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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , NU MB ER 2 , P AG E S 2 6 1 – 2 7 8

CHECKING PROPORTIONAL RATES IN THE
TWO–SAMPLE TRANSFORMATION MODEL

David Kraus

Transformation models for two samples of censored data are considered. Main examples
are the proportional hazards and proportional odds model. The key assumption of these
models is that the ratio of transformation rates (e. g., hazard rates or odds rates) is constant
in time. A method of verification of this proportionality assumption is developed. The
proposed procedure is based on the idea of Neyman’s smooth test and its data-driven
version. The method is suitable for detecting monotonic as well as nonmonotonic ratios of
rates.

Keywords: Neyman’s smooth test, proportional hazards, proportional odds, survival anal-
ysis, transformation model, two-sample test

AMS Subject Classification: 62N01, 62N03

1. INTRODUCTION

This paper deals with simple models for two samples (e. g., the control and treat-
ment group) of survival data under random censorship. Various models have been
proposed in the literature to describe the situation when the survival distributions in
two samples differ. The aim of this paper is to develop new methods of assessment
of fit for one class of these models, proportional rate models.

The most frequent model is the proportional hazards model which assumes that
the ratio of the hazard rates α1(t), α2(t) is constant over time, that is there exists
a real constant β such that α2(t)/α1(t) = eβ for all t. The effect of treatment on the
failure rate remains the same in the course of time. In some situations the effect of
treatment decays for large times and hazard rates converge to each other. A popular
model for this situation is the proportional odds model. Let Ak(t) =

∫ t

0
αk(s) ds be

the cumulative hazard function and Sk(t) = e−Ak(t) the survival function in the kth
sample, k = 1, 2. Denote Γk(t) = (1−Sk(t))/Sk(t) the odds function giving the odds
of dying before time t versus surviving up to t. The proportional odds model assumes
Γ2(t)/Γ1(t) = eβ for all times. A common feature of these two main examples is
that they assume constancy of the ratio of some functions. It is important to check
this assumption.

These two models are considered within a wider class of semiparametric lin-
ear transformation models as follows (for more details and references see, for in-
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stance, Bagdonavičius and Nikulin [5] or Martinussen and Scheike [15]). Let Sω

be a known survival function (of a continuous nonnegative variable ω), let Aω =
− log Sω be the corresponding cumulative hazard. Assume that there exists a con-
tinuous increasing function Gk defined on the positive half-line with Gk(0) = 0
such that in the kth sample the survival function is Sk(t) = Sω(Gk(t)), and the
cumulative hazard is Ak(t) = Aω(Gk(t)). The functions Gk are called cumulative
rates. Denote the (noncumulative) rate gk(t) = dGk(t)/dt and the hazard function
αk(t) = dAk(t)/dt. These noncumulative functions are in the one-to-one relationship
αk(t) = αω(Gk(t))gk(t) = qω(Ak(t))gk(t), where qω(t) = αω(A−1

ω (t)).

It is assumed that the functions G1, G2 are proportional, i. e., there exists real β
such that G1(t) = G0(t), G2(t) = eβG0(t) for all t ∈ [0, τ ]. The baseline cumulative
rate G0 is unknown and not specified parametrically. Denote by R the survival time
(distributed according to Sk in the kth sample). It is easily verified that in the
kth sample the transformed survival time Gk(R) follows the distribution Sω. This
implies the multiplicative model G0(R) = e−βzkω, equivalently the linear model
log G0(R) = −βzk + log ω, where zk = 1[k = 2]. That is, after the unknown
transformation log G0 the survival times follow a location-shift model in the known
error distribution of log ω.

Both main models, proportional hazards and proportional odds, fit in this frame-
work.

The proportional hazards model is obtained for ω following the unit exponential
distribution, that is Sω(t) = e−t, Aω(t) = t, αω(t) = qω(t) = 1. Then the cumulative
rate Gk is the cumulative hazard Ak, gk is the hazard rate αk, and the model for
log G0(R) is a location model in the extreme value distribution.

When ω comes from the log-logistic distribution with Sω(t) = 1/(1 + t), Aω(t) =
log(1 + t), αω(t) = 1/(1 + t) and qω(t) = e−t, we get the proportional odds model
since the cumulative rate Gk has the meaning of the odds function (because Gk(t) =
S−1

ω (Sk(t)) = (1 − Sk(t))/Sk(t)). The rate gk(t) = dGk(t)/dt may be called the
odds-rate. The transformed time log G0(R) has a shifted logistic distribution. In
this model the hazard rates are αk(t) = eβzkg0(t)/(1 + eβzkG0(t)). Thus the hazard
ratio eβ(1 + G0(t))/(1 + eβG0(t)) converges to 1 as t → ∞, and this convergence
is monotonic (from above when eβ > 1, from below when eβ < 1). Therefore, this
model is a popular alternative to proportional hazards when the hazards appear to
approach to each other for large times.

Reliability theory provides a different view of transformation models. The func-
tion Sω is called resource, and Gk is the rate of resource usage. So in the proportional
hazards model there are proportional rates of the exponential resource usage, in pro-
portional odds the resource is log-logistic. Another example is a lognormal resource.

Linear transformation models are related to frailty models. Let U be frailty
variables, i. e., unobservable positive random variables with a known distribution
with expectation 1 which act multiplicatively on the hazard rate. That is, the
conditional hazard of observations in the kth sample is αk(t|U = u) = eβzkg0(t)u.
Then the marginal survival function is Sk(t) = E Sk(t|U) = E exp{−eβzkG0(t)U} =
LU (eβzkG0(t)), where LU denotes the Laplace transform of the distribution of U .
When R comes from the kth sample, the survival function of eβzkG0(R) is LU
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(because Sk(R) is uniformly distributed). Hence the Laplace transform LU of the
frailty distribution equals the survival function Sω of the error variable ω in the
transformation model. Also, as the conditional (on U = u) proportional hazards
model eβzkg0(t)u is the transformation model log G0(R) = −βzk − log u + log ω0

with log ω0 being extreme-value distributed, we see that log G0(R) unconditionally
follows a tranformation model with errors log ω = − log U + log ω0 (thus the error
distribution is the distribution of the difference of an extreme-value variable and
log U , which are independent).

