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THE DYNAMICS OF WEAKLY INTERACTING FRONTS
IN AN ADSORBATE–INDUCED PHASE TRANSITION
MODEL

Shin-Ichiro Ei and Tohru Tsujikawa

Dedicated to Professor Kenji Tomoeda on the occasion of his sixtieth birthday.

Hildebrand et al. [5, 7] proposed an adsorbate-induced phase transition model. For this
model, Takei et al. [10] found several stationary and evolutionary patterns by numerical
simulations. Due to bistability of the system, there appears a phase separation phenomenon
and an interface separating these phases. In this paper, we introduce the equation describ-
ing the motion of two interfaces in R2 and discuss an application. Moreover, we prove the
existence of the traveling front solution which approximates the shape of the solution in
the neighborhood of the interface.
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1. INTRODUCTION

Several people [3, 5, 6, 7, 9] proposed models which describe the process of pattern
formation in the catalytic oxidation of CO molecules on a platinum surface. Here,
we consider the model given in [5] as follows:

{
ut = du∆u + f(u, v),

τvt = dv∆v + γ∇{v(1 − v)∇χ(u)} + g(u, v),
(1)

where f(u, v) = u(u + v − 1)(1 − u), g(u, v) = c(1 − v) − (aeβχ(u) + b)v and
τ, du, dv, a, b, c, β, γ are positive constants. The unknown functions u = u(x, t) and
v = v(x, t) denote the structural state of surface and the adsorbate coverage rate of
the surface by CO molecules, respectively. The function χ(u) is defined by

χ(u) = u2(2u − 3). (2)

As shown in Tsujikawa and Yagi [13], Takei et al. [11] and [10], there exists a unique
global solution of (1) in a bounded domain of R2 with Neumann boundary condition
and an exponential attractor of the corresponding dynamical system.
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From the view point of pattern formation, the existence of stationary spot solu-
tions was shown and its stability of (1) in R and R2 was considered by using the
singular perturbation method [6, 7]. On the other hand, various types of station-
ary patterns are observed by numerical simulations in [9, 10]. They are stationary
stripe, square and hexagonal patterns on the surface and their existence is proved
by the bifurcation method [8]. Here, we mainly consider the dynamics of stripe and
snaky patterns. For the model, the phase transition phenomenon appears due to the
bistable system and we call the boundary of two phases an interface. When du is
sufficiently small, it is expected that the width of the domain separating two phases
is of order O(du). Therefore, it is enough to consider the dynamics of the movement
of the interface for the understanding of these pattern formations. In particular, we
are concerned with the interactive dynamics of two interfaces far from equilibrium in
R2. To do so, we introduce the equation which describes the motion of the interface
and discuss the interactive dynamics between two interfaces. Next, the equation is
applied in order to understand the motion of two fronts in R. Finally, we show the
existence of the traveling front solution to obtain the equation, which approximates
the shape of the solution in the neighborhood of the interface.

2. INTERACTIVE DYNAMICS OF TWO INTERFACES

In this section, we formally introduce the equation describing the dynamics of the
interfaces with weakly interaction in R2. To do so, we rewrite (1) as

Πut = D∆u + γK2(u) + F (u), (3)

where
Π =

(
1 0
0 τ

)
, D =

(
du 0
0 dv

)
,

and
K2(u) = div(0, v(1 − v)∇χ(u))T, F (u) = (f(u, v), g(u, v))T,

for u = (u, v)T.

When Γ(σ) is a curve corresponding to the interface with a parameter σ, the
local coordinate is given by (x, y) = Γ(σ)+λν(σ), (λ, σ) = (Λ(x, y), Σ(x, y)) with the
normal vector ν(σ) at Γ(σ). Then, we note that ∇Λ = ν, ∇Σ = 1

1−κ̂λΓσ, |∇Λ|2 = 1,

|Γσ|2 = 1, < ∇Λ, ∇Σ >= 0, ∆Λ = − κ̂
1−κ̂λ , ∆Σ = κ̂σλ

(1−κ̂λ)3 where κ̂ is the curvature

of Γ(σ) and 〈·, ·〉 means the inner product.

