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On Mikheev’s construction of enveloping groups

J.I. Hall

Abstract. Mikheev, starting from a Moufang loop, constructed a groupoid and
reported that this groupoid is in fact a group which, in an appropriate sense,
is universal with respect to enveloping the Moufang loop. Later Grishkov and
Zavarnitsine gave a complete proof of Mikheev’s results. Here we give a direct and
self-contained proof that Mikheev’s groupoid is a group, in the process extending
the result from Moufang loops to Bol loops.
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1. Introduction

A groupoid (Q, ◦) is a set Q endowed with a binary product ◦ : Q × Q −→
Q. The groupoid is a quasigroup if, for each x ∈ Q, the right translation map
Rx : Q −→ Q and left translation map Lx : Q −→ Q given by

aRx = a ◦ x and aLx = x ◦ a

are both permutations of Q.
The groupoid (Q, ◦) is a groupoid with identity if it has a two-sided identity

element:

1 ◦ x = x = x ◦ 1, for all x ∈ Q.

That is, R1 and L1 are IdQ, the identity permutation of Q. A quasigroup with
identity is a loop.

The loop (Q, ◦) is a (right) Bol loop if it identically has the right Bol property:

for all a, b, x ∈ Q, a((xb)x) = ((ax)b)x.

(We often abuse notation by writing pq in place of p ◦ q.) The loop is a Moufang

loop if it has the Moufang property:

for all a, b, x ∈ Q, a(x(bx)) = ((ax)b)x.

Finally the loop is a group if it has the associative property:

for all a, b, x ∈ Q, a(xb) = (ax)b.
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The Moufang property is clearly a weakened form of the associative property.
Furthermore, with a = 1 the Moufang property gives x(bx) = (xb)x identically;
so the Bol property is a consequence of the Moufang property. Thus every group
is a Moufang loop and every Moufang loop is a Bol loop. The reverse implications
do not hold in general; see [6, Examples IV.1.1 and IV.6.2].

A (right) pseudo-automorphism of the groupoid with identity (Q, ◦) is a per-
mutation A of Q equipped with an element a ∈ Q, a companion of A, for which
Ra is a permutation (always true for (Q, ◦) a loop) and such that

xA ◦ (yA ◦ a) = (xy)A ◦ a

for all x, y ∈ Q. We shall abuse this terminology by referring to the pair (A, a)
as a pseudo-automorphism. The set of all pseudo-automorphisms (A, a) is then
denoted PsAut(Q, ◦) and admits the group operation

(A, a)(D, d) = (AD, aD ◦ d),

as we shall verify in Proposition 2.1 below.
In the research report [5] Mikheev, starting from a Moufang loop (Q, ◦), con-

structed a groupoid on the set PsAut(Q, ◦) × Q. The main results reported by
Mikheev are that this groupoid is in fact a group and that, in an appropriate
sense, it is universal with respect to “enveloping” the Moufang loop (Q, ◦).

In [3] Grishkov and Zavarnitsine gave a complete proof of Mikheev’s results
(and a great deal more). Concerning Mikheev’s construction they proved:

Theorem 1.1. Let (Q, ◦) be a Moufang loop.

(a) The groupoid (PsAut(Q, ◦) ×Q, ⋆) given by

(Mk)
{(A, a), x} ⋆ {(B, b), y} = {(A, a)(B, b)(C, c), (xB)y} with

(C, c) =
(

R−1
xB,b, (((xB)b)−1b)xB

) (

RxB,y, ((xB)−1y−1)((xB)y)
)

is a group W(Q, ◦).
(b) The group W(Q, ◦) admits a group of triality automorphisms and is uni-

versal (in an appropriate sense) among all the groups admitting triality

that envelope the Moufang loop (Q, ◦).

Here for each p, q in an arbitrary loop (Q, ◦) we have set Rp,q = RpRqR
−1
pq .

The expression (Mk) can be simplified somewhat. By Moufang’s Theorem ([1,
p. 117] and [6, Cor. IV.2.9]) Moufang loops generated by two elements are groups,
so within (Q, ◦) commutators

[p, q] = p−1q−1pq = (qp)−1pq
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are well-defined, as seen in Mikheev’s original formulation [5]. Also in Moufang
loops we have R−1

p,q = Rq,p by [1, Lemma VII.5.4]. Therefore Grishkov and Zavar-
nitsine could give (Mk) in the pleasing form

(C, c) = (Rb,xB, [b, xB]) (RxB,y, [xB, y]).