A model without frailties (U = 1 a. s.) has LU (t) = Sω(t) = e−t, thus it is
a proportional hazards model. When frailties are unit exponential, LU (t) = Sω(t) =
1/(1 + t), so the model is a proportional odds model. This agrees with the fact that
the difference of two independent extreme-value variables (log ω0 and log U) is lo-
gistic. More generally, if frailties are gamma distributed with parameters (1/v, 1/v)
(expectation 1, variance v), it follows that LU (t) = Sω(t) = (1+vt)−1/v, αω(t) = (1+
vt)−1. This model is the proportional generalised odds model of Dabrowska and Dok-
sum [8] (in this model Gk are the generalised odds functions v−1(1−Sk(t)v)/Sk(t)v,
they are proportional, while the hazard rates αk(t) = eβzkg0(t)/(1 + veβzkG0(t))
converge to each other).

Section 2 explains the simplified partial likelihood estimation procedure needed
in subsequent considerations. In Section 3, I develop Neyman’s smooth test of the
proportional rates assumption, the main contribution of the paper. Section 4 reviews
and extends some other testing methods. Smooth tests and other procedures are
compared via simulations reported in Section 5. A real data illustration can be found
in Section 6. Technical material (theorems and proofs) is deferred to Section 7 which
closes the paper.

2. ESTIMATION PROCEDURE

Let data consist of pairs (Tj,i, δj,i), j = 1, 2, i = 1, . . . , nj , where Tj,i = min(Rj,i, Cj,i)
are possibly censored survival times Rj,i (Rj,i are independent, with hazard function
αj), δj,i = 1[Tj,i = Rj,i] are failure indicators, and censoring times Cj,i are mutually
independent and independent of Rj,i. The standard counting process notation is
used. Set Nj,i(t) = 1[Tj,i ≤ t, δj,i = 1], N̄j(t) =

∑nj

i=1 Nj,i(t), N̄(t) = N̄1(t) + N̄2(t),
Yj,i(t) = 1[Tj,i ≥ t], Ȳj(t) =

∑nj

i=1 Yj,i(t). Let these processes be observed on a finite
interval [0, τ ].

For estimation of β, I use the procedure of Bagdonavičius and Nikulin [4] based
on a simplification of the partial likelihood as follows. The partial likelihood takes
the form

C(τ ; β,A1, A2) =
2∑

j=1

nj∑

i=1

∫ τ

0

log

(
λj,i(t)∑2

k=1

∑nk

l=1 λk,l(t)

)
dNj,i(t)

=

∫ τ

0

log[qω(A1(t))] dN̄1(t) +

∫ τ

0

log[qω(A2(t))e
β ] dN̄2(t)

−
∫ τ

0

log[Ȳ1(t)qω(A1(t)) + Ȳ2(t)qω(A2(t))e
β ] dN̄(t).
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Here A1, A2 depend on β which complicates differentiation when we want to derive
a score equation. However, A1, A2 can be estimated directly without knowing β
by Nelson–Aalen estimators Âj(t) =

∫ t

0
Ȳj(s)

−1dN̄j(s) computed separately in each

sample. Therefore, we work with C(τ ; β, Â1, Â2) instead of C(τ ; β,A1, A2). Here it
considerably simplifies calculations, especially when taking derivatives with respect
to β. Then the score vector ∂

∂β C(τ ; β, Â1, Â2) is U1(τ ;β, Â1, Â2), where the score
process equals

U1(t; β,A1, A2) = N̄2(t) −
∫ t

0

Ȳ2(s)qω(A2(s))e
β

Ȳ1(s)qω(A1(s)) + Ȳ2(s)qω(A2(s))eβ
dN̄(s)

=

∫ τ

0

Ȳ1(s)qω(A1(s))Ȳ2(s)qω(A2(s))

Ȳ1(s)qω(A1(s)) + Ȳ2(s)qω(A2(s))eβ

×
(

dN̄2(s)

Ȳ2(s)qω(A2(s))
− eβ dN̄1(s)

Ȳ1(s)qω(A1(s))

)
. (1)

The estimator β̂ of the parameter β is defined as the maximiser of C(τ ; β, Â1, Â2),
that is, by concavity of C as a function of β, the solution to U1(τ ; β, Â1, Â2) = 0.
(Here and further in the paper, the left-continuous version of the Nelson–Aalen
estimator Âj(t−) is used in the integrand in C and U1 to preserve predictability.)

Note that for the proportional hazards model (qω ≡ 1) this estimation procedure
agrees with the usual partial likelihood method.

Having computed β, one can obtain a Breslow-type model-based estimator of G0

(= G1) in the form

Ĝ0(t) =

∫ t

0

dN̄(s)

Ȳ1(s)qω(Â1(s)) + Ȳ2(s)qω(Â2(s))eβ̂
.

Before proceeding to main results we need to know that the simplified partial
likelihood estimation procedure yields a consistent estimator of β. This is verified
by Lemma 1 in Section 7.

Other estimation procedures have been developed for regression models with gen-
eral covariates. Bagdonavičius and Nikulin [3] use the modified partial likelihood.
Variants of this approach are reviewed in Section 8.2 of Martinussen and Scheike
[15]. Murphy, Rossini and van der Vaart [16] propose the full nonparametric maxi-
mum likelihood estimation. Chen, Jin and Ying [6] develop a method based on the
iterative solution of certain martingale estimating equations.

3. NEYMAN’S SMOOTH TEST

The general idea of Neyman’s smooth test (see Rayner and Best [17]) is based on
embedding the null model into a model where the departure from the null is expressed
by a d-dimensional parameter. That is, the general alternative that the hypothesis
does not hold is replaced by a d-dimensional alternative. In the present context the
null model assumes that the ratio of rates is constant over time, i. e., g2(t) = eβg1(t).
Thus the Neyman embedding is most conveniently and most naturally formulated in
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terms of these transformation rates gk(t) = dGk(t)/dt. Under the alternative model
the logarithm of the time-varying rate ratio is expressed as a linear combination of
some bounded basis functions ψ1(t), . . . , ψd(t), that is

g2(t) = exp{β + θTψ(t)}g1(t). (2)

These functions must be linearly independent and independent of 1 (then the model
is identifiable). The Neyman-type smooth test of goodness of fit of the proportional
rate model is the score test of θ = 0 versus θ 6= 0 in (2).

