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ON THE ANTI–SYNCHRONIZATION DETECTION
FOR THE GENERALIZED LORENZ SYSTEM AND
ITS APPLICATIONS TO SECURE ENCRYPTION

Volodymyr Lynnyk and Sergej Čelikovský

In this paper, a modified version of the Chaos Shift Keying (CSK) scheme for secure
encryption and decryption of data will be discussed. The classical CSK method determines
the correct value of binary signal through checking which initially unsynchronized sys-
tem is getting synchronized. On the contrary, the new anti-synchronization CSK (ACSK)
scheme determines the wrong value of binary signal through checking which already syn-
chronized system is loosing synchronization. The ACSK scheme is implemented and tested
using the so-called generalized Lorenz system (GLS) family making advantage of its special
parametrization. Such an implementation relies on the parameter dependent synchroniza-
tion of several identical copies of the GLS obtained through the observer-based design for
nonlinear systems. The purpose of this paper is to study and compare two different meth-
ods for the anti-synchronization detection, including further underlying theoretical study
of the GLS. Resulting encryption schemes are also compared and analyzed with respect
to both the encryption redundancy and the encryption security. Numerical experiments
illustrate the results.

Keywords: nonlinear system, observer, chaos shift keying, generalized Lorenz system, syn-
chronization, anti-synchronization, secure communication

Classification: 93C10, 37N25

1. INTRODUCTION AND PROBLEM STATEMENT

A large number of communication schemes that are based on chaos synchroniza-
tion have been proposed during the last decades [3, 11, 15, 16, 17, 21, 25]. The
key idea is very simple and attractive: thanks to the well-known features of the
chaotic systems like strong dependence on initial data, topological transitivity, wide
spread spectrum of its signal, there is a great potential for hiding sensitive informa-
tion. Unfortunately, both practical aspects and security analysis are studied much
less [2, 13, 18, 23], especially for continuous time systems due to prevalently used
chaotic masking [1, 20]. Moreover, to encrypt the digital data, so desirable for
prominent internet applications, currently, almost only discrete time chaotic sys-
tems are used. One of the possible exceptions is the so-called Chaos Shift Keying
(CSK) secure encryption scheme, applicable to continuous time systems as well
[14, 22]. The CSK method uses time segments of chaotic signals corresponding to
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two different chaotic systems to encrypt a single bit. Originally, the CSK was intro-
duced (under different name) in [11, 12] for analogue implementation of the Lorenz
system and its synchronized copy. Therefore, the length of the time segment was
not such an issue. Nevertheless, when using computer digital implementation, such
a method is becoming almost ridiculous due to huge amount of data to encrypt a
single bit. Moreover, the excessive length of the pieces of signals corresponding to
“0” and “1” also enables various statistically based attacks, e. g. the correlation
analysis. Summarizing, the classical CSK method leads to weak and slow ciphers.
As a typical, and unfortunately very fresh example, see [19], where an unrealistic en-
cryption/decryption scheme was presented without any glimpse of security analysis.
Each bit is represented by segment of trajectory of length 1500, so the correlation
analysis would easily reveal switching of chaotic generators. Despite a questionable
security, to encrypt 1 bit, about 1.5 × 107 iterations are needed. Each iteration is
represented by a real number of high precision, so amount of data to encrypt a single
bit is useless for the digital data transmission.

The purpose of this paper is to analyze the so-called anti-synchronization effect in
the synchronized chaotic systems and to use it for the realistic encryption/decryption
schemes design. More precisely, when the synchronization scheme depends on the
precise knowledge of some crucial system parameter, its mismatch causes the imme-
diate lost of synchronization. Recently, this effect has been used to design the novel
modification the CSK secure encryption scheme, the so-called anti-synchronization
chaos shift keying method (ACSK), [7, 8, 9]. As a pilot system for testing the ACSK,
the generalized Lorenz system (GLS) [6, 10, 24] and its special parametrization [5]
has been used. The ACSK scheme uses the effect of the anti-synchronization, rather
than synchronization. More specifically, the classical CSK method determines the
correct value of binary signal through checking which unsynchronized system is get-
ting synchronized. On the contrary, the ACSK scheme determines the wrong value
of binary signal through checking which already synchronized system is loosing syn-
chronization. The advantage of the proposed method is two-fold. First, it requires
a very reasonable amount of data to encrypt and time to decrypt a single bit. Sec-
ondly, its security can be investigated and estimated as practically unbreakable. The
main reason for both advantages is that anti-synchronization is usually thousands
times faster than synchronization, even when using two close each to other chaotic
systems. Use of close each to other chaotic systems is enabled by mentioned special
parametrization of GLS and it is further very important aspect of the security, in
particular, making the successful correlation analysis extremely unlikely.

