the Plackett family of copulas, which is

given by

D(x, y) =
1 − α(1 − x − y) −

√
(α(1 − x − y) − 1)2 − 4αxy

2α
(9)

for α > 0, and D = Π if α = 0.

P r o o f . By definition of Cα[D], we have Cα[D] = D if, and only if, D(x, y)(1−x−
y + D(x, y)) = 0, or equivalently, D(x, y) = 0 or D(x, y) = x + y − 1, i. e., D = W ,
which proves part (i).

To prove part (ii), note that if α > 0 (the case α = 0 is trivial and we omit
it) C∗

α[D] = D is equivalent to the following equality: αD2(x, y) − (1 − α(1 − x −
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y))D(x, y) + xy = 0, whose solution for D is given by (9) – see [22] for more details
on this family of copulas. This completes the proof. ¤

Observe that if α = 1 in the copula D given by (9), we obtain

D(x, y) =
x + y −

√
(x − y)2

2
=

x + y − |x − y|
2

,

i. e., D = M .

For each α ∈ [0, 1], we have C∗
α[D] = D if, and only if, Cα[D] = Π (and Cα[D] = D

if, and only if, C∗
α[D] = Π). This fact and Theorem 3.7 lead us to the following

Corollary 3.8. Given a copula D, for each α ∈ [0, 1] we have:

(i) Cα[D] = Π if, and only if, D is the family of copulas given by (9).

(ii) C∗
α [D] = Π if, and only if, D = W .

If the copula D is symmetric, i. e., D(x, y) = D(y, x) for all x, y ∈ [0, 1], then (1)
and (2) are symmetric as well. A copula C is radially symmetric if C = Ĉ [21, 22].
The following result shows that the transformations (1) and (2) preserve the radially
symmetry property of a given copula.

Theorem 3.9. For every radially symmetric copula D, the transformations Cα[D]
and C∗

α[D] are radially symmetric for each α ∈ [0, 1].

P r o o f . By definition, we have

Ĉα [D] (x, y) = x + y − 1 + Cα [D] (1 − x, 1 − y)

= x + y − 1 + D(1 − x, 1 − y)
{
1 − αD(1 − x, 1 − y)

}

= x + y − 1 + D(1 − x, 1 − y) − αD(1 − x, 1 − y)D(1 − x, 1 − y)

= D̂(x, y)
{

1 − αD̂(x, y)
}

,

where the last line follows from the fact that D(1 − x, 1 − y) = P(X ≤ 1 − x, Y ≤
1 − y) = P(1 − X > x, 1 − Y > y) = D̂(x, y) and D(1 − x, 1 − y) = D̂(x, y). Thus
Ĉα[D] = Cα[D̂] = Cα[D], which completes the proof. ¤

If C1 and C2 are two copulas, we say that C2 is more concordant than C1 (written
C1 ≺c C2) if C1 ≤ C2. A copula C is positively quadrant dependent (written PQD)
if Π ≺c C, and negatively quadrant dependence (NQD) if C ≺c Π. A totally ordered
parametric family {Cα} of copulas is positively ordered if Cα1 ≺c Cα2 whenever
α1 ≤ α2; and negatively ordered if Cα2 ≺c Cα1 whenever α1 ≤ α2 [15, 22]. For the
families (1) and (2) of copulas we have the following results – the proof of Theorem
3.10 is simple, and we omit it.
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Theorem 3.10. Given a copula D, we have:

(i) The parametric family {Cα[D]} (respectively, {C∗
α[D]}) of copulas is negatively

(respectively, positively) ordered.

(ii) Cα[D] ≺c D and Π ≺c C∗
α[D] for all α ∈ [0, 1], i. e., C∗

α[D] is PQD for every
α ∈ [0, 1].

Theorem 3.11. Let D1 and D2 be two copulas such that D1 ≺c D2. Then we have
Cα[D1] ≺c Cα[D2] and C∗

α[D1] ≺c C∗
α[D2] for every α ∈ [0, 1].

P r o o f . We first prove the result for the transformation (1). Note that, for a given
copula D, we have Cα[D] = αD(1 − D) + (1 − α)D. So we only need to show
that D1 ≺c D2 implies that D1(1 − D1) ≤ D2(1 − D2); but this last inequality is
equivalent to

D1(x, y) [x + y − D1(x, y)] − D2(x, y) [x + y − D2(x, y)] ≤ 0,

that is,
[D2(x, y) − D1(x, y)] [x − D1(x, y) + y − D2(x, y)] ≥ 0.