In the proportional hazards model the formulation of the embedding in terms
of the noncumulative rates gk is the obvious choice because gk is the hazard rate
and the name of the model actually contains the word hazard. On the other hand,
in the proportional odds model one can be tempted to work directly with the odds
functions Gk = Γk. This is not a good idea because Gk is an increasing (cumulative)
function, thus in a model like G2(t) = exp{β+θTψ(t)}G1(t) one would have to work
with some monotonicity constraints. On the contrary, noncumulative rates may be
arbitrary positive which poses no restrictions on β and ψj in (2).

The functions ψj(t) are typically some standard basis functions on [0, 1] in trans-
formed time, i. e., of the form ψj(t) = φj(P (t)/P (τ)), where φj(u), u ∈ [0, 1], are, for
instance, Legendre polynomials of order 1, . . . , d, or cosines

√
2 cos(jπu). The time-

transformation P (t) is a nondecreasing nonnegative continuous function with P (0) =
0, thus P (t)/P (τ) maps [0, τ ] on [0, 1]. Although P (t) can be any function with these
properties, it should be related to the underlying distribution as its purpose is to
make the course of time in some sense uniform and hence better exploit the flexibility
of the shape of φj , see [12] for a discussion. Therefore, in practice P (t) is replaced by

a data-dependent estimator P̂ (t). Here I use P̂ ∗(t) = 1−exp{−Â∗(t)}, where Â∗(t) is
the Nelson–Aalen estimator computed from the pooled sample. The quantity Â∗(t)
consistently estimates A∗(t) =

∫ t

0
ȳ1(s)/ȳ(s) dA1(s) +

∫ t

0
ȳ2(s)/ȳ(s) dA2(s), where

ȳj(t) = ajSj(t)(1 − Cj(t)) denotes the uniform limit in probability of n−1Ȳj(t),
Cj(t) is the distribution function of censoring times and aj ∈ (0, 1) is the limit
of nj/n (see Section 7 for details). If the censoring distribution is the same in

both samples (C1(t) = C2(t)), the limit of P̂ ∗(t) is the distribution function cor-
responding to the mixture of survival distributions S1, S2 with weights a1, a2, i. e.,
P ∗(t) = a1(1 − S1(t)) + a2(1 − S2(t)). Thus P ∗(t) is the distribution of a ‘typical’
observation.

Now let us finally derive the score test of significance of θ. If C(τ ; β, θ, Â1, Â2)
denotes the simplified partial likelihood in the extended model (2), the score vector
for inference about θ is U2(τ ; β, θ, Â1, Â2) = ∂

∂θC(τ ; β, θ, Â1, Â2). The score test of

significance of θ employs the score vector U2(τ ; β̂, 0, Â1, Â2), denoted U2(τ ; β̂, Â1, Â2)
for short. Notice that

U2(τ ; β,A1, A2) =

∫ τ

0

ψ(t)U1( dt; β,A1, A2).

In Section 7, I show that the score n−1/2U2(τ ; β̂, Â1, Â2) is asymptotically (with
n → ∞) normal with mean zero and variance matrix consistently estimated by n−1Ξ̂
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given by (8). Consequently, the distribution of the quadratic test statistic

Td = U2(τ ; β̂, Â1, Â2)
TΞ̂−1U2(τ ; β̂, Â1, Â2)

is approximately χ2 with d degrees of freedom. Large values of Td lead to rejection
of the hypothesis.

I consider a data-driven version of Neyman’s smooth test. The problem of
choosing the suitable number of basis functions is addressed by the approach pro-
posed by Ledwina in [13] based on a modification of Schwarz’s selection rule. The
number of basis functions is the maximiser of penalised score statistics, i. e., S =
arg maxk=1,...,d{Tk − k log n}. The data-driven test statistic is TS . Under the null
hypothesis, the selector S converges in probability to 1, and thus TS is asymp-
totically χ2-distributed with one degree of freedom. This approximation is known
to be inaccurate (seriously anticonservative). Therefore, a more accurate two-term
approximation provided in [12, eq. (12)] is used.

4. OTHER TESTS

4.1. Komogorov–Smirnov-type test

A simple test can be based on the simplified partial likelihood score process
U1(t; β̂, Â1, Â2), t ∈ [0, τ ]. When the fit of the proportional rate model is good,
this process fluctuates around zero. When the model is not valid, the score process
is expected to be far from zero. This may be measured by the Kolmogorov–Smirnov-
type statistic supt∈[0,τ ] |U1(t; β̂, Â1, Â2)|. Wei [21] used this test for the two-sample
proportional hazards model (Aω(t) = t), Bagdonavičius and Nikulin [4] extended it
to general two-sample transformation models.

Bagdonavičius and Nikulin [4] proved that under the proportional rate model
the score process is asymptotically Gaussian with mean zero. In the present paper
this convergence is proved (Lemma 3 in Section 7) as an intermediate result for
the proof of the asymptotic distribution of the Neyman test statistic. The process
is of the bridge type (equal to zero at times 0 and τ). In the special case of the
proportional hazards model the score process converges to the Brownian bridge. In
general, however, its limiting covariance structure is complicated and one has to
resort to simulations. The standard resampling technique of Lin, Wei and Ying [14]
(see also Martinussen and Scheike [15]) can be used as the martingale representation
is available, see eqs. (6) and (7). We obtain simulated paths of the test process by
replacing unobservable martingale increments dMk,i(t) at failure times by randomly
generated independent standard normal variables.

