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Moufang loops arising from Zorn vector matrix algebras

Andrew Wells

Abstract. In A class of simple Moufang loops, Proc. Amer. Math. Soc. 7 (1956),
471–482, Paige used the vector matrix construction over fