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CONTROL A STATE–DEPENDENT DYNAMIC GRAPH
TO A PRE–SPECIFIED STRUCTURE

Fei Chen, Zengqiang Chen, Zhongxin Liu and Zhuzhi Yuan

Recent years have witnessed an increasing interest in coordinated control of distributed
dynamic systems. In order to steer a distributed dynamic system to a desired state, it often
becomes necessary to have a prior control over the graph which represents the coupling
among interacting agents. In this paper, a simple but compelling model of distributed
dynamical systems operating over a dynamic graph is considered. The structure of the
graph is assumed to be relied on the underling system’s states. Then by following a proper
protocol, the state-dependent dynamic graph is driven to a pre-specified structure. The
main results are derived via Lasalle’s Invariant Principle and numerical examples that find
very good agreements with the analytical results are also included.

Keywords: state-dependent graph, Lasalle’s Invariant Principle, dynamic system

AMS Subject Classification: 37F99

1. INTRODUCTION

In recent years, the coordination of distributed dynamic systems has attracted the
attention of researchers from system theory [4, 5, 6, 8], biology [1, 3] and physics
[9]. Particularly, it has witnessed an increasing interest in the interplay between
information flows and system dynamics [8]. It is recognized that communication
constraints may have a considerable impact on the performance of a distributed
system.

In [9], Vicsek et al. proposed a simple but compelling model of n autonomous
agents moving in a plane at the same speed but with different headings. They
demonstrated that all agents could move in the same direction eventually. Then
Jadbabaie, Lin, and Morse gave a theoretical explanation for this observed behavior
and derived sufficient conditions under which the system can reach a consensus on
headings [5]. This result was extended by Moreau who provided the necessary and
sufficient condition for the convergence of individual agents’ states to a common
value [8]. The consensus problem over random networks was considered by Hatano
and Mesbahi via notions from stochastic stability [4]. In addition, the relation
between the rate of convergence and the algebraic connectivity of random graphs
was established. In [6], Lu and Chen proposed a general method for synchronizing
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two chaotic systems based upon Kalman filtering and provided sufficient conditions
for a driven system to track the states of a drive system asymptotically. Moreover,
the consensus problems have received a lot of attention from biology researchers.
Franks et al. demonstrated a speed versus accuracy trade-off in consensus decision
making. They showed that house-hunting ant colonies choose a new nest more
quickly in harsh conditions than in benign ones and are less discriminating [3]. A
through review of the empirical and theoretical studies of consensus decision making
can be found in [1]. For these systems, in order to steer the systems to a desired
state or an objective, it often becomes necessary to have a prior control over the
dynamic graph which represents the interaction among agents [7, 10].

The problem considered henceforth is obtained by tying the network structure to
the dynamic states residing at nodes. Specifically, we study a scenario where the
existence of an information channel between a pair of agents is determined by their
states, i. e., if ||xi − xj || ≤ ri, agent i can access the information of agent j. Here,
xi denotes the state of agent i and ri represents the sensing radius of agent i. The
symbol || · || is the Euclidean norm. The network structure has a blend of dynamic
and combinatorial features and is called a state-dependent dynamic graph. Then
the objective is to steer the dynamic graph to a pre-specified structure by designing
a proper control law.

In fact, we are by no means the first one who have noticed the significance of
controlling graphs. In [7], Meshbahi et al. considered graphs with incidence relations
that are dictated by underlying dynamic states. Then the relation between the
controllability of a distributed dynamic system and the corresponding graph was
derived, pointing to a new research direction in system and control theory. Later,
in [10], the problem of preserving the k-hop connectivity was considered. The main
idea was to model connectivity as an invariance problem and transform it into a
set of constraints on the control variables. Then the control law for a connectivity
problem was obtained by minimizing a cost function.

The rest of this paper is organized as follows. In Section 2, we develop a general
framework for our problem. The mathematical derivations of main results are pre-
sented in Section 3. Some numerical examples, including both one dimension and
two dimensions, are presented in Section 4. Finally, Section 5 summarizes the main
conclusions.

2. PRELIMINARIES AND PROBLEM SETUP

Let N, R and C denote the sets of all natural numbers, all real numbers and all
complex numbers respectively. We denote by In the n × n real identity matrix and
the subscript variable n is omitted when no misunderstanding arises.

Graphs are a good choice to represent the relationships among group members
(agents). Each agent is denoted by a node, the relation between two nodes is de-
scribed by an arc1. It has been found that the dynamic behavior of a group of
agents is closely related to the properties of the graph that represented the relations
among agents [5, 8]. Next we will first survey some basic notions from graph theory.

1When the relation is bidirectional, it is described by an edge.
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Then the definition of state-dependent graphs is given. Especially, we will focus on
directed graphs.

