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On the structure of finite loop capable nilpotent groups

Miikka Rytty

Abstract. In this paper we consider finite loops and discuss the problem which
nilpotent groups are isomorphic to the inner mapping group of a loop. We
recall some earlier results and by using connected transversals we transform the
problem into a group theoretical one. We will get some new answers as we show
that a nilpotent group having either C

pk×C
pl , k > l ≥ 0 as the Sylow p-subgroup

for some odd prime p or the group of quaternions as the Sylow 2-subgroup may
not be loop capable.
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1. Introduction

A loop is a quasigroup with a neutral element. For each element a of a loop
Q we have two permutations La : Q → Q, x 7→ ax (left translation) and Ra :
Q → Q, x 7→ xa (right translation). We define a permutation group M(Q) =
〈La, Ra | a ∈ Q〉 to be the multiplication group of Q. The stabilizer of the neutral
element is denoted by I(Q) and is called the inner mapping group of Q. These
groups were introduced by Bruck [2] in 1946 and they have been an important
tool in the study of loops.

When Q is a group, I(Q) is the group of inner automorphisms of Q. A group
that is isomorphic to an inner automorphism group of some group is called ca-
pable. A characterization for capable finite abelian groups was given by Baer in
1934 [1]. For this paper, a loop capable group is a group which is isomorphic to
an inner mapping loop of some finite loop. The main question in this paper is to
study which nilpotent groups may be loop capable. Previous research has shown
that I(Q) is cyclic if and only if Q is an abelian group (this is true also in infi-
nite case, see [8]) and in these cases I(Q) = 1. Using the theory of permutation
groups, Drápal proved that a generalized quaternion group Q2i may never appear
as an inner mapping group of a loop [5]. Niemenmaa has shown that the group
Ck,l = Cpk × Cpl , where p is an odd prime and k > l ≥ 0 is not loop capable
[10]. Recently, Niemenmaa has also proved that neither an abelian group with a
Sylow p-subgroup Ck,1 (k > 1 and p is an odd prime) nor a nilpotent group with
a cyclic Hall-subgroup may be loop capable [11], [12]. The purpose of this paper
is to generalize these results.
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The notion of connected transversals is very important to the study of mul-
tiplication groups of loops, since they can be used to characterize the structure
of multiplication groups. Connected transversals were introduced by Kepka and
Niemenmaa [7] in 1990. Section 2 contains basic information about them. Sec-
tion 3 has the main results and the final section translates them into loop theo-
retical interpretations.

2. Connected transversals and loops

Let H be a subgroup of a group G and let A and B left transversals to H in
G. We say that A and B are H-connected if a−1b−1ab ∈ H for all a ∈ A and
b ∈ B. Connected transversals are both left and right transversals ([7, Lemmas 2.1
and 2.2]). The core of H in G (i.e. the largest normal subgroup of G contained
in H) is denoted by HG.

Now assume that Q is a loop. If we write A = {La | a ∈ Q} and B = {Ra | a ∈
Q}, then A and B are both left and right transversals to I(Q) in M(Q). More
importantly, they are I(Q)-connected. Also by definition M(Q) = 〈A, B〉 and
the core of I(Q) in M(Q) is trivial. These facts characterize the necessary and
sufficient structure in multiplication groups of loops [7, Theorem 4.1].

Theorem 2.1. A group G is isomorphic to a multiplication group of a loop if and

only if G has a subgroup H , HG = 1, and there exist H-connected transversals

A, B such that G = 〈A, B〉.

Let G be finite group, H ≤ G, and let there exist H-connected transversals A
and B.

Lemma 2.2. If C ⊆ A ∪ B and M = 〈H, C〉, then C ⊆ MG.

Lemma 2.3. If HG = 1, then NG(H) = H × Z(G).

Lemma 2.4. Suppose that N is a normal subgroup of G. If the core of HN in

G is K, then AK/K and BK/K are HK/K-connected transversals in G/K.

Lemma 2.5. If HG = 1, then Z(G) ⊆ A ∩ B.

Lemma 2.6. If H is nilpotent, then G is solvable.

For the proofs, see [7, Lemma 2.5, Proposition 2.7 and Lemma 2.8], [8, Lemma
1.4] and [9, Theorem 1]. Furthermore, suppose that G = 〈A, B〉.