4.2. Gill–Schumacher-type test

Gill and Schumacher [11] proposed a simple procedure for verifying proportionality
of hazard functions in two samples. The idea is to compare two weighted estimators
of the hazard ratio. Here I use their idea and extend this approach to the general
transformation setting.
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Consider a weight function K(t), t ∈ [0, τ ], which is a nonnegative predictable
process. Assume that n−1K(t) converges in probability to some deterministic func-
tion k(t), uniformly in t ∈ [0, τ ]. Then the proportionality parameter η = eβ =
g2(t)/g1(t) may be estimated by

η̂ =

∫ τ

0
K(t) dĜ2(t)∫ τ

0
K(t) dĜ1(t)

.

The variable η̂ converges to {
∫ τ

0
k(t)g2(t) dt}/{

∫ τ

0
k(t)g1(t) dt} = η. Now con-

sider weights K1,K2 with the same properties as K. Denote η̂j = ρ̂j2/ρ̂j1,

ρ̂jk =
∫ τ

0
n−1Kj(t) dĜk(t), j = 1, 2, k = 1, 2. Under the null hypothesis both η̂1 and

η̂2 consistently estimate η, hence their difference η̂2 − η̂1 will fluctuate around zero.
On the other hand, when the rate ratio g2(t)/g1(t) is nonconstant and K1 and K2

emphasize time periods with different values of g2(t)/g1(t), the difference η̂2 − η̂1

will be far from zero. Following [11], rewrite

η̂2 − η̂1 =
ρ̂22ρ̂11 − ρ̂21ρ̂12

ρ̂21ρ̂11
,

and use ρ̂22ρ̂11− ρ̂21ρ̂12 as the test statistic. In Section 7, this statistic is shown to be
asymptotically zero-mean normal, a variance estimator is provided, and a consistency
result is given (the test is consistent against monotonic rate ratios provided the limit
of K2(t)/K1(t) is monotonic).

For testing proportional hazards Gill and Schumacher [11] discussed
several choices of the weight functions and recommended the logrank
weight Ȳ1(t)Ȳ2(t)/(Ȳ1(t) + Ȳ2(t)) and the Prentice–Wilcoxon weight
Ŝ∗(t−)Ȳ1(t)Ȳ2(t)/(Ȳ1(t) + Ȳ2(t)), where Ŝ∗(t−) is the left-continuous Kaplan–
Meier estimator computed from the combined sample. In transformation models
analogs of these weights are

Ȳ1(t)qω(Â1(t−))Ȳ2(t)qω(Â2(t−))

Ȳ1(t)qω(Â1(t−)) + Ȳ2(t)qω(Â2(t−))
, Ŝ∗(t−)

Ȳ1(t)qω(Â1(t−))Ȳ2(t)qω(Â2(t−))

Ȳ1(t)qω(Â1(t−)) + Ȳ2(t)qω(Â2(t−))
.

(3)

Note that a test related to that of Gill and Schumacher [11] was proposed by Sen-
gupta, Bhattacharjee and Rajeev [18]. They focused on alternatives where the cu-
mulative hazard ratio A2(t)/A1(t) is monotonic, which is a slightly broader class of
alternatives than alternatives with monotonic α2(t)/α1(t). Dauxois and Kirmani [9]
applied their idea to testing proportional odds against monotonic Γ2(t)/Γ1(t). These
tests are based on statistics of the same form ρ̂22ρ̂11 − ρ̂21ρ̂12 but with ρ̂jk defined as∫ τ

0
Kj(t)Ĝk(t) dt instead of

∫ τ

0
Kj(t) dĜk(t). Unlike the Gill–Schumacher-type tests,

these tests are not rank tests as they depend on the actual spaces between event
times due to the Lebesgue integration.

5. SIMULATION STUDY

I carried out a simulation study of the behaviour of three tests of proportionality:
the data-driven smooth test (TS), the Kolmogorov–Smirnov (KS) test and the Gill–
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Table 1. Scenarios for the simulation study.

25% cens. 45% cens.
α1(t) α2(t) (a, b) (a, b)

A (Prop. hazards) 0.5 2 (0, 5) (0, 2)
B (Prop. odds) e−1(1 + e−1t)−1 e1.5(1 + e1.5t)−1 (2, 5) (0, 3)
C (Monot. ratios) 1 5

3 t2/3 (0, 3.8) (0, 2)
D (Nonmon. rat.) 0.75 3

2 (t − 1)2 (0, 5.5) (0, 3)

Table 2. Estimated rejection probabilities on the nominal level 5 % for configurations

A to D with 25% and 45% censoring proportions. Sample sizes n1 = n2 = 50.

Figures based on 10 000 simulation repetitions (standard deviation 0.005).

A B C D
25% 45% 25% 45% 25% 45% 25% 45%

Hypothesis: proportional hazards
TS 0.056 0.048 0.322 0.169 0.577 0.417 0.926 0.692
KS 0.052 0.050 0.528 0.322 0.595 0.487 0.584 0.493
GS 0.042 0.034 0.249 0.076 0.707 0.548 0.122 0.172

Hypothesis: proportional odds
TS 0.414 0.220 0.052 0.049 0.507 0.314 0.926 0.683
KS 0.218 0.114 0.043 0.044 0.490 0.358 0.304 0.505
GS 0.221 0.153 0.021 0.024 0.525 0.388 0.058 0.293

Schumacher (GS) test. I repeatedly (10 000 times) generated two samples (each of
size 50) of survival times under four scenarios. These include proportional hazards,
proportional odds, and monotonic and nonmonotonic ratios of hazard rates and odds
rates. Survival times were censored by independent variables distributed uniformly
on intervals (a, b) adjusted to produce approximately 25% and 45% censored obser-
vations. Parameters of the simulation design are summarised in Table 1. On the level
of 5%, tests of both proportional hazards and proportional odds were performed.
The Kolmogorov–Smirnov test was performed with 1000 resampled processes. The
data-driven smooth test was used with d = 5, with the Legendre polynomial basis,
with the two-term approximation of the distribution of the test statistic. The GS
test used the weights (3), the statistic was compared to asymptotic critical points.