A directed graph G consists of a non-empty finite set V of elements called nodes
and a finite set E of ordered pairs of nodes called arcs. We call V the node set and E
the arc set of G. We write G = (V, E) to indicate that V and E are the node set and
the arc set of G respectively. For a node i in a directed graph G = (V, E), the set of
its neighbors is defined as {j|j ∈ V and (j, i) ∈ E}. Figure 1 shows an example of a
directed graph.

Fig. 1. An example of a directed graph. The node set is V = {1, 2, 3, 4}
and the arc set is E = {(1, 2), (2, 3), (3, 4), (4, 1)}.

A state-dependent graph is a mapping Gs from the distributed system state space
X to the set of all labeled graphs of order N , GN . Here N is the number of agents
in the system.

Gs : X → GN . (1)

It is assumed that the node set V of these graphs is fixed; their edge set E(x(t))
however is a function of the system state x(t). Especially, in current paper, E(x(t))
is specified as:

(j, i) ∈ E iff ||xi(t) − xj(t)|| ≤ ri, (2)

where xi(t) is the state of agent i at time t and ri denotes the sensing radius of
agent i. Then the structure of a state-dependent graph is totally determined by
the state of the distributed system. For further analysis, we define the state matrix
A = (ai,j) as follows: ai,j = xi −xj where ai,j denotes the (i, j)th element of matrix
A and xi is the state of agent i.

Suppose we want to steer the dynamic state-dependent graph to a pre-specified
structure Ḡ = {V̄, Ē} where V̄ = V and Ē is pre-specified. For any such structure,
we can construct a matrix Ā = (āi,j), such that āi,j = x̄i − x̄j and (i, j) ∈ Ē
iff ||āi,j || ≤ ri. Here x̄i denotes the expected state of agent i. Then the state-
dependent graph Gs(x(t)) converges to the pre-specified topology Ḡ iff A converges
to the matrix Ā. Here Gs is defined by (1).

To close this section, we formally define the notion of the convergence of dynamic
state-dependent graphs.

Definition 1. Convergence of dynamic state-dependent graphs. Consider
a distributed dynamic system which consists of n agents and let Ḡ be the prescribed
topology. We say the dynamic state-dependent graph, defined by (2), converges to
Ḡ, iff limt→∞ Gs(x(t)) = Ḡ.
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3. MATHEMATICAL ANALYSIS

In this section, we aim at giving a protocol to ensure the convergence of a state-
dependent graph to a pre-defined topology Ḡ.

The protocol is defined as follows:

ẋi = −
∑

j 6=i

(xi − xj − āi,j). (3)

For the sake of brevity, we define

ri,j = xi − xj − āi,j , (4)

then system (3) is rewritten as

ẋi = −
∑

j 6=i

ri,j . (5)

For further analysis, we define a matrix R = (ri,j), where ri,j is defined by Eq.(4).
Here comes a lemma about ri,j .

Lemma 1. ∀ i, j, k ∈ {1, 2, · · · , n}, ri,j = ri,k + rk,j , where n is the number of
agents in the system.

P r o o f . The derivation of Lemma 1 is straightforward by taking the definitions
of ri,j and āi,j into the lemma. ¤

Next we will give a lemma which will be used in the stability analysis of system (3).

Lemma 2. Consider matrix R, ∀ i ∈ {1, 2, · · · , n},
∑

j ri,j = 0 if and only if
∀ i, j ∈ {1, 2, · · · , n}, ri,j = 0.

P r o o f . Necessity (Proof by contradiction): Without loss of generality, assume
that there is a pair (i, j) satisfying ri,j < 0. Since

∑
j ri,j = 0, the sum of the entries,

except for ri,j , in the ith row
∑

k 6=j ri,k > 0. By Lemma 1, we have

(n − 1)ri,j =
∑

k 6=j

(ri,k + rk,j) =
∑

k 6=j

ri,k +
∑

k 6=j

rk,j .

Then rk,j = −rj,k, rj,j = 0, and
∑

k rj,k = 0 yield

∑

k 6=j

rk,j = 0.

Moreover,
∑

k 6=j ri,k > 0 indicates that ri,j > 0. Now a contradiction arises.

Sufficiency: The proof of sufficiency is rather straightforward, hence it is omitted
here. ¤

Next, we will show that even by designing a semi-definite positive Lyapunov
function, it is possible to use a blend of Lasalle’s Invariant Principle and Lemma 2
to establish the stability results.

The main result of the current note is given below.



Control a State-Dependent Dynamic Graph to a Pre-Specified Structure 805

Theorem 1. For system (3), the dynamic state-dependent graph will converge to
a pre-specified structure Ḡ.