Lemma 2.7. Let p1, p2, . . . , pr be different primes. If H = H1 × H2 × . . . × Hr

and Hi is a subgroup of Cpi
× Cpi

× Cpi
for any 1 ≤ i ≤ r, then G′ ≤ NG(H).

Lemma 2.8. If H is nilpotent, then H is subnormal in G.

Lemma 2.9. If H ∼= Cn×E, where E is a nilpotent group and g.c.d.(n, |E|) = 1,

then HG > 1.

For the proofs, see [3, Theorem 3.9], [12, Theorem 2.8 and Theorem 3.1].
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Lemma 2.10. Suppose that H is nilpotent. If HG = 1, then the core of HZ(G)
properly contains Z(G).

Proof: By Lemmas 2.3 and 2.8, NG(H) = H × Z(G) and Z(G) > 1. Sup-
pose that the core of HZ(G) in G is Z(G). Thus the core of HZ(G)/Z(G) in
G/Z(G) is trivial. By Lemma 2.3, the normalizer of HZ(G)/Z(G) in G/Z(G)
is HZ(G)/Z(G) × M/Z(G), where M/Z(G) is the center of G/Z(G). Take
m ∈ M . By Lemmas 2.5 and 2.4, m = az1, where a ∈ A and z1 ∈ Z(G). Thus
a = mz−1

1 ∈ M and if d ∈ B, then a−1d−1ad ∈ H ∩ M = 1. Hence a ∈ CG(B).
Similarly we know that a = mz−1

1 = bz2, where b ∈ B and z2 ∈ Z(G), and there-
fore b ∈ CG(A) and a ∈ Z(G). But now M = Z(G), which is a contradiction with
Lemma 2.8. �

Finally, we need some more general results about loops and groups. The normal
closure DG of D in G is the subgroup 〈Dg | g ∈ G〉, i.e. the smallest normal
subgroup of G containing D.

Lemma 2.11. If x and y commute with [x, y], then (xy)n = xnyn [x, y](
n

2).

Lemma 2.12. Let G be a finite group with a subnormal subgroup D. If D is

nilpotent, then DG is nilpotent.

Lemma 2.13. The inner mapping group of a loop is never a generalized group

of quaternions.

For the proofs, see [6, pp. 253–254], [4, Theorem 8.8, p. 29] and [5, Corol-
lary 1.3]. The centre Z(Q) of a loop Q is the set of all elements a that satisfy
ax = xa, a(xy) = (ax)y, x(ay) = (xa)y and x(ya) = (xy)a for all x, y ∈ Q. As
with groups, we can define nilpotency for loops using centers. We write Z0 = 1
and Zi+1/Zi = Z(Q/Zi) and obtain a series of normal subloops. If Zn = Q and
Zn−1 6= Q, then we say that the loop Q is centrally nilpotent of class n. De-
note I0 = I(Q) and In+1 = NM(Q)(In). Bruck proved in [2, p. 281] the following
characterization for the nilpotency class of a loop.

Lemma 2.14. A loop Q is centrally nilpotent of class n if and only if In = M(Q)
and In−1 6= M(Q).

3. Results

In this section we assume that H is a subgroup of a finite group G and there
exist H-connected transversals A and B such that G = 〈A, B〉.

Theorem 3.1. Let H = C × E, where C ∼= Cpk × Cpl , p is an odd prime,

k > l ≥ 0, E is nilpotent and p does not divide |E|. Then HG > 1.

Proof: The proof will be done by induction on k. The case k = 1 is covered by
Lemma 2.9. So we may suppose the claim is true for any positive integer smaller
than k > 1. If the claim is not true for k, then let G be a smallest counterexample
with HG = 1. By Lemmas 2.3 and 2.8, Z(G) > 1. Now pick z ∈ Z(G) with
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a prime order and consider groups G/〈z〉 and H〈z〉/〈z〉. The core K of H〈z〉 in
G must properly contain 〈z〉. Hence, K = H1〈z〉, where 1 < H1 ≤ H . As K
is nilpotent, it follows that K is a group with prime power order. Now consider
groups G/K and HK/K. It is clear that |z| = p and K is abelian. The Frattini
subgroup of K must be contained in H and therefore K is elementary abelian. If
|K| = p3, then HK/K ∼= Cpk−1 ×Cpl−1 ×E, which leads to contradiction with the
induction assumption. Therefore K = H1×〈z〉, |H1| = p, HK/K ∼= Cpl ×Cpl ×E
and k − 1 = l.