Table 2 reports estimates of rejection probabilities. It is seen that Neyman’s test
and the Kolmogorov–Smirnov test preserve the level very well (see scenario A for
proportional hazards and B for proportional odds). The Gill–Schumacher test tends
to be slightly conservative, mainly under proportional odds. Under alternatives
with monotonic ratios of hazard and/or odds rates (A–C), the overall performance
seems to be comparable for all three tests. In the nonmonotonic situation D, it is
no surprise that the Gill–Schumacher-type test does not do well as it is designed
to be sensitive against monotonic alternatives. The main message of the results
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Fig. Estimated cumulative hazards and odds functions for the chronic active hepatitis

data. Upper row: cumulative hazards (left panel) and log-cumulative hazards (right).

Lower row: odds (left) and log-odds functions (right). In each plot: solid curves are

estimates computed separately for the treatment group (lower curves) and control group

(upper curves), dashed lines show corresponding model-based estimates. Time from the

beginning of the trial is in months.

concerning the power of the proposed smooth test is that this test maintains stable
power for a variety of departures from proportionality. I performed simulations for
other combinations of distributions, and never met a situation where the smooth
test dramatically lost compared to the other methods.

6. ILLUSTRATION

A real example is taken from Collett [7, Appendix D.1]. The data concern survival
times of patients with chronic active hepatitis. There were 44 patients, 22 of them
(randomly selected) received a drug (11 died, 11 were censored), the remaining 22
were in the control group (16 deaths, 6 survivors). Figure displays estimates of
cumulative hazards, odds functions, and their logarithms (i. e., complementary log-
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Table 3. Results of tests of fit for the chronic active hepatitis data.

Proportional hazards Proportional odds
Statistic p-value Statistic p-value

T1 2.09 0.148 0.45 0.502
T2 7.71 0.021 5.36 0.069
T3 7.85 0.049 5.67 0.129
T4 8.30 0.081 6.09 0.192
T5 9.36 0.096 7.29 0.200
TS 7.71 0.005 5.36 0.061
KS 3.00 0.052 2.53 0.169
GS 1.23 0.220 0.46 0.648

log and logit transform of the Kaplan–Meier estimate). These estimates obtained
separately from each sample are plotted by solid lines. If the proportional assumption
holds, the vertical distance between log-curves should be approximately constant.
Estimates based on proportional rate models are plotted by dashed lines. Results of
goodness-of-fit tests are summarised in Table 3.

The partial likelihood estimate in the proportional hazards model is β̂ = 0.826

(eβ̂ = 2.28). The data-driven smooth test (with maximum dimension d = 5) rejects
the hypothesis of proportional hazards. Schwarz’s selection rule selects two basis
functions (the linear and quadratic Legendre polynomial), which corresponds to the
fact that the hazard ratio appears to be nonmonotonic. The quadratic function
contributes to the description of the hazard ratio most; using more than two basis
functions does not increase the statistic much. The Gill–Schumacher test does not re-
ject the hypothesis of proportionality (the logrank and Prentice–Wilcoxon weighted
estimates of η = eβ are 2.37 and 2.73, respectively) as this test is focused against
alternatives with monotonic ratios.

If we are interested in the proportional odds model, the simplified partial likeli-

hood procedure gives the estimate β̂ = 1.29 (eβ̂ = 3.63), and two weighted estimates
used in the Gill–Schumacher test are η̂1 = 3.74, η̂2 = 3.93 (with weights (3)). Plots
of (log-)odds functions indicate a similar type of departure from proportionality as
plots of cumulative hazards; results, however, do not lead to rejection on the 5%
level.

7. ASYMPTOTIC RESULTS

7.1. Assumptions

It is assumed that n−1Ȳj(t), j = 1, 2, converge in probability uniformly in t ∈ [0, τ ] to
some functions ȳj(t) bounded away from zero. This is satisfied if nj/n → aj ∈ (0, 1),
Sj(τ) > 0 and 1 − Cj(τ) > 0 (Cj is the distribution function of censoring variables)
because then by the Glivenko–Cantelli theorem ȳj(t) = ajSj(t)(1 − Cj(t)).

Further assume that qω(t) = αω(A−1
ω (t)) is continuously differentiable on [0, τ ].

For both main examples this is satisfied (qω(t) = 1 for proportional hazards, qω(t) =
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e−t for proportional odds). Denote the derivative q̇ω(t).

7.2. Consistency of the estimation procedure

Lemma 1. (Convergence of β̂) Assume that the rate ratio g2(t)/g1(t) is eβ0(t),

i. e., it may or may not be constant. Then the estimator β̂ defined as the solution
to U1(τ ; β, Â1, Â2) = 0 converges in probability to the solution β̄ to the limiting
estimating equation

∫ τ

0

ȳ1(t)qω(A1(t))ȳ2(t)qω(A2(t))

ȳ1(t)qω(A1(t)) + ȳ2(t)qω(A2(t))eβ̄
(eβ0(t) − eβ̄) g0(t) dt = 0. (4)

Specifically, if the proportional rate model holds (β0 is constant), β̂ consistently
estimates β0.

P r o o f . The proof is analogous to that for the Cox model (see Theorem 8.3.1 of
Fleming and Harrington [10] or Theorem VII.2.1 of Andersen, Borgan, Gill and Kei-
ding [1], and also Struthers and Kalbfleisch [19]). The maximiser of C(τ ; β, Â1, Â2)
is the same as the maximiser of

n−1(C(τ ; β, Â1, Â2) − C(τ ; β̄, Â1, Â2))

= n−1(β − β̄)N̄2(τ)

−n−1

∫ τ

0

log

(
Ȳ1(t)qω(Â1(t−)) + Ȳ2(t)qω(Â2(t−))eβ

Ȳ1(t)qω(Â1(t−)) + Ȳ2(t)qω(Â2(t−))eβ̄

)
dN̄(t)

= n−1(β − β̄)Λ̄2(τ)

−n−1

∫ τ

0

log

(
Ȳ1(t)qω(Â1(t−)) + Ȳ2(t)qω(Â2(t−))eβ

Ȳ1(t)qω(Â1(t−)) + Ȳ2(t)qω(Â2(t−))eβ̄

)
dΛ̄(t)

+n−1(β − β̄)M̄2(τ)

−n−1

∫ τ

0

log

(
Ȳ1(t)qω(Â1(t−)) + Ȳ2(t)qω(Â2(t−))eβ

Ȳ1(t)qω(Â1(t−)) + Ȳ2(t)qω(Â2(t−))eβ̄

)
dM̄(t).