In the present paper, all these advantages will be theoretically justified as well
as thoroughly quantitatively tested for GLS through numerical experiments. The
ACSK scheme heavily depends on the ability to reveal quickly the parameter mis-
match via anti-synchronization detection. Therefore, two methods for the anti-
synchronization detection will be suggested and compared. Subsequently, the re-
sulting two ACSK encryption scheme versions will be described and analyzed both
on their efficiency and security.

The paper is organized as follows. The next section analyzes mathematically
the synchronization and anti-synchronization properties of the generalized Lorenz
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system which constitutes the main theoretical contribution of the paper. Section
3 describes two versions of the ACSK method which are illustrated by numerical
experiments described in Section 4. Redundancy and security analysis of both ACSK
versions is given in Section 5. Final section gives some conclusion and outlooks for
further research.

2. SYNCHRONIZATION AND ANTI–SYNCHRONIZATION MEASURE
OF THE GENERALIZED LORENZ SYSTEM

This section presents the main theoretical contribution of the paper being the anal-
ysis of properties of the special class of ODE – the so-called generalized Lorenz
system (GLS). Namely, both the synchronization and the anti-synchronization ef-
fects for the GLS system will be studied in detail. In particular, the estimates for the
synchronization level of two GLS’s with mismatched parameters will be obtained in
this section. These estimates will be shown to be valid even in the case when, with
slight abuse of terminology, parameters are time-varying. On the other hand, the
estimates how quickly initially mutually perfectly synchronized systems reach such
an error level will be derived as well.

2.1. Generalized Lorenz system and its synchronization

First, let us recall some previously published results on generalized Lorenz system
classification and synchronization. Further details may be found in [6, 7, 9, 8].

Definition 1. The following general nonlinear system of ordinary differential equa-
tions in R3 is called a generalized Lorenz system

(GLS):

ẋ =

[
A 0
0 λ3

]
x+




0
−x1x3

x1x2


 , A =

[
a11 a12
a21 a22

]
(1)

where x = [x1 x2 x3]
⊤, λ3 ∈ R, and A has eigenvalues λ1, λ2 ∈ R, such that

−λ2 > λ1 > −λ3 > 0. (2)

The inequality (2) goes back to the well-known Shilnikov’s chaos analysis near the
homoclinicity and can be viewed as the necessary condition for the chaos existence,
see more detailed discussion in [5, 24]. GLS is said to be nontrivial if it has at
least one solution that goes neither to zero nor to infinity nor to a limit cycle. The
following result, enabling the efficient synthesis of a rich variety of chaotic behaviors
for GLS, has been obtained in [5].
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Theorem 2. For the nontrivial generalized Lorenz system (1) – (2), there exists a
nonsingular linear change of coordinates, z = Tx, which takes (1) into the following
generalized Lorenz canonical form:

ż =




λ1 0 0
0 λ2 0
0 0 λ3


 z + cz




0 0 −1
0 0 −1
1 τ 0


 z , (3)

where z = [z1, z2, z3]
⊤, c = [1,−1, 0] and parameter τ ∈ (−1,∞).

Actually, the parameter τ plays an important role of single scalar bifurcation pa-
rameter, while remaining parameters has only qualitative influence being eigenvalues
of the approximate linearization of GLS at the origin. These qualitative parameters
are just required to satisfy robust condition (2), so that fine tuning may be done
using the single scalar parameter τ only.

Synchronization of GLS is based on yet another canonical form, the so-called
observer canonical form of GLS provided by the following

Theorem 3. Both nontrivial GLS (1) and its canonical form (3) are state equiv-
alent to the following form:

dη

dt
=




(λ1 + λ2)η1 + η2

−η1[λ1λ2 + (λ1 − λ2)η3 +
(τ+1)η2

1

2 ]

λ3η3 +K1(τ)η
2
1


 (4)

K1(τ) =
λ3(τ + 1)− 2τλ1 − 2λ2

2(λ1 − λ2)
, (5)

where η = [η1, η2, η3]
⊤, which is referred to as the observer canonical form. The

corresponding smooth coordinate change and its inverse are

η =
[
z1 − z2, λ1z2 − λ2z1, z3 − (τ+1)(z1−z2)

2

2(λ1−λ2)

]⊤
, (6)

z =
[

λ1η1+η2

λ1−λ2
, λ2η1+η2

λ1−λ2
, η3 +

(τ+1)η2
1

2(λ1−λ2)

]⊤
. (7)

Indeed, the above observer canonical form, when viewing η1 = x1 = z1 − z2 as
the output, is almost in the form linearizable by output injection. This leads to the
following observer-based synchronization of two copies of GLS.