Grishkov and Zavarnitsine [3, Corollary 1] verify Mikheev’s construction by first
constructing from (Q, ◦) a particular group admitting triality and then showing
that Mikheev’s groupoid is a quotient of that group and especially is itself a group.
Their construction displays universal properties for the two groups admitting
triality and so also for Mikheev’s enveloping group. (Grishkov and Zavarnitsine
also correct several small misprints from [5].)

In this short note we take a different approach. In particular we give a direct
and self-contained proof that Mikheev’s groupoid is a group. In the process we
extend the result from Moufang loops to Bol loops, and we see that the groupoid
has a natural life as a group.

An autotopism (A,B,C) of the groupoid (Q, ◦) is a triple of permutations of
Q such that

xA ◦ yB = (x ◦ y)C

for all x, y ∈ Q. Clearly the set Atop(Q, ◦) of all autotopisms of (Q, ◦) forms a
group under composition.

We then have

Theorem 1.2. Let (Q, ◦) be a Bol loop. The groupoid (PsAut(Q, ◦) × Q, ⋆)
with product given by (Mk) is isomorphic to the autotopism group Atop(Q, ◦).
In particular (PsAut(Q, ◦) × Q, ⋆) is a group.

Theorem 1.2 gives Theorem 1.1(a) immediately, and 1.1(b) directly follows.
Indeed following Doro [2], the group G admits triality if G admits the symmetric
group of degree three, Sym(3) = S, as a group of automorphism such that, for σ

of order 2 and τ of order 3 in S, the identity [g, σ][g, σ]τ [g, σ]τ
2

= 1 holds for all
g ∈ G. Doro proved that the set { [g, σ] | g ∈ G } naturally carries the structure
of a Moufang loop (Q, ◦); we say that G envelopes (Q, ◦). Many nonisomorphic
groups admitting triality envelope Moufang loops isomorphic to (Q, ◦). Among
these the autotopism group A = Atop (Q, ◦) is the largest that is additionally
faithful , which is to say that the centralizer of SA within A ⋊ S is the identity.
That is, for every group G admitting triality that is faithful and envelopes (Q, ◦)
there is an S-injection of G into A. This is the universal property examined by
Mikheev, Grishkov, and Zavarnitsine. See [4, §10.3] for further details.

The general references for this note are the excellent books [1] and [6]. Several
of the results given here are related to ones from [6] — both as exact versions
(“see”) and as variants or extensions (“compare”).
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2. Autotopisms of groupoids

Proposition 2.1. Let (Q, ◦) be a groupoid with identity 1. The map

ψ : (A, a) 7→ (A,ARa, ARa)

gives a bijection of PsAut(Q, ◦) with the subgroup of Atop(Q, ◦) consisting of all

autotopisms (A,B,C) for which 1A = 1. For such an autotopism we have

ψ−1(A,B,C) = (A, 1C).

In particular PsAut(Q, ◦) is a group under the composition

(A, a)(D, d) = (AD, aD ◦ d).

Proof: (Compare [6, III.4.14].) If (A, a) is a pseudo-automorphism then
(A,ARa, ARa) is an autotopism by definition. In particular for every x ∈ Q

we have 1A ◦ xARa = (1 ◦ x)ARa = xARa. As ARa is a permutation of Q, there
is an x with 1 = xARa. Thus 1A = 1A ◦ 1 = 1.

If (A, a) and (B, b) are pseudo-automorphisms with (A,ARa, ARa) equal to
(B,BRb, BRb), then A = B and a = 1ARa = 1BRb = b; so ψ is an injection of
PsAut(Q, ◦) into the described subgroup of Atop(Q, ◦).

Now suppose that (A,B,C) is an autotopism with 1A = 1. Always 1 ◦ x = x,
so

xB = 1A ◦ xB = (1 ◦ x)C = xC,

giving B = C.
Again x ◦ 1 = x and

xA ◦ 1C = (x ◦ 1)C = xC.

That is B = C = AR1C , and in particular R1C is a permutation. Therefore
(A,B,C) = (A,ARa, ARa), the image of the pseudo-automorphism (A, a) for
a = 1C. The map ψ is indeed a bijection.