Here the last two terms converge to zero by Lenglart’s inequality. Hence, by the uni-
form consistency of Nelson–Aalen estimators, n−1(C(τ ;β, Â1, Â2)−C(τ ; β̄, Â1, Â2))
converges in probability to

(β − β̄)

∫ τ

0

ȳ2(t)qω(A2(t))e
β0(t)g0(t) dt

−
∫ τ

0

log

(
ȳ1(t)qω(A1(t)) + ȳ2(t)qω(A2(t))e

β

ȳ1(t)qω(A1(t)) + ȳ2(t)qω(A2(t))eβ̄

)

× [ȳ1(t)qω(A1(t)) + ȳ2(t)qω(A2(t))e
β0(t)]g0(t) dt. (5)

Then, in the light of concavity of n−1(C(τ ; β, Â1, Â2)−C(τ ; β̄, Â1, Â2)), Lemma 8.3.1
in [10] (see also Appendix II in [2]) yields that the maximiser of n−1(C(τ ;β, Â1, Â2)−
C(τ ; β̄, Â1, Â2)) converges in probability to the maximiser of (5), which is by con-
cavity the solution to (4). ¤
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7.3. Asymptotics for Neyman’s test

Lemma 2. The process n−1/2U1(·; β0, Â1, Â2) is asymptotically distributed as the
process

V1(t) =

∫ t

0

l12(s) dV12(s)−
∫ t

0

l11(s) dV11(s)−
∫ t

0

V12(s) dh12(s)+

∫ t

0

V11(s) dh11(s),

where V1j are independent zero-mean continuous Gaussian martingales with vari-

ance functions
∫ t

0
ȳj(s)

−1dAj(s), and the functions h1j and l1j are uniform limits in
probability of n−1H1j and n−1L1j defined below in the proof.

P r o o f . By the martingale central limit theorem, the process n1/2(Â1−A1, Â2−A2)
converges in distribution to (V11, V12), which is a standard result on the Nelson–
Aalen estimator. Rewrite U1(t; β0, Â1, Â2) completely in terms of Âj as follows

U1(t; β0, Â1, Â2) =

∫ τ

0

Ȳ1(s)qω(Â1(s))

Ȳ1(s)qω(Â1(s)) + Ȳ2(s)qω(Â2(s))eβ0

Ȳ2(s) dÂ2(s)

−
∫ τ

0

Ȳ2(s)qω(Â2(s))e
β0

Ȳ1(s)qω(Â1(s)) + Ȳ2(s)qω(Â2(s))eβ0

Ȳ1(s) dÂ1(s).

When in this expression Âj are replaced by Aj , the result is zero. Thus the asymp-

totic distribution of U1(t;β0, Â1, Â2) (minus zero) can be inferred from that of
Âj − Aj with the help of the functional delta method. Using the chain rule and
a lemma on differentiation of integration (Proposition II.8.6 in [1] or Lemma 3.9.17
in [20]), we obtain that n−1/2U1(t; β0, Â1, Â2) is asymptotically equivalent to

∫ t

0

n−1L12(s)n
1/2(dÂ2(s) − dA2(s)) −

∫ t

0

n−1L11(s)n
1/2(dÂ1(s) − dA1(s))

−
∫ t

0

n1/2(Â2(s) − A2(s))n
−1dH12(s) +

∫ t

0

n1/2(Â1(s) − A1(s))n
−1dH11(s), (6)

where

L11(t) =
Ȳ1(t)Ȳ2(t)qω(A2(t))e

β0

Ȳ1(t)qω(A1(t)) + Ȳ2(t)qω(A2(t))eβ0
,

L12(t) =
Ȳ1(t)qω(A1(t))Ȳ2(t)

Ȳ1(t)qω(A1(t)) + Ȳ2(t)qω(A2(t))eβ0
,

H11(t) =

∫ t

0

Ȳ1(s)q̇ω(A1(s))Ȳ2(s)qω(A2(s))e
β0

[Ȳ1(s)qω(A1(s)) + Ȳ2(s)qω(A2(s))eβ0 ]2
[Ȳ1(s)dA1(s) + Ȳ2(s) dA2(s)],

H12(t) =

∫ t

0

Ȳ1(s)qω(A1(s))Ȳ2(s)q̇ω(A2(s))e
β0

[Ȳ1(s)qω(A1(s)) + Ȳ2(s)qω(A2(s))eβ0 ]2
[Ȳ1(s) dA1(s) + Ȳ2(s) dA2(s)].

¤
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Lemma 3. The process n−1/2U1(·; β̂, Â1, Â2) is asymptotically distributed as the
process V1(t) − d1(t;β0, A1, A2)d1(τ ; β0, A1, A2)

−1V1(τ), where V1 is the process of
Lemma 2 and the function d1(t; β,A1, A2) is the uniform limit in probability of
n−1D1(t; β, Â1, Â2) defined below.

P r o o f . The proof follows by Lemma 2 after a straightforward use of Taylor’s
expansion which gives

n−1/2U1(t; β̂, Â1, Â2) = n−1/2U1(t; β0, Â1, Â2) − n−1D1(t;β
∗
t , Â1, Â2)n

1/2(β̂ − β0)

= n−1/2U1(t; β0, Â1, Â2) − {n−1D1(t; β
∗
t , Â1, Â2)}{n−1D1(τ ; β∗

τ , Â1, Â2)}−1

× n−1/2U1(t;β0, Â1, Â2), (7)

where β∗
t lies on the line segment between β0 and β̂, and

D1(t; β, Â1, Â2) = − ∂

∂β
U1(t; β, Â1, Â2)

=

∫ t

0

Ȳ1(s)qω(Â1(s))Ȳ2(s)qω(Â2(s))e
β

[Ȳ1(s)qω(Â1(s)) + Ȳ2(s)qω(Â2(s))eβ ]2
dN̄(s).