Theorem 4. Consider system (4) – (5) with the output η1 and its uniformly bounded
trajectory η(t), t ≥ t0. Further, consider the following system having input ηm1 and
state η̂ = (η̂1, η̂2, η̂3)

⊤:

dη̂

dt
=




l1 1 0
l2 0 0
0 0 λ3


 η̂ +




λ1 + λ2 − l1
−λ1λ2 − l2

0


 ηm1
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+




0
−(λ1 − λ2)η

m
1 η̂3 − (1/2)(τ + 1)(ηm1 )3

K1(τ)(η
m
1 )2


 , (8)

where l1,2 < 0. For all ε ≥ 0, assume |η1(t)−ηm1 (t)| ≤ ε. Then, it holds exponentially
in time that

limt→∞‖η(t)− η̂(t)‖ ≤ Cε,

for a constant C > 0. In particular, for ηm1 ≡ η1, system (8) is a global exponential
observer for system (4) – (5).

Proofs of all previous theorems may be found in [6]. In the sequel, the system
(4) – (5) will be often called as the master while (8) as the slave.

2.2. Parameter mismatch influence on the GLS synchronization

The following proposition analyzes the influence of mismatching the parameter τ in
the master and slave when the master (4) – (5) with chaotic behavior is considered.
Moreover, with a slight abuse of terminology, we assume here that “parameter” τ
may be time dependent what will be used in the sequel when analyzing security of
our encryption method.

Proposition 5. Consider system (8) with η1 = ηm1 , τ = τsl(t) and system (4) – (5)
with τ = τmast(t), where τsl(t), τm(t) are uniformly bounded measurable functions.
Further, suppose that for the corresponding state trajectories of (8) and (4) – (5),
the Euclidean norm of both η1(t) and η̂1(t) is uniformly bounded by a constant R.
Then, for sufficiently small

Θ := max
τ∈R+

|τmast(t)− τsl(t)|

it holds
limt→∞‖η(t)− η̂(t)‖ ≤ CΘ,

where C > 0 is a suitable constant. Moreover, for all values of l1,2, it holds that

d(η3 − η̂3)

dt
= λ3(η3 − η̂3) +

λ3 − 2λ1

2(λ1 − λ2)
Θ(t)η21 , (9)

Θ(t) := (τmast(t)− τsl(t)). (10)

P r o o f . Denoting e = (e1, e2, e3)
⊤ = η − η̂, one can easily obtain subtracting (8)

with η1 = ηm1 , τ = τsl(t) from (4 – 5) with τ = τmast(t)

ė =




l1 1 0
l2 0 (λ2 − λ1)η1
0 0 λ3


 e+




0
(−Θ(t))η31/2
λ3−2λ1

2(λ1−λ2)
Θ(t)η21


 , (11)
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so that the relation (9) follows immediately. To prove the remaining estimates, let
us realize first that the matrix

[
l1 1
l2 0

]
, l1 < 0, l2 < 0,

is the Hurwitz one and therefore there exists a suitable (2× 2) matrix S solving the
following Lyapunov matrix equation

[
l1 1
l2 0

]⊤
S + S

[
l1 1
l2 0

]
= −I2,

I2 being the (2× 2) identity matrix. Now, consider the following Lyapunov function
candidate

V (e) = [e1, e2]S

[
e1
e2

]
+

1

2
e23,

then by straightforward computations

dV

dt
= −e21−e22+λ3e

2
3+e3

λ3 − 2λ1

2(λ1 − λ2)
Θ(t)η21+2[e1, e2]S

[
0

e3(λ2 − λ1)η1 +Θ(t)η31/2

]
.

Notice that by (9)

d(e23/2)

dt
= −λ3e

2
3 + e3

λ3 − 2λ1

2(λ1 − λ2)
Θ(t)η21

and therefore there exists T > 0, such that

|e3| ≤
λ3 − 2λ1

2(λ1 − λ2)
Θη21/λ3 ≤ λ3 − 2λ1

2(λ1 − λ2)
ΘR2/λ3, ∀ t ≥ T.

Therefore, straightforward computations give ∀ t ≥ T that

∥∥∥∥
dV

dt

∥∥∥∥ ≤ −e21 − e22 + λ3e
2
3 +

(
λ3 − 2λ1

2(λ1 − λ2)

)2

ΘR4/λ3

+2(|s11|e1|+ |s21|e2|)
[
(λ2 − λ1)

λ3−2λ1

2(λ1−λ2)
ΘR3

λ3
+

ΘR3

2

]

:= −e21 − e22 + λ3e
2
3 + α(Θ)|e1|+ β(Θ)|e2|+ γ(Θ), i. e.