Let

K̂(u, v) =
(1 − 2v)χ′(u)

(1 − κ̂λ)2
uσvσ

+ v(1 − v)

{
χ′′(u)

(1 − κ̂λ)2
u2

σ + χ′(u)

(
− κ̂

1 − κ̂λ
uλ +

1

1 − κ̂λ
(

1

1 − κ̂λ
uσ)σ

)}
,

K1(u, v)= {v(1 − v)χ′(u)uλ}λ,

K2(u, v)= div(v(1 − v)∇χ(u)) = K1(u, v) + K̂(u, v).
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Since K2 = K1 + K̂ with K1(u) = (0,K1(u, v))T, K2(u) = (0,K2(u, v))T, K̂(u) =
(0, K̂(u, v))T, (3) becomes

Πut = L1(u) + DKu + γK1(u) + γK̂(u), (4)

where L1(u) = Duλλ + F (u) and Ku = − κ̂
1−κ̂λuλ + 1

1−κ̂λ ( 1
1−κ̂λuσ)σ.

Next, we consider the profile of the solution in the neighborhood of the interface.
To do so, we first treat the traveling front solution connecting the two equilibrium
points in 1-dimensional domain R. Then, the equation corresponding to (4) is given
by

Πut = Duxx + γK̂1(u) + F (u), x ∈ R, (5)

where K̂1(u) = (0, (1 − 2v)χ′(u)uxvx + v(1 − v){χ′(u)ux}x)T.
We remark that there are three roots P− = (0, v−)T, P0 = (u0, v0)

T P+ = (1, v+)T

of F (u) = 0 where v− = c
a+b+c < v0 < v+ = c

a−β+b+c
. Then, we set the boundary

conditions of (4) as follows:

lim
x→−∞

u(t, x) = P−, lim
x→∞

u(t, x) = P+. (6)

Assumption 1. Let λ = x + ct. There exists a traveling front solution of (5), (6)
with a velocity c, that is, a solution S(λ) = (Φ(λ), Ψ(λ))T satisfying

{
0 = DSλλ − cΠSλ + γK1(S) + F (S), λ ∈ R,

S(±∞) = P±,
(7)

where K1(S) = (0, (1 − 2Ψ)χ′(Φ)ΦλΨλ + Ψ(1 − Ψ) {χ′(Φ)Φλ}λ)
T

.

Remark 1. For suitable constants du, dv and τ , there exists a traveling front
solution of (7) (see the Appendix).

We treat two interface curves Γi (i = 1, 2) which have not any common point.
Let (x, y) = Γi(σi)+λiνi(σi) be local coordinates in the neighborhood of each curve
Γi. Then, we assume that the solution u(t, x, y) is expanded as

u(t, x, y) = S(Λ1(t, x, y)) + S(−Λ2(t, x, y)) − P+ + w(t, x, y). (8)

Assumption 2. Let ε be a small parameter. Then, it holds that for each curve
Γi (i = 1, 2) curvatures κ̂i of Γi and σi are of order O(ε) and w is approximately
represented by w(t, λi, σi) in the neighborhood of Γi. Let κ̂i = εκi and σi = ε`i.

Substituting (8) into (4), the left hand side is rewritten as

ut = Λ1tSλ(Λ1)−Λ2tSλ(−Λ2)+wt +Λitwλi + εΣitw`i in the neighborhood of Γi.
(9)
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First, we consider the problem in the neighborhood of Γ1. Then, S(−Λ2) − P+ + w
is the remainder term in the neighborhood.

For simplicity, let λ1 → λ, `1 → `, κ1 → κ, Λ1 → Λ, Σ1 → Σ. Then, the right
hand side approximately becomes

L1(u) + DKu + γK1(u) + γK̂(u) ∼ L1(S) + L̂(S(−Λ2) − P+ + w) + DKS

+ γK1(S) + γK̂(S) + DK(S(−Λ2) − P+)

+ DKw + γK′
1(S)(S(−Λ2) − P+ + w)

+ γK̂′(S)(S(−Λ2) − P+ + w), (10)

where L̂ = L′
1(S) = D d2/dλ2 + F ′(S). Here, higher order terms with respect to

small ε and w are neglected.