¤

Theorem 1. (Asymptotic distribution of the score) The score vector

n−1/2U2(τ ; β̂, Â1, Â2) converges in distribution to a mean zero Gaussian vector with
variance matrix that is consistently estimated by n−1Ξ̂ given below in (8).

P r o o f . By Taylor’s expansion about β0,

n−1/2U2(τ ; β̂, Â1, Â2) = n−1/2U2(τ ; β0, Â1, Â2)

− n−1D2(τ ; β∗∗, Â1, Â2){n−1D1(τ ; β∗, Â1, Â2)}−1n−1/2U1(τ ;β0, Â1, Â2),

where D2(τ ; β, Â1, Â2) = − ∂
∂β U2(τ ; β, Â1, Â2), and β∗ and β∗∗ are on the line

segment between β0 and β̂ (to be technically precise, note that each component of

D2 has its own β∗∗, all between β0 and β̂).
The variables n−1D1(τ ; β∗, Â1, Â2), n

−1D2(τ ; β∗∗, Â1, Â2) converge in probability
to d1(τ ; β0, A1, A2), d2(τ ; β0, A1, A2), respectively, where d1 is explained in Lemma 3
and d2(τ ;β,A1, A2) =

∫ τ

0
ψ(t)d11( dt; β,A1, A2). The (1 + d)-dimensional vector

n−1/2(U1(τ ; β0, Â1, Â2), U2(τ ; β0, Â1, Â2)
T)T jointly converges weakly to the zero-

mean Gaussian vector (V1(τ), V2(τ)T)T with V1 given in Lemma 3 and V2(τ) =∫ τ

0
ψ(t)V1(t).
Let us derive suitable variance estimators. Integrating by parts (or using Fu-

bini’s theorem) in (6) yields that n−1/2U1(τ ; β0, Â1, Â2) has the same asymptotic
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distribution as
∫ τ

0

n−1[L12(t) + H12(t))]n
1/2(dÂ2(s) − dA2(s))

− n−1H12(τ)n1/2(Â2(τ) − A2(τ))

−
∫ τ

0

n−1[L11(t) + H11(t)]n
1/2(dÂ1(s) − dA1(s))

+ n−1H11(τ)n1/2(Â1(τ) − A1(τ)).

For n−1/2U2(τ ; β0, Â1, Â2) we get an analogous expression with L2j(t) = ψ(t)L1j(t)

instead of L1j(t) and H2j(t) =
∫ t

0
ψ(s) dH1j(s) instead of H1j(t). Thus

the asymptotic variance Σ11 of n−1/2U1(τ ; β0, Â1, Â2), covariance vector Σ21

of n−1/2U2(τ ; β0, Â1, Â2), n−1/2U1(τ ; β0, Â1, Â2), and variance matrix Σ22 of
n−1/2U2(τ ; β0, Â1, Â2) can be consistently estimated by

n−1Σ̂kk′

=
2∑

j=1

∫ τ

0

n−1[L̂kj(t) + Ĥkj(t) − Ĥkj(τ)][L̂k′j(t) + Ĥk′j(t) − Ĥk′j(τ)]T
dÂj(t)

Ȳj(t)
,

k, k′ = 1, 2. Here L̂kj and Ĥkj are defined like Lkj and Hkj with β0, A1, A2 re-

placed by β̂, Â1, Â2 (with left-continuous Nelson–Aalen estimators in integrands be-
cause of predictability). The very final conclusion is that the asymptotic variance of

n−1/2U2(τ ; β̂, Â1, Â2) is estimated by

n−1Ξ̂ = n−1Σ̂22 − n−1D̂2D̂
−1
1 Σ̂T

21 − n−1Σ̂21D̂
−1
1 D̂T

2 + n−1D̂2D̂
−1
1 Σ̂11D̂

−1
1 D̂T

2 (8)

(having set D̂k = Dk(τ ; β̂, Â1, Â2)). ¤

Theorem 2. (Consistency of Neyman’s test) Assume that the true rate ratio is
time-varying of the form eβ0(t). Let β̄ be as in Lemma 1. Suppose that the basis
functions satisfy the condition

∫ τ

0

ψ(t)
ȳ1(t)qω(A1(t))ȳ2(t)qω(A2(t))

ȳ1(t)qω(A1(t)) + ȳ2(t)qω(A2(t))eβ̄
(eβ0(t) − eβ̄) g0(t) dt 6= 0 (9)

(at least one component differs from zero). Then the rejection probability of Ney-
man’s test approaches 1 as n → ∞.

P r o o f . In view of the definition U2(τ ; β̂, Â1, Â2) =
∫ τ

0
ψ(t)U1( dt; β̂, Â1, Â2) and

Lemma 1, n−1U2(τ ; β̂, Â1, Â2) converges in probability to the left-hand side of (9).
The variance matrix estimator n−1Ξ̂ converges to some finite matrix. Thus n−1

times the score test statistic converges in probability to a nonzero number. ¤

The consistency condition means, loosely speaking, that the choice of the basis
functions is not ‘completely wrong’. More precisely, the left-hand side of (9) is the
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limiting estimating equation for the parameters θ = (θ1, . . . , θd)
T in the smooth

model (2) evaluated at θ = 0. The inequality (9) means that θ = 0 does not solve
the estimating equation, that is, the basis function contribute to the description
of the true time-varying rate ratio. In other words, the test is consistent against
alternatives whose projection on the smooth model (2) does not fall to the null
model.

7.4. Asymptotics for the Gill–Schumacher test

Assume that n−1Kj(t), j = 1, 2, converge in probability uniformly in t ∈ [0, τ ]
to some functions kj(t) bounded away from zero. For instance, the logrank-type
and Prentice–Wilcoxon-type weights (3) satisfy this condition by the convergence of
n−1Ȳj(t) and the Kaplan–Meier estimator.