∥∥∥∥
dV

dt

∥∥∥∥ ≤ −(e1 − α/2)2 − (e2 − β/2)2 + λ3e
2
3 + γ +

α2 + β2

4
.

The last inequality means that the Lyapunov-like function V (e) strictly decreases
along any trajectory e(t) until this trajectory enters ellipsoid E given by (recall that
by (2) λ3 < 0)

(e1 − α/2)2 + (e2 − β/2)2 − λ3e
2
3 ≤ γ +

α2 + β2

4
.
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As a consequence, any trajectory enters the set where

V (e) ≤ max
e∈E

V (e)

and stays within it forever. Now, the crucial observation is that for sufficiently small
Θ it holds

|α(Θ)| < δΘ, |β(Θ)| < δΘ, |γ(Θ)| < δΘ,

where δ > 0 is a suitable fixed real number. Therefore, the above ellipsoid E is fully
located inside the ball of radius C̃Θ, where C̃ > 0 is a real constant. In other words,
e(t) should ultimately stay within the set where V (e) ≤ max‖e‖≤C̃Θ V (e) which
ensures the existence of constant C > 0 required by the formulation of Proposition 5.
The proof is complete. �

Remark 6. Using the technique of the above proof, one can obtain more specific
estimate for the constant C given in the formulation of Proposition 5. This constant
would be bigger if the mentioned bound R on the first component of the chaotic
master system is bigger1 and smaller, when observer gains l1,2 and eigenvalue λ3

have bigger absolute values. Important security feature of GLS is that λ3 can not be
affected, so that parameter mismatch would always have certain minimal influence
despite choosing high gains l1, l2 in the observer (8). Moreover, equality (9) shows
that for mismatched constant parameters τmast, τsl the absolute value of the third
error component e3(t), even with e3(0) = 0, becomes quickly strictly positive, with
rate of increase being proportional to constant parameter mismatch Θ. As a matter
of fact, (9) is the simple one dimensional asymptotically stable linear system forced
by sign-preserving signal of magnitude proportional to constant parameter mismatch
Θ. This feature is also crucial for our ACSK method presented later on since it
provides the mentioned anti-synchronization effect. Proposition 5, as well as this
remark, are supported and illustrated by numerous simulations experiments later on.

The following proposition will provide the estimate of the anti-synchronization
effect mentioned at the end of the previous remark.

Proposition 7. Consider system (8), with η1 = ηm1 , τ = τsl and system (4) – (5)
with τ = τmast, where τsl, τm are constants and some gains l1 ≤ −1, l2 ≤ −1 are
fixed. Further, let it holds for some state trajectory η(t) = [η1(t), η2(t), η3(t)]

⊤ of
(4) – (5)

0 < E < |η1(t)| < R, ∀ t ∈ [0, T ∗], T ∗ := min

(
E2

3R2(2λ1 − λ3)
, | 1

2l1
|, | 1

2l2
|
)
.

Then it holds for all t ∈ [0, T ∗]

|η1(t)− η̂1(t)| ≥
E3

12
Θt2, |η2(t)− η̂2(t)| ≥

E3

6
Θt,

1Actually, one can see that there is even dependence on R3, so that the influence of the attractor
size is crucial.
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where
Θ := |τmast − τsl|

and η̂(t) is any trajectory of (8) with η̂(0) = η(0).

P r o o f . Obviously, the error dynamics (11) holds again with Θ(t) :≡ Θ = τmast −
τsl, namely

ė =




l1 1 0

l2 0 (λ2 − λ1)η1

0 0 λ3


 e+




0

(−Θ)η31/2
λ3−2λ1

2(λ1−λ2)
Θη21


 ,

where e(t) :≡ η̂(t)− η(t). Denote

Ã =

[
l1 1
l2 0

]
(12)

and recall that by the assumption of the proposition being proved it holds e(0) =
η̂(0)− η(0) = 0. Then

e3(t) =
λ3 − 2λ1

2(λ1 − λ2)
Θ

∫ t

0

exp(λ3(t− s))η21(s)ds,

[
e1(t)
e2(t)

]
=

∫ t

0

exp(Ã(t− s))

[
0

(λ2 − λ1)η1(s)e3(s)−Θη31(s)/2

]
ds.