Those autotopisms with 1A=1 clearly form a subgroup, so ψ−1 gives
PsAut(Q, ◦) a natural group structure. We find

ψ(A, a)ψ(D, d) = (A,ARa, ARa)(D,DRd, DRd)

= (AD,ARaDRd, ARaDRd)

= ψ(AD, e)

for some e with ARaDRd = ADRe. Indeed e = 1ADRe = 1ARaDRd = aD ◦ d.
Therefore multiplication in PsAut(Q, ◦) is given by

(A, a)(D, d) = (AD, aD ◦ d),

as stated here and above. �
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From now on we identify PsAut(Q, ◦) with its isomorphic image under ψ in
Atop(Q, ◦).

Corollary 2.2. (a) Let (A,B,C) and (D,E, F ) be autotopisms of the

groupoid with identity (Q, ◦). Then we have (A,B,C) = (D,E, F ) if

and only if A = D and 1C = 1F .

(b) Let (A,B,C) and (D,E, F ) be autotopisms of the loop (Q, ◦). Then we

have (A,B,C) = (D,E, F ) if and only if A = D and there is an x ∈ Q

with xC = xF .

Proof: (Compare [6, III.3.1].) One direction is clear.
Now suppose that A = D.

(X,Y, Z) = (A,B,C)(D,E, F )−1

= (AD−1, BE−1, CF−1)

= (IdQ, BE
−1, CF−1)

= (IdQ, IdQ Re, IdQ Re)

= (IdQ,Re,Re)

for e = 1CF−1 by the proposition.
For any x with xC = xF we then have

x ◦ 1 = x = xCF−1 = xZ = x ◦ e,

so in both parts of the corollary we find e = 1. Therefore (X,Y, Z) is equal to
(IdQ, IdQ, IdQ), the identity of Atop(Q, ◦). �

A particular consequence of the corollary is that we may (if we wish) denote
the autotopism (A,B,C) by (A, ∗ , C), since A and C determine B uniquely.

3. Autotopisms of Bol loops

Recall that a Bol loop (Q, ◦) is a loop with

for all a, b, x ∈ Q, a((xb)x) = ((ax)b)x.

Lemma 3.1. (a) The loop (Q, ◦) is a Bol loop if and only if (R−1
x ,LxRx,Rx)

is an autotopism for all x ∈ Q.

(b) The Bol loop (Q, ◦) is a right inverse property loop. That is, for x−1

defined by xx−1 = 1 we have (x−1)−1 = x and (ax)x−1 = a, for all

a, x ∈ Q. In particular R−1
x = Rx−1 for all x.

Proof: (a) (See [6, Theorem IV.6.7].) For a fixed x ∈ Q we have a((xb)x) =
((ax)b)x for all a, b ∈ Q if and only if (cR−1

x )(bLxRx) = (cb)Rx for all c (= ax),
b ∈ Q if and only if (R−1

x ,LxRx,Rx) is an autotopism.

(b) (See [6, Theorem IV.6.3].) In the identity a((xb)x) = ((ax)b)x set b = x−1

to find ax = a((xx−1)x) = ((ax)x−1)x. That is, aRx = (ax)x−1Rx and so
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a = (ax)x−1. Further set a = x−1 in this identity, giving

1Rx−1 = x−1 = (x−1x)x−1 = (x−1x)Rx−1 ,

whence 1 = x−1x and (x−1)−1 = x. �

Throughout the balance of this section let (Q, ◦) be a Bol loop.
For all p in the Bol loop (Q, ◦) set

rp = (R−1
p−1 ,Lp−1Rp−1 ,Rp−1) = (Rp,Lp−1Rp−1 ,Rp−1),

and set rp,q = rprqr
−1
pq for all p, q. By the lemma, each rp and rp,q is an autotopism

of (Q, ◦).

Lemma 3.2. (a) r−1
p = rp−1 .

(b) rp,q =
(

Rp,q, (p
−1q−1)(pq)

)

.

(c) r−1
p,q =

(

R−1
p,q, ((pq)

−1q)p
)

.

Proof: By Lemma 3.1

r−1
p = (R−1

p , ∗ ,R−1
p−1) = (R−1

p , ∗ ,Rp) = (Rp−1 , ∗ ,Rp) = rp−1 ,

as in (a). Therefore

rp,q = rprqr
−1
pq = (RpRqR

−1
pq , ∗ ,Rp−1Rq−1Rpq) = (Rp,q, ∗ ,Rp−1Rq−1Rpq)

and

r−1
p,q = (Rp,q, ∗ ,Rp−1Rq−1Rpq)

−1 = (R−1
p,q, ∗ ,R(pq)−1RqRp).