Assumption 3. For the solution S(λ) of (7), there is a positive constant α and
vector a+ = (p, q)T such that

S(λ) − P+ ∼ e−αλa+ as λ → ∞. (11)

Then, we note that DK(S(−Λ2) − P+) = O(εκeαΛ2), Λtwλ and εΣtw` are small
when ε is small. Since 0 = L1(S) − cSλ + γK1(S) and DKw = O(ε2 + εwλ), it
follows that

Πwt + ΠΛtSλ ∼ cΠSλ + L̂w + L̂(eαΛ2a+) + DKS − K̂(S)

+ γK′
1(S)(eαΛ2a+ + w) + γK̂′(S)(eαΛ2a+ + w).

By (7), (11), it holds that

0 ∼ α2De−αλa+ + F ′(P+)e−αλa+ + αcΠe−αλa+ + γK′
1(P+)e−αλa+. (12)

Therefore, (12) implies

L̂(e−αλa+) ∼ (F ′(S) − F ′(P+) − αcΠ − γK′
1(P+))e−αλa+ (13)

by L̂(e−αλa+) = (α2D + F ′(S))e−αλa+.

Since

K̂′(S)(eαΛ2a+ + w) ∼ 0,

KS = − εκ

1 − εκλ
Sλ ∼ −εκSλ,

K̂(S) ∼ (0, −εκΨ(1 − Ψ)χ(Φ)λ)T,

it follows from (10), (13) that

Πwt + ΛtΠSλ ∼ (L̂ − K′
1(S))w − εκDSλ + cΠSλ − εκγ

(
0

Ψ(1 − Ψ)χ(Φ)λ

)

+ (F ′(S) − F ′(P+) − γK′
1(P+) + γK′

1(S) − αcΠ)eαΛ2a+. (14)
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Here, we note that

K′
1(S)e−αλa+ =

(
0 0

Θ21 Θ22

)
e−αλa+,

and

K′
1(P+)e−αλa+ =

(
0

w1(1 − w1)χ
′(1)α2p

)
e−αλ,

where

Θ21 = (1 − 2Ψ)Ψλ{χ′′(Φ)Φλ − αχ′(Φ)}
+ Ψ(1 − 2Ψ){−2αχ′′(Φ)Φλ + {χ′′(Φ)Φλ}λ + α2χ′(Φ)},

Θ22 = −2χ′(Φ)ΦλΨλ + (1 − 2Ψ){−αχ′(Φ)Φλ + {χ′(Φ)Φλ}λ}.

Next, we will compute the outward normal velocity V of the interface. Let ϕ∗ =
(ϕ∗

1, ϕ
∗
2) be an eigenfunction corresponding to the eigenvalue 0 of the adjoint operator

(L̂ − K′
1(S))∗Π−1 of L̂ − K′

1(S)Π−1 normalized by 〈ΠSλ, ϕ∗〉L2 = 1 where 〈·, ·〉L2

means the L2(R) inner product. Then, it follows from the solvability condition (e. g.
[2]) and (14) that

Λt = −εκ〈DSλ, ϕ∗〉L2 + εκ〈Ψ(1 − 2Ψ)χ(Φ)Φλ, ϕ∗
1〉L2 + cΠ

+

∫ ∞

−∞
eαΛ2(x(λ),y(λ))〈(G(S(λ)) − G(P+) − αcΠ)a+, ϕ∗(λ)〉dλ,

(see Figure 1) where G(X) = F ′(X) + γK′
1(X) and we assume 〈Πw, ϕ∗〉L2 = 0.

λ

ν2

Γ1 Γ2

(x(λ), y(λ))

−Λ2(x, y)

Fig. 1.

From Λt = −V , the velocity V1 of Γ1 is given by

V1 = εκ1(〈DSλ, ϕ∗〉L2 − 〈Ψ(1 − 2Ψ)χ(Φ)Φλ, ϕ∗
1〉L2) − cΠ − g1, (15)

where

g1 =

∫ ∞

−∞
eαΛ2(x(λ),y(λ))〈(G(S(λ)) − G(P+) − αcΠ)a+, ϕ∗(λ)〉 dλ.
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On the other hand, let Ŝ(λ) = S(−λ), ϕ̂∗(λ) = ϕ∗(−λ) and so on. Then, the normal
velocity V2 = Λ2t of the interface Γ2 is represented by

V2 = −εκ2(〈DŜλ, ϕ̂∗〉L2 − 〈Ψ̂(1 − 2Ψ̂)χ(Φ̂)Φ̂λ, ϕ̂∗
1〉L2) + cΠ + g2, (16)

where

g2 =

∫ ∞

−∞
e−αΛ1(x(λ),y(λ))〈(G(Ŝ(λ)) − G(P+) − αcΠ)a+, ϕ̂∗(λ)〉 dλ.