Recall, that λ2 < 0, λ3 < 0, λ1 > 0, therefore it holds

|e3(t)| =
2λ1 − λ3

2(λ1 − λ2)
Θ

∫ t

0

exp(λ3(t− s))η21(s)ds,

as a consequence

|e3(t)| ≤
2λ1 − λ3

2(λ1 − λ2)
ΘR2

∫ t

0

exp(λ3(t− s))ds ≤ 2λ1 − λ3

2(λ1 − λ2)
ΘR2t.

Further,

[
e1(t)
e2(t)

]
=

∫ t

0

exp(Ã(t− s))

[
0

α(s)

]
ds, α(s) = (λ2 − λ1)η1(s)e3(s)−Θη31(s)/2,

|α(s)| =
∣∣∣∣(λ2 − λ1)e3(s)−Θη21(s)/2

∣∣∣∣|η1(s)| ≥
∣∣∣∣Θη21(s)/2− (λ1 − λ2)|e3(s)|

∣∣∣∣|η1(s)|

≥
∣∣∣∣E2/2− R2(2λ1 − λ3)s

∣∣∣∣EΘ/2, ∀ s ∈ [0, T ∗].

Actually, one can easily check that ∀ s ∈ [0, T ∗] it holds

E2/2−R2(2λ1 − λ3)s ≥ 0
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i. e. one can use
|A+B| ≥ ||A| − |B|| ≥ |C −D|

for all real numbers A,B,C,D, such that |A| ≥ C, |B| ≤ D,C ≥ D. Further, the
straightforward computations show that for all s ∈ [0, T ∗]

|α(s)| ≥
∣∣∣∣1− (R/E)2(2λ1 − λ3)s

∣∣∣∣ΘE3/2 ≥ |E3/2− E3/6|Θ = ΘE3/3, i. e.

|α(s)| ≥ ΘE3/3, ∀ s ∈ [0, T ∗]. (13)

Summarizing, to obtain the desired lower estimate for e1(t) and e2(t) one can use

[
e1(t)
e2(t)

]
=

∫ t

0

exp(Ã(t− s))

[
0

α(s)

]
ds =

∫ t

0

exp(Ã(s))

[
0

α(t− s)

]
ds, (14)

∀ t ∈ [0, T ∗], where Ã is given by (12), while α(t) by (13). This implies easily

e1(t) =

∫ t

0

α(t− s)
[
s+ l1s

2/2 + (l21 + l2)s
3/6 + · · ·

]
ds,

e2(t) =

∫ t

0

α(t− s)
[
1 + l2s

2/2 + (l1l2)s
3/6 + · · ·

]
ds,

|e1(t)| = (1/3)ΘE3
[
t2/2 + l1t

3/6 + (l21 + l2)t
4/24 + · · ·

]
ds

≥ (1/6)ΘE3t2
[
1 + l1t/3 + (l21 + l2)t

2/12 + · · ·
]
≥ (1/12)ΘE3t2,

|e2(t)| = (1/3)ΘE3
[
t+ l2t

3/6 + (l1l2)t
4/24 + · · ·

]
ds

≥ (1/3)ΘE3t
[
1 + l2t

2/6 + (l1l2)t
3/24 + · · ·

]
≥ (1/6)ΘE3t2,

so that the claim to be proved follows. �

Remark 8. The essence of the anti-synchronization method to be described later
on is to detect the anti-synchronization as soon as possible. Therefore, one can
actually limit the previously proved proposition to a very small time interval. It
is also intuitively clear, as well as rigorously shown during the above proof by the
exact arguments, that smaller time interval, the faster anti-synchronization effect.
Actually, following the above proof, infinitesimally for t → 0, the above estimates
provided by Proposition 7 may be replaced by the following ones:

|η1(t)− η̂1(t)| ≥
E3

4
Θt2 + o(t3), |η2(t)− η̂2(t)| ≥

E3

2
Θt+ o(t3).

Moreover, the estimates of time T ∗ for the any reasonable system parameters and
gains are much bigger that actually used in our algorithm later on. These time
estimates were chosen to facilitate the proposition formulation. Notice also, that
on a very short time interval the values E and R are close each to other (recall,
that E is the minimal while R is the maximal absolute value of η1 on some time
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interval). The important quantity is E, see Table later on where distribution of E is
studied. Actually, the speed of anti-synchronization depends on E3! It also depends,
though linearly only on parameter τ mismatch Θ. Finally, the most important
observation here is that anti-synchronization is much better visible on e2, rather than
on e1. Our algorithm later on will therefore use numerical derivation of e1 combined
with equation (11) to achieve e2 (recall, that only η1 is transmitted through the
communication channel).