Here

1 RpRqR
−1
pq = (pq)(pq)−1 = 1 ;

1 Rp−1Rq−1Rpq = (p−1q−1)(pq) ;

1 R(pq)−1RqRp = ((pq)−1q)p.

The first calculation tells us that rp,q (and r−1
p,q) are in PsAut(Q, ◦). The second,

together with Proposition 2.1, then gives (b) and the third (c). �

Proposition 3.3. Let (X,Y, Z) be in Atop(Q, ◦). Set x = 1X , A = XR−1
x , and

a = 1Z ◦ x. Then

(X,Y, Z) = (A, a) rx.

In particular { rx | x ∈ Q } is a set of right coset representatives for the subgroup

PsAut(Q, ◦) in Atop(Q, ◦).
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Proof: (Compare [6, III.4.16, IV.6.8].)

(X,Y, Z) = (X,Y, Z)r−1
x rx

= (XR−1
x , YR−1

x−1L
−1
x−1 , ZR−1

x−1)rx

= (XRx−1 , ∗ , ZRx)rx.

For A = XR−1
x = XRx−1 we have 1A = 1XRx−1 = x ◦ x−1 = 1. Furthermore

1ZRx = 1Z ◦ x = a, so by Proposition 2.1 we have (X,Y, Z) = (A, a)rx. �

Proposition 3.4. rx(B, b) = (B, b)r(xB)br
−1
b

Proof: We have

rx(B, b) = (Rx,Lx−1Rx−1 ,Rx−1)(B,BRb, BRb)

= (RxB, ∗ ,Rx−1BRb)

and

(B, b)r(xB)br
−1
b = (B,BRb, BRb)(R(xB)b, ∗ ,R((xB)b)−1)(R−1

b , ∗ ,Rb)

= (BR(xB)bR
−1
b , ∗ , BRbR((xB)b)−1Rb).

First we observe that xRx−1BRb = 1BRb = b and

xBRbR((xB)b)−1Rb = ((xB)b)R((xB)b)−1Rb = 1Rb = b.

Therefore by Corollary 2.2 we need only verify RxB = BR(xB)bR
−1
b to prove the

proposition.
As (B, b) is a pseudo-automorphism

pRxBRb = (px)BRb

= (px)B ◦ b

= pB ◦ (xB ◦ b)

= pBR(xB)b

for every p ∈ Q. Therefore RxBRb = BR(xB)b and RxB = BR(xB)bR
−1
b as

desired. �

Corollary 3.5. (A, a)rx(B, b)ry = (A, a)(B, b)r−1
xB,brxB,yr(xB)y.



252 J.I.Hall

Proof:

(A, a)rx(B, b)ry = (A, a)(rx(B, b))ry

= (A, a)((B, b)r(xB)br
−1
b )ry

= (A, a)(B, b)r(xB)br
−1
b (r−1

xBrxB)ry(r−1
(xB)yr(xB)y)

= (A, a)(B, b)(r(xB)br
−1
b r−1

xB)(rxBryr−1
(xB)y)r(xB)y

= (A, a)(B, b)r−1
xB,brxB,yr(xB)y.

�

Theorem 3.6. For the Bol loop (Q, ◦) the map

ϕ : {(A, a), x} 7→ (A, a)rx

gives an isomorphism of Mikheev’s groupoid (PsAut(Q, ◦) ×Q, ⋆) and the auto-

topism group Atop(Q, ◦). In particular (PsAut(Q, ◦) ×Q, ⋆) is a group.

Proof: By Proposition 3.3 the map ϕ is a bijection of PsAut(Q, ◦) × Q and
Atop(Q, ◦). By Lemma 3.2 and Corollary 3.5

ϕ ({(A, a), x} ⋆ {(B, b), y}) = ϕ ({(A, a), x})ϕ ({(B, b), y}) .

Thus (PsAut(Q, ◦)×Q, ⋆) and Atop(Q, ◦) are isomorphic as groupoids. Further-
more since Atop(Q, ◦) is itself a group, so is (PsAut(Q, ◦) ×Q, ⋆). �

Theorem 1.2 is an immediate consequence.
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