Since D1(x, y) ≤ x and D2(x, y) ≤ y, the result follows.
On the other hand, since D1 ≺c D2 implies that D1 ≺c D2, and thus D1D1 ≤

D2D2, it follows that C∗
α[D1] ≺c C∗

α[D2], which completes the proof. ¤

We note that, for a given copula D, the transformation Cα[D] may be PQD or
NQD. For instance, from part (ii) of Theorem 3.10, if a copula D is NQD, then Cα[D]
is NQD. And, for a given copula D, if B ≺c D, where B is a copula given by (9),
using Theorem 3.11 and part (i) of Corollary 3.8, we have that Π = Cα[B] ≺c Cα[D],
i. e., Cα[D] is PQD.

As a consequence of our results, transformations of type (1) (respectively, (2))
decrease (respectively, increase) the degree of dependence of the copula D. A useful
family for modeling could be a convex linear combination of Cα [D] and C∗

α [D] –
which is a copula – namely

C(x, y) = βCα[D](x, y) + (1 − β)C∗
α[D](x, y) for all (x, y) ∈ [0, 1]2, β ∈ [0, 1]. (10)

Observe that, for instance, taking D = Π in (10), we easily obtain C(x, y) = xy[1 +
α(1− 2β)(1−x)(1− y)], i. e., the FGM family of copulas; which is PQD if, and only
if, β ≤ 1/2, and NQD when β ≥ 1/2.

The population version of three of the most common nonparametric measures
of association between the components of a continuous random pair (X,Y ) are
Kendall’s tau (τ), Spearman’s rho (ρ), and Gini’s gamma (γ). Such measures are
called measures of concordance since they satisfy a set of axioms due to Scarsini [24].
The coefficients ρ and γ are based on average quadrant dependence and τ on expected
quadrant dependence [4], and depend only on the copula C of the pair (X,Y ), and
are given by

τ(C) = 4

∫ 1

0

∫ 1

0

C(x, y) dC(x, y) − 1, (11)
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ρ(C) = 12

∫ 1

0

∫ 1

0

[C(x, y) − xy] dxdy, (12)

and

γ(C) = 8

∫ 1

0

∫ 1

0

[C(x, y) − xy] dA(x, y), (13)

where A denotes the copula (M + W )/2 (for a complete study on measures of
association, see [22] and the references therein). The direct computation of these
measures for the copulas in (1) and (2) does not provide too much information;
however, we have the following result, in which we find relationships among these
measures for the copulas Cα and C∗

α.

Theorem 3.12. Let τ be the measure given by (11), and let κ denote the set of the
measures given by (12) and (13), i. e., κ ∈ {ρ, γ}. Then, for a given copula D and
for each α ∈ [0, 1], we have:

(i) −1 ≤ τ(Cα[D]) ≤ [(1 − α)(3 − α)]/3 and −1 ≤ κ(Cα [D]) ≤ 1 − α;

(ii) 0 ≤ τ(C∗
α[D]) ≤ [α(α + 2)]/3 and 0 ≤ κ(C∗

α [D]) ≤ α;

(iii) κ(Cα [D]) + κ(C∗
α [D]) = κ(D).

P r o o f . First we recall that given two copulas C1 and C2 such that C1 ≺c C2, we
have τ(C1) ≤ τ(C2), ρ(C1) ≤ τ(C2), and γ(C1) ≤ γ(C2) [22].

Since any copula D satisfies that W ≺c D ≺c M , from Theorem 3.11 and Exam-
ples 3.3 and 3.4, we have W ≺c Cα[D] ≺c (αΠ + (1 − α)M) and Π ≺c C∗

α[D] ≺c

(αM + (1 − α)Π). Thus, the lower bound for the transformation (1) for the three
measures is −1, and easy computations give us the upper bounds, which proves part
(i). A similar argument permits to prove part (ii). Finally, part (iii) follows from
the fact that (Cα [D]−Π)+(C∗

α [D]−Π) = (D−Π), then apply it to the expressions
in (12) and (13). This completes the proof. ¤

We finish this section providing a procedure for generating random value (T1, T2),
from copulas of types (1) and (2). For the first type, consider the following algorithm:

Step 1. Generate a uniform (0, 1) random variable S1;

Step 2. generate independent random pairs (X1, Y1) and (X2, Y2), from the given
copula D and sort them into X(1) ≤ X(2) and Y(1) ≤ Y(2).