3. ANTI-SYNCHRONIZATION CHAOS SHIFT KEYING SCHEME

3.1. CSK and ACSK secure encryption schemes

As already mentioned, the anti-synchronization detection analyzed in the previous
section will be used to design the realistic encryption and decryption algorithms.
Namely, the well known CSK scheme will be modified. The classical CSK was first
proposed by [14, 22] and its basic idea is to encode digital symbols with chaotic basis
signals. Therefore, switching of chaotic modes provides quite simple configuration
of the transmitter/receiver. However, as noted already in [14], synchronization is
lost and recovered every time the transmitted symbol is changed. In the other
words, the classical CSK receiver method needs during switching quite a time for an
establishment of synchronization between the transmitter and the receiver, therefore
speed of data transmission is rather poor while amount of data to encrypt a single bit
quite huge. On the contrary, our novel approach that sharply improves these vital
characteristics consists in using anti-synchronization rather than synchronization
and will be further referred as the anti-synchronization CSK (ACSK) scheme. Its
chart is shown in Figure 1 where public channel is used to send encrypted messages
while secure channel a secret key.

On the transmitter side, there is the signal generator being the GLS (4) – (5)
depending on crucial bifurcation parameter τ [5, 10, 24]. To encrypt digital infor-
mation, one chooses “for a while” τ = τ0 for bit “0” while for the bit “1” one chooses
τ = τ1, where τ0, τ1 are suitable selected GLS bifurcation parameters from its known
chaotic range, cf. [5, 6, 10, 24]. Then, only the first component of a chaotic signal
η1 = x1 = z1 − z2 is being transmitted through the communication channel.

On the receiver side, signal η1 = x1 = z1−z2 is feeded into two synchronized copies
of GLS (the so-called slaves), the first one, with parameter τ0, while the second one
with parameter τ1. Now, the crucial idea of anti-synchronization based decryption
uses the fact that both slaves are kept synchronized to the numerically best possible
level (the so-called numerical zero, in most simulations2 equal to 10−4). Therefore,
one can detect almost immediately “the wrong” slave due to the fact that it produces
fast increasing error of its first component comparing to the slowly varying error in
“the correct” slave. In such a way, the bit value is decrypted, moreover, the state
value of the “wrong” slave is overwritten by the value from the “correct” slave, so
that prior receiving the next piece of cipher text (i. e., the synchronizing signal η1(t))

2MATLAB–SIMULINK ode4 Runge–Kutta procedure with the fixed step size equal to 0.001 is
being used throughout the paper.
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Master chaotic signal 
generator      with 
control parameter  
and initial condition 


0




Symbol „1“
 is sent

Symbol „0“
 is sent

x=[ x
1
, x
2
, x

3
]

f


1

Public digital channel without noise


1

Transmitter

x
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Fig. 1. ACSK digital communication system with anti-synchronization-error-based

demodulator.

both slaves are again synchronized to the same best possible level of the “numerical
zero” 10−4.

As a matter of fact, as shown by Propositions 5, 7, for the fixed parameter mis-
match Θ = |τmast − τsl| the anti-synchronization effect crucially depends on the
absolute value of the synchronizing signal η1, namely, on E3, where E is minimal
value of η1(t) over the time interval where anti-synchronization is to be detected.
This crucial value has been experimentally thoroughly analyzed and their percent
summary is given in Table.

Table.

E P (E) E P (E) E P (E)
4.0 19.5 0.8 71.45 0.33 86.12
3.0 28.14 0.6 78.32 0.3 87.44
2.0 38.18 0.5 81.25 0.2 88.87
1 64.76 0.4 84.44 0.1 95.07

Here, P (E) = meas (A(E))
Tmax

· 100, where A(E) = {t ∈ [0, Tmax : |η1(t)| ≥ E} and
Tmax is the maximal time available during simulation.
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Fig. 2. Anti-synchronization-error-based ACSK demodulator.

3.2. Methods of the detection of the binary symbols in the receiver of
the ACSK scheme

The receiver or demodulator structure of the ACSK scheme is shown in Figure 2 in
a more detail. It detects the correct bit via identifying the correct synchronization
signal and then rewrites its value into both self-synchronization circuits (see the back
arrows r0, r1 in Figure 2). Such a detection in the receiver is based on the effect of the
anti-synchronization, namely, two methods of the detection of the binary symbols
are possible.