Put M/K = Z(G/K). By Lemma 2.10, the core of HK/K ×M/K in G/K is
NK/K ×M/K, where H1 < N ≤ H . Now F = NM is normal in G and consider
the groups G/F and HF/F . Since the core of HF = HM in G is F , we know
that N = C∗ × E1, where C∗ = Cpt+1 × Cpt , E1 ≤ E and 0 ≤ t ≤ l. Denote
CG(H1) ∩ M by T and CG(H1) ∩ NM = NT by W . As CG(H1) = CG(K) is
normal in G, we have that T and W are normal in G. Now W/K = NK/K×T/K
and therefore the Sylow p-subgroup P/K of W/K is normal and P ′ ≤ K ≤ Z(P ).
Clearly, P is a normal subgroup of G. By Lemma 2.11 and the fact that p is odd,

we have that (zy)p = zpyp [z, y](
p

2) = 1 for all z, y ∈ {g ∈ P | gp = 1} = S. Thus
S is a normal subgroup of G.

First, suppose that t > 0 and consider groups G/S and HS/S. The assumption
t > 0 means that HS/S ∼= Cpk−1 × Cpk−2 × E. By induction assumption, we
may suppose that the core R of HS in G properly contains S and R contains
an element of order p2 from the group H . Let P1 be a Sylow p-subgroup of R
containing K. Since HS/K ≤ HT/K = HK/K × T/K, P1/K is abelian and
normal in R/K and therefore P1 is normal in G. Thus P ′

1 ≤ K ≤ Z(P1). Denote
P1 = H2S, where 1 < H2 ≤ H . Now by using Lemma 2.11 again, we have

(hs)p = hpsp [h, s](
p

2) = hp for all h ∈ H2 and s ∈ S. Thus 1 < P p
1 ≤ HG,

a contradiction.
Hence we may suppose that t = 0, N = H1E1 and W = E1T . As M ∩H = H1,

we know that T = A1H1 = B1H1, where A1 ⊆ A and B1 ⊆ B. Since H1 is normal
in T and HG = 1, we know that T ′ ≤ H1 and T is abelian. Let Q > 1 be a Sylow
q-subgroup of T for a prime q 6= p. Now Q is normal in G. Consider groups
HQ/Q and G/Q. By the choice of G and Lemma 2.4, we may suppose that the
core L of HQ in G properly contains Q. Now L∩K = 1, as otherwise H1 = L∩K
would be normal in G. We denote L = H2Q, where 1 < H2 < H . Let P2 be a
Sylow p-subgroup of L with P2 ≤ H2. By considering group LK/K we know that
P2K is normal in LK and G. Thus P2 = P2K ∩ L ≤ HG = 1. Now HL = HQ
and if we consider groups HL/L and G/L, then we get a contradiction with the
choice of G.

Therefore we may suppose that Q = 1 and T is an abelian p-group. So E1 is a
Hall-subgroup of W = E1T . As E1 is the unique Hall-subgroup of E1K, we may
deduce that E1 normal in W . Therefore E1 is also normal in G and E1 ≤ HG = 1.
But this is a contradiction with H1 < N . So the claim is true for all k. �
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For every non-negative integer m, let C(m) be the class of abelian groups H
satisfying the following conditions: H is of odd order and if p1 < p2 < . . . < pk are
the primes dividing the order |H |, then for every 1 ≤ i ≤ k the Sylow pi-subgroup
is of the form Cp

mi
i

× Cp
mi
i

and m = m1 + m2 + . . . + mk.

Denote also that N0
G(H) = H and N i+1

G (H) = NG(N i
G(H)).

Corollary 3.2. If H ∈ C(m), then G′ ≤ Nm
G (H).