Theorem 3. (Asymptotic distribution of the GS statistic) Under the null hypoth-
esis of proportionality of g1, g2, the test statistic n1/2(ρ̂22ρ̂11 − ρ̂21ρ̂12) is asymptoti-
cally normal with mean zero and variance given by (11) below, which is consistently
estimated by (12).

P r o o f . Denote ρjk =
∫ τ

0
kj(t) dGk(t) and rewrite

ρ̂22ρ̂11 − ρ̂21ρ̂12 = (ρ̂22 − ρ22)ρ̂11 + (ρ̂11 − ρ11)ρ22 − (ρ̂21 − ρ21)ρ̂12

− (ρ̂12 − ρ12)ρ21 + ρ22ρ11 − ρ21ρ12. (10)

Under the hypothesis it is ρj2 = ηρj1, hence the last two terms together are zero.
Further, ρ̂jk converges in probability to ρjk. It remains to explore the weak conver-
gence of n1/2(ρ̂jk − ρjk) jointly for j = 1, 2, k = 1, 2.

Recall that Gk(t) = A−1
ω (Ak(t)) and Ĝk(t) = A−1

ω (Âk(t)). By the functional
delta method n1/2(Ĝk(·) − Gk(·)) is asymptotically equivalent to

1

qω(Ak(·))n1/2(Âk(·) − Ak(·)).

Thus, the asymptotic distribution of n1/2(ρ̂jk − ρjk) is the same as the asymptotic
distribution of

∫ τ

0

n−1Kj(t)d

(
1

qω(Ak(t))
n1/2(Âk(t) − Ak(t))

)

=

∫ τ

0

n1/2(Âk(t) − Ak(t))n−1dBjk(t) +

∫ τ

0

n−1Kj(t)

qω(Ak(t))
n1/2(dÂk(t) − dAk(t)),

where dBjk(t) = Kj(t) dBk(t) and dBk(t) = d(1/qω(Ak(t))) = −q̇ω(Ak(t))/
/qω(Ak(t)) dGk(t). This asymptotic distributional equivalence holds jointly for
j = 1, 2, k = 1, 2. Integrating by parts we arrive at

∫ τ

0

n−1Rjk(t)n1/2(dÂk(t) − dAk(t)) + n−1Bjk(τ)n1/2(Âk(τ) − Ak(τ)),



276 D. KRAUS

where

Rjk(t) =
Kj(t)

qω(Ak(t))
− Bjk(t).

Denote by bjk and rjk the limits of n−1Bjk and n−1Rjk, respectively. Then by the
martingale central limit theorem n1/2(ρ̂jk − ρjk), j = 1, 2, k = 1, 2, converge to zero
mean jointly normal variables. The asymptotic covariance of n1/2(ρ̂jk − ρjk) and
n1/2(ρ̂j′k − ρj′k) is

∫ τ

0

(rjk(t) + bjk(τ))(rj′k(t) + bj′k(τ))
dAk(t)

ȳk(t)
,

while the asymptotic covariance of n1/2(ρ̂jk − ρjk) and n1/2(ρ̂j′k′ − ρj′k′) is zero for
k 6= k′.

Therefore, using the fact ρj2 = ηρj1, it follows that the asymptotic variance of
the statistic n1/2(ρ̂22ρ̂11 − ρ̂21ρ̂12) is

∫ τ

0

[(r11(t) + b11(τ))ρ21 − (r21(t) + b21(τ))ρ11]
2η2 dA1(t)

ȳ1(t)

+

∫ τ

0

[(r12(t) + b12(τ))ρ11 − (r22(t) + b22(τ))ρ21]
2 dA2(t)

ȳ2(t)
.

Finally, as dG2(t) = ηdG1(t) and dGk(t) = dAk(t)/qω(Ak(t)), we arrive at

∫ τ

0

[(r11(t) + b11(τ))ρ21 − (r21(t) + b21(τ))ρ11]
2η

qω(A1(t)) dA2(t)

qω(A2(t))ȳ1(t)

+

∫ τ

0

[(r12(t) + b12(τ))ρ11 − (r22(t) + b22(τ))ρ21]
2η

qω(A2(t)) dA1(t)

qω(A1(t))ȳ2(t)
, (11)

which may be consistently estimated by

∫ τ

0

[n−1(R̂11(t) + B̂11(τ))ρ̂21 − n−1(R̂21(t) + B̂21(τ))ρ̂11]
2η̂0

qω(Â1(t−)) dÂ2(t)

qω(Â2(t−))Ȳ1(t)/n

+

∫ τ

0

[n−1(R̂12(t)+ B̂12(τ))ρ̂11 −n−1(R̂22(t)+ B̂22(τ))ρ̂21]
2η̂0

qω(Â2(t−)) dÂ1(t)

qω(Â1(t−))Ȳ2(t)/n
.

(12)

Here R̂jk(t) and B̂jk(t) are defined like Rjk(t) and Bjk(t) but with unknown quan-
tities replaced by their estimators (the Nelson–Aalen estimator is used in the left-
continuous version where necessary to preserve predictability). The estimator η̂0 is
defined as (η̂1 + η̂2)/2 to preserve some sort of symmetry (but any other consistent
estimator of η may be used as well). ¤

Note that the variance estimator (12) is always positive. A different estimator of
a form similar to that of Gill and Schumacher [11, eq. (4)] can be derived. However,
such an estimator may be negative (and my experience is that it sometimes really
happens).
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Theorem 4. (Consistency of the Gill–Schumacher test) The Gill–Schumacher-
type test is consistent against alternatives satisfying ρ22ρ11 − ρ21ρ12 6= 0. This
particularly holds for alternatives with monotonic g2(t)/g1(t) whenever k2(t)/k1(t)
is monotonic.

P r o o f . The variance estimator (12) converges to some finite nonzero quantity
even under the alternative, and, thus, the first assertion follows from (10). The
proof of the rest is the same as the proof in [11, p. 293] with hazard rates replaced
by transformation rates gk. ¤
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