The first method that was proposed and studied in [7, 8] is based on the compar-
ison of the absolute value of the first component of the synchronizing error e1 in the
receiver and the threshold value of the error. The threshold value is well-known and
depends on the control parameters τ1 and τ0, gains, step size and solver. Depending
on the |τ1−τ0| and the absolute value of the synchronizing signal η1 various numbers
of the iterations are needed to detect the binary symbol exactly. Sections with higher
absolute value of the synchronizing signal η1 is more convenient. The higher absolute
value of η1, the fewer iterations for the anti-synchronization effect are needed, and
vice versa. It was shown in [8] that for quite close each to other chaotic generators
with difference in τ0 and τ1 equal to 0.01 13 iterations were needed to distinguish the
right slave subsystem from the wrong one. Nevertheless, those 13 iterations were
needed for the detection of the single bit only when |η1(t)| ≥ 4. Otherwise, the
correct detection requires even more iterations. The section of η1(t) signal where
one can effectively decode the information using 13 iterations only equals to 19.5
percent of the total length of the ciphertext (see Table). Data rate of this method is
therefore 15 bits/1000 iterations only, provided only section with |η1(t)| ≥ 4 is being
used. Such a drawback suggests the necessity to look for a more precise analysis of
the synchronization error, thereby further minimizing the iteration number needed
for 1 bit encryption/decryption.
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The second method of the detection of the binary symbols in the receiver is based
on the comparison of the value of the second component of the error e2 and was first
briefly introduced in [9]. Now, this method is justified by the theoretical analysis
presented in the previous section. Actually, Proposition 7 shows that, while the first
component of the synchronization error peak triggered by the parameter mismatch
is of order O(t2), the peak of its second component is of the order O(t). For very
small t (note, that one iteration is typically per time equal to 0.001) this is a really
significant difference. As all data are transferred precisely in the digital form, they
don’t contain any noise and we can use simple derivative observer to predict the sec-
ond component of the error. In such a way, the parameter mismatch can be detected
almost immediately, looking on a single subsequent iteration only (for |η1(t)| ≥ 4).
As a consequence, this second method can decrypt/encrypt efficiently 195 bits/1000
iterations. Let us note here, that in [9] it was reported that for the correct detection
of the wrong slave synchronization circuit in the receiver only one iteration is needed
for |η1(t)| ≥ 2. Nevertheless, a recent and more careful experimental analysis shows
that the threshold of the safe detection should be increased to |η1(t)| ≥ 4. The
reason is that the number of the iterations needed for the correct bit identification
depends on the speed of the change of the synchronization signal η1(t), too. When
the synchronization signal is increasing/decreasing very fast, one iteration for the
correct detection is insufficient. Nevertheless, bit rate can be yet further improved
as other signal η1(t) sections can be used subsequently with 2, 3 and 4 iterations (the
last one even for |η1(t)| ≈ 0.1!), thereby using up to 95% of this signal, cf. Table.

3.3. Comparison of detection methods

Both methods may be illustrated and compared using Figure 3 where the second
graph from top shows evolution of the synchronization error component e1 while the
third from the top graph shows the evolution of the synchronization error component
e2. Notice that the values of peaks of e1 can not be safely distinguished numerically
as correct and non-correct values differ by a negligible small margin, namely level
of e1 for the correct first bit is about 1.52 × 10−4 while for the non-correct first
bit only 1.525× 10−4. Nevertheless, one can trace from the picture sudden change
of the derivative of e1 which indicates the non-correct bit. As a matter of fact,
the reconstructed second component e2 is mainly driven by the time derivative e1.
Therefore, for the correct bit e2 it is approximately 2× 10−3 while for non-correct
bit it is approximately 10−2 which is easily distinguishable. Such a difference is
produced even during a single iteration what makes the second detection method
much more efficient than the first one as already noted at the end of the previous
subsection where estimates of the corresponding bit rates are discussed.

4. NUMERICAL EXPERIMENTS

Example of the application of the current ACSK method is shown in Figure 3. It
shows an example of a transmitted baseband signal for the message “0110110010”
encoded by means of two different, but close each to other chaotic GLS generators
with different parameters τ0 = 0.1 and τ1 = 0.2. Only ciphertext is available to
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potential intruder with no clue of encrypted signal. This ciphertext is the synchro-
nizing signal η1(t) sent by GLS either with τ0 = 0.1 or τ1 = 0.2, depending on an
encrypted value of the current bit. For the easy mutual comparison of all scopes in
Figure 3, their time axes are identical and indicate number of iterations3, not a real
time. It can be seen that the error immediately (during one iteration only) rises
in one of the slaves, while in the other one it remains within declared “numerical
zero” ∼ 10−4. Though each symbol in Figure 3 requires two iterations, the method
works perfectly even with a single iteration only (the second iteration is needed
just to reset the initial conditions in ”the wrong” slave to the initial conditions in
”the true” slave.). The ciphertext obviously does not indicate change of bits in any
way. There are two reasons: first, the parametrization with respect to τ makes it
possible to have signals of both chaotic systems close to each other. Secondly and
most importantly, as we use 1–2 bits only, it is impossible to estimate any statistical
or other tendency to decrypt the information. The decryption is possible only by
feeding the ciphertext into slave systems producing peaking error picture shown in
Figure 3, which clearly decrypts the corresponding digital information.