Step 3. If S1 > α, take (T1, T2) = (X1, Y1);

Step 4. else, generate a uniform (0, 1) random variable S2 and take (T1, T2) =
(X(1), Y(2)) if S2 < 1/2, otherwise take (T1, T2) = (X(2), Y(1)).

A similar algorithm can be used for the second transformation.



1000 A. DOLATI AND M. ÚBEDA-FLORES

3.3. Additional transformations

A known limitation of the FGM family of copulas given by (8) is that the range
of Kendall’s tau and Spearman’s rho are limited to [−2/9, 2/9] and [−1/3, 1/3],
respectively; so that it does not allow for modeling of strong dependence [15]. Ap-
plying the transformations (1) and (2) to the FGM family of copulas Dθ(x, y) =
xy[1 + θ(1 − x)(1 − y)] with θ ∈ [−1, 1], we obtain two new iterated FGM distribu-
tions of the form

Cα [Dθ] (x, y) = xy[1 + θ(1 − x)(1 − y)][1 − α(1 − x)(1 − y)(1 + θxy)], (14)

and

C∗
α [Dθ] (x, y) = xy+αxy[1+θ(1−x)(1−y)]{(1−x−y+xy[1+θ(1−x)(1−y)]}, (15)

respectively, where θ ∈ [−1, 1] and α ∈ [0, 1] – see [9] for other iterated FGM
Distributions. After some algebra, we obtain

ρ(Cα [Dθ]) =
θ

3
−

(
1

3
+

θ

6
+

θ2

75

)
α,

ρ(C∗
α [Dθ]) =

(
1

3
+

θ

6
+

θ2

75

)
α,

τ(Cα [Dθ]) =
2θ

9
+

(
4θ2

11025
+

θ

450
+

1

225

)
α2θ −

(
θ2

75
+

θ

9
+

2

9

)
α,

τ(C∗
α [Dθ]) =

(
4θ2

11025
+

θ

450
+

1

225

)
α2θ +

(
2θ2

225
+

θ

9
+

2

9

)
α.

We have the following ranges: ρ(Cα [Dθ]) ∈ [−0.513̂, 0.3̂], ρ(C∗
α[Dθ]) ∈ [0, 0.513̂],

τ(Cα[Dθ]) ∈ [−0.3492517, 0.2̂], and τ(C∗
α [Dθ]) ∈ [0, 0.3492517]. So that, for in-

stance, using (14), Spearman’s rho can be decreased down to −0.513̂ at (α, θ) =
(1, −1); and using (15), Spearman’s rho can be increased up to 0.513̂ at α = θ = 1.

4. DISCUSSION

In this paper, we have introduced and studied two new transformations of copulas.
Other transformations of copulas into copulas can be defined. For example, for a
given copula D, we define the transformations

Hβ(x, y)[D] =
D(x, y)

1 − βD(x, y)
(16)

and
Nδ(x, y)[D] = D(x, y) exp[δD(x, y)] (17)

for every (x, y) in [0, 1]2 with β, δ ∈ R. Observe that

Hβ(x, y)[Π] =
xy

1 − β(1 − x)(1 − y)
,
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with β ∈ [−1, 1], is the Ali–Mikhail–Haq family of copulas [1]; and

Nδ(x, y)[Π] = xy exp[δ(1 − x)(1 − y)],

with δ ∈ [−1, 1], is a copula studied in [7]. We also note that Nδ[M ] is not a copula.
Observe that the transformations (1), (2), (16), and (17) provide a (single) copula

or a one-parametric family of copulas. We can also define transformations of copulas
which provide multi-parametric families of copulas. For instance

Pα,β,θ1,θ2(x, y)[D] = D(x, y)[1 + αD(x, y)]θ1 [1 + βD(x, y)]θ2 , (18)

with α, β, θ1, θ2 real numbers. In particular, we have

Pα,β,θ1,θ2(x, y)[Π] = xy[1 + α(1 − x)(1 − y)]θ1 [1 + β(1 − x)(1 − y)]θ2 ,

with −1 ≤ α, β ≤ 1 and |θ1| + |θ2| = 1, is a copula studied in [7].
Conditions on the parameters or on the copula D so that the transformations

(16) – (18) are copulas is the subject of further work.
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