P r o o f . Consider the following function

V ,
∑

i,j,i6=j

Vi,j ,

with each Vi,j defined by

Vi,j , 1

4
||xi − xj − āi,j ||2. (6)

Thus
∂V

∂xi
=

∑

j 6=i

1

2
(xi − xj − āi,j) +

∑

j 6=i

−1

2
(xj − xi − āj,i). (7)

Since āi,j = −āj,i,

−(xj − xi − āj,i) = xi − xj − āi,j . (8)

Then we have
∂V

∂xi
=

∑

j 6=i

(xi − xj − āi,j). (9)

Since

ẋi = −
∑

j 6=i

(xi − xj − āi,j),

we have

V̇ =
∑

i

(
∂V

∂xi
)T ẋi = −

∑

i

∥∥∥
∑

j 6=i

ri,j

∥∥∥
2

≤ 0. (10)

According to Lasalle’s Invariant Principle, system (3) will converge to the following
invariant set

{x| V̇ (x) = 0}, (11)

which implies that ∀ i
∑

j 6=i ri,j = 0. Thus according to Lemma 2, ∀ i, j, ri,j = 0,
which indicates that the pre-defined topology is reached asymptotically. ¤

Note that the statement V̇ = 0 is equal to V = 0. Hence, in the subsequent
simulations, we will draw the curve of V instead of V̇ .

Corollary 1. For system (3), if initially the state-dependent graph achieves the
desired topology Ḡ, in any subsequent time the desired topology is always kept.

P r o o f . If the initial state achieves the desired topology, we have V = 0. By
(10), we have V̇ = 0, which implies that the desired topology is always kept. ¤
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Remark 1. The significance of Corollary 1 is due to the fact that in many cases we
need the state-dependent graphs to achieve some prescribed topologies, for instance
connected, at all times other than asymptotically. In these cases, Corollary 1 will
meet our requirements.

The main results in this section can find applications, for instance, in the ren-
dezvous problem. Consider a group of unmanned vehicles which aims at reaching
a rendezvous point. The information flows among vehicles can be described by a
state-dependent graph, called communication graph [2]. To get to the rendezvous
point, a sufficient condition is to guarantee connectivity maintenance. According to
Corollary 1, if the communication graph is initially connected, it remains connected
throughout the system evolution under the proposed protocol, which indicates that
rendezvous is reached.

4. NUMERICAL SIMULATIONS

In this section, we verify the stability results obtained in Section 3 by numerical
examples. In our simulations, both one dimension and two dimensions cases are
considered.

There are three nodes, each with one dimension, in the first example. The state
equations of the nodes are described by:

ẋi = −
∑

j 6=i

(xi − xj − āi,j) (12)

for i = 1, 2, 3, where āi,j is the (i, j)th entry of a pre-defined matrix Ā which is
defined as follows:

Ā =




0 −1 1
1 0 2

−1 −2 0


 .

In this case, function V defined in the proof of Theorem 1 is

V =
∑

i∈{1,2,3},j∈{1,2,3}, i 6=j

Vi,j , (13)

where Vi,j is defined by (6). Figure 2 illustrates the curve of the function V . It is
clear that as time goes by, V (t) asymptotically reduces to 0, which indicates that
the pre-defined topology is reached asymptotically.

In the second example, the pre-defined topology is defined to be the name of
our university which consists of two characters in Chinese. In this example, there
are 51 nodes, 30 nodes for the first character and 21 nodes for the second charac-
ter. For each node, its state is represented by a two-dimensional vector, depicting
the x coordinate and y coordinate of the node moving in the plane. The step-size
(a parameter specified in Runge Kutta method in approximating solutions to dif-
ferential equations) in the example is 0.0005 seconds. Figure 3 shows consecutive
snapshots of the proximity structure for 51 agents in free-space using Protocol (3).
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Fig. 2. The plot of function V vs time t.

(a) (b)
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Fig. 3. The example of forming the Chinese name of our university.

The initial positions, which is highly skew from the desired topology and illustrated
by Figure 3 (a), are chosen randomly. And we note that the pre-specified topology
is reached in Figure 3 (d) and maintained thereafter.

5. CONCLUSION

Motivated by a class of problems associated with control of distributed dynamic
systems, we considered graphs with incidence relations that are dictated by the un-
derlying dynamic states, state-dependent graphs. In particular, we considered the
problem of controlling the structure of dynamic graphs so that the resulting mo-
tion always make the structure of dynamic state-dependents graphs converge to a
pre-defined topology. The potential application of the main results includes: flocks
of mobile agents equipped with sensing and communication devices, rendezvous in
space, distributed sensor fusion in sensor networks, synchronization of coupled os-
cillators and etc.
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