Notice that the previously presented Chaos Shift Keying method, [14, 22], typ-
ically needs up to one second piece of synchronizing signal to encrypt and decrypt
a single bit which corresponds usually to thousands of real numbers (iterations).
So, the message expansion and speed of encryption-decryption for CSK method are
simply unrealistic. For our ACSK, the message expansion is still much bigger than
in methods based on discrete time chaos, nevertheless, it is becoming realistic and
might be justified if it provides some extra security.

5. SECURITY ANALYSIS OF ACSK METHOD

The above described decryption scheme in the ACSK method requires initial syn-
chronization of the master on the transmitter side and both slaves on the receiver
side, up to the best available numerical precision, called in the sequel as the “nu-
merical zero”. Therefore, the initial condition is the immediate candidate for the
secret key. As our “numerical zero” is 10−4, this key space is naturally discretized in
the sense that two initial conditions closer each other than numerical zero should be
represented by the same key. Assuming the size of the initial conditions interval of
η3(t) being 10 gives 105 different keys, as only the third component η3(t) is unknown,
while the first one η1(t) is transmitted through the public channel and the second
one η2(t) easily obtained by from the first component η1(t) using the first equation
in (4).

To analyze the security of the key based on the initial condition, assume for
simplicity at first that both τ0 and τ1 are publicly known. Proposition 5 implies that
at least 10 thousands of iterations of the correct signal are needed to synchronize
the slaves if the initial conditions of the master are unknown. Therefore, the initial
condition key can be broken only in three ways:

• Attack based on the known plain text and the corresponding cipher text, but

3Recall, that the “iteration” is one step of the Runge–Kutta 4th order scheme with the fixed
step 10−3
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both should be at least as of 10 000 bits. Moreover, such a knowledge should
be used only for the attack to decrypt some unknown ciphertext following
right after the above known sequence of both plaintext and the corresponding
ciphertext.

• Trying 210000 possible combinations of all 10 000 bits long plaintexts and com-
paring them with ciphertext at hand.

• Trying all possible keys – 105 initial conditions.

Furthermore, the parameters τ0, τ1 can be considered as an additional source for
the secret keys. In this case, the current method presents important improvement
due to the fact that changes of the parameter may occur during a single iteration.
Therefore, one can not see any clue of changing parameter when analyzing signal
η1. Nevertheless, the difference |τ0 − τ1| can not be arbitrarily small, as the anti-
synchronization effect depends on this difference as well, see Propositions 5, 7. Still,
this difference was experimentally shown to be possible up to 10−3. Therefore, there
are 106 possibilities, if values τ ∈ [−0.5, 0.5] are considered. As a matter of fact,
chaotic range for τ is even broader that the previous interval, see [4]. Finally, notice
that secret key based on parameter τ is equally resistant even in case of the known
plaintext and the corresponding sequence of ciphertext. In all kinds of attacks, one
has to check all 106 possibilities of pairs τ0, τ1 and one needs to know the initial
condition, treated before.

Therefore, combining both the initial condition and parameter τ , one has up to
1011 possibilities for the secret key. When checking all possibilities for the secret
key trying to perform the brute force attack, one has to take into the account
that the amount of computing efforts to be done for each key choice is far from
being negligible. Basically, one needs to evaluate error in both slaves during several
iterations and compute its second derivative to see if it stays significantly smaller in
one of the slaves than in the other one. This leads to a conclusion that brute force
attack is unrealistic as well.

Here, an independent use of the τ based key and the initial condition η3(0) based
key is guaranteed by the second equation in (11). Indeed, τ mismatch level Θ and
initial error e3(0) influence are mixed on the right hand side there, and nonzero value
of any of them spoils a possible detection.

More rigorous security analysis is matter of ongoing investigation, but the above
draft analysis indicates promising potential of the ACSK method.

6. CONCLUSIONS AND OUTLOOKS

The anti-synchronization properties of the generalized Lorenz system family has
been analyzed and used for the anti-synchronization detection in ACSK scheme. It
was shown that the resulting ACSK digital communication method has potential
of introducing a high degree of security at a low receiver complexity. At the same
time, it requires reasonable amount of data to encrypt a single bit, thereby making
revolutionary possibility of practical and realistic use of continuous time chaotic
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system for digital data encryption. Further research will be devoted to making the
message expansion even smaller.
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