Proof: The proof is done by induction on m. The case m = 1 is done by
Lemma 2.7. Suppose that m > 1 and the claim is true for integers less than
m. Assume that G is a smallest counterexample. First, suppose that HG >
1. Then consider groups G/HG and H/HG. By Theorem 3.1, H/HG ∈ C(n),
where n < m. By induction assumption and the choice of G we know that
G′ ≤ Nn

G(H) ≤ Nm
G (H). So we may assume that HG = 1. By Lemmas 2.3 and

2.10, NG(H) = H × Z(G) and the core K of HZ(G) properly contains Z(G).
Consider groups G/K and HK/K. By Theorem 3.1, HK/K ∈ C(n), where
n < m. Thus G′K/K ≤ Nn

G/K(HK/K), meaning that G′ ≤ Nn
G(HZ(G)) =

Nn+1
G (H) ≤ Nm

G (H), a contradiction. �

We shall also generalize Lemma 2.13 and for this purpose we need the following
two results.

Lemma 3.3. Let p be a prime and H = P × D, where P ∼= Cp × Cp and D > 1
is a nilpotent group not divisible by p. If g.c.d.(|Z(G)|, |D|) = 1, then HG > 1.

Proof: Suppose that HG = 1. By Lemmas 2.3, 2.8 and 2.10, it follows that
NG(H) = H ×Z(G) and the core K of HZ(G) in G properly contains Z(G) > 1.
Since K is nilpotent it is clear that g.c.d.(|D|, |K|) = 1. By Lemma 2.9, K =
PZ(G). Now G is solvable by Lemma 2.6 and therefore we may pick Q ≥ D be
a Hall-subgroup of G for primes dividing |D|. Let R = KNG(Q) and if R < G,
then take M ≥ R to be a maximal subgroup of G. By Lemma 2.2, MG > 1 and
as M/MG is nilpotent, we know that M is normal in G. Using Frattini-argument,
we get G = MNG(Q) = M , which is a contradiction. Hence, G = KNG(Q) and
therefore DG = 〈Dg | g ∈ G〉 ≤ Q and DG is normal in G. Now it is clear that the
elements from K and DG commute with each other. Since HG = 1, we know that
D < DG. As H is subnormal in G, D is also subnormal in G. By Lemma 2.12, DG

is nilpotent and therefore NDG(D) > D. Now HZ(G) < KNDG(D) ≤ NG(H),
a contradiction. �

Theorem 3.4. If H = Q8 ×D, where D is a nilpotent group of odd order, then

HG > 1.

Proof: The case D = 1 is done by Theorem 2.1 and Lemma 2.13, so we may
suppose that D > 1. Let G be a smallest counterexample with HG = 1. By
Lemmas 2.3 and 2.8, Z(G) > 1. Pick z ∈ Z(G) with a prime order and consider
groups G/〈z〉 and H〈z〉/〈z〉. The choice of G implies that the core K of the group
H〈z〉 in G properly contains 〈z〉. Now we consider groups G/K and HK/K. It
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is clear that K is a 2-group. If K = Q8 × 〈z〉, then Z(Q8) is characteristic in
K, which is a contradiction with HG = 1. By Lemma 2.9 we may deduce that
K = Z(Q8) × 〈z〉. Thus HK/K ∼= P × D, where P ∼= C2 × C2.

Denote the center of G/K by M/K. Let R > 1 be a Sylow q-subgroup of M for
a prime dividing |D|. It is clear that RK is normal in M . Now R〈z〉 ≤ NRK(R).
The case NRK(R) = R〈z〉 is not possible, thus R is normal in RK and G. Now
consider groups G/R and HR/R and we get that the core C of HR in G properly
contains R. If 1 < C ∩ K, then 1 < Z(Q8) ≤ HG, a contradiction. Thus C is of
odd order and if we consider groups G/C and HC/C, then we get a contradiction
with the choice of G. Therefore R = 1 and g.c.d.(|M/K|, |DK/K|) = 1. Now
Lemma 3.3 gives the final contradiction. �

4. Loop theoretical consequences

So far the results have been purely group theoretical. By using Theorem 2.1
we can translate them into statements about loops. First we get the following
loop theoretical interpretations for Theorems 3.1 and 3.4.

Corollary 4.1. Let p be an odd prime and H = C × E, where C ∼= Cpk × Cpl ,

where k > l ≥ 0, E is a nilpotent group and p does not divide |E|. Then H is not

loop capable.

Corollary 4.2. Let H = Q8 × D, where D is a nilpotent group of odd order.

Then H is not loop capable.

We can also combine Lemma 2.14 and Corollary 3.2 in order to get

Corollary 4.3. Let Q be a finite loop. If I(Q) ∈ C(m), then the nilpotency class

of Q is at most m + 1.
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