Therefore, V1 and V2 in (15) and (16) represent the normal velocity of the weakly
interacting interfaces. Although we do not estimate g1 and g2, it is presumed that
these terms are small as the distance between two interfaces is very large (see the
Appendix). If the velocity c of the traveling front solution of (7) is of order ε, then
the velocity of the interface also depends on the curvature.

3. APPLICATION (1–DIMENSIONAL PROBLEM )

In this section, we apply the result in Section 2 to the 1-dimensional problem. Let
`1(t), `2(t) ( `1(t) < `2(t) ) be interface positions in the line, that is, the shape of
the solution looks like a trapezoid. It follows from (15), (16) that





`1t(t) = V1 = −c − e`1(t)−`2(t)H,

`2t(t) = V2 = c + e`2(t)−`1(t)H,

where H =

∫ ∞

−∞
eαλ〈(G(S(λ)) − G(P+) − αc)a+, ϕ∗(λ)〉dλ.

As |`1(t) − `2(t)| À 1, these equations imply that

{
c < 0 =⇒ two interfaces are attractive,

c > 0 =⇒ two interfaces are repulsive.

As c = 0, it holds that

{
H∗ < 0 =⇒ two interfaces are attractive,

H∗ > 0 =⇒ two interfaces are repulsive,

where H∗ =

∫ ∞

−∞
eαλ〈(G(S(λ)) − G(P+))a+, ϕ∗(λ)〉dλ.
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APPENDIX

By using a singular perturbation method similar to the one in [4], we can prove the
following theorem.

Theorem. (Tsujikawa [12]) Let δ̂ = exp(−γ/dv) and τ = O(du). If

√
v−(1 − v+)

√
v+(1 − v−)

> δ̂,

there exists a traveling front solution (Φ(λ, du), Ψ(λ, du)) of (7) with the velocity
c = ĉdu + o(1) for small du > 0 such that

lim
du→0

(Φ(λ, du), Ψ(λ, du)) = (Φ0(λ), Ψ0(λ)),

where Φ0(λ) is the Heaviside function and Ψ0(λ) satisfies





0 = dvΨ0λλ + g(Φ0, Ψ0), λ ∈ R,

Ψ0λ(−0)

Ψ0λ(−0)(1 − Ψ0λ(−0))
=

Ψ0λ(+0)

Ψ0λ(+0)(1 − Ψ0λ(+0))
,

Ψ0(−∞) = v−, Ψ0(∞) = v+.

Let Ψ(0, du) = 1/(1 + N). It holds that

0 S ĉ if and only if
√

δ̂ S N. (17)

Moreover, if
∣∣∣∣
√

v−(1 − v+)
√

v+(1 − v−)
− δ̂

∣∣∣∣ ¿ 1, 0 <

√
v−(1 − v+)

√
v+(1 − v−)

< δ̂,

then there exist at least two traveling front solutions for small du > 0.

P r o o f . Here we only prove (17). The solution Φ0(λ) satisfies

{
0 = Φ0λλ − ĉΦ0λ + f(Φ0, W (Φ0)), λ ∈ R,

Φ0(−∞) = 0, Φ0(∞) = 1,

where W (Φ0) = 1/(1 + N exp(γχ(Φ0)/dv)) and f(U) = U(U + W (U) − 1)(1 − U).

Since Φ0(λ) satisfies Φ0λ(−∞) = 0 = Φ0λ(+∞), it holds that

ĉ

∫ +∞

−∞
Φ2

0λ dλ =

∫ 1

0

f(U,W (U)) dU =
1

12

{
1 +

2dv

γ
log

∣∣∣∣∣
1 + N exp(− γ

dv
)

1 + N

∣∣∣∣∣

}
.

Therefore, we have (17). ¤
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For v− = 0.2 and v+ = 0.8, the curve in Figure 2 corresponds to the traveling
front solutions depending on the parameter δ̂ > 0 as du ↓ 0 and vertical axis means
the value of Ψ(0, 0). The dot and solid parts in the curve means the negative and
positive velocity of traveling front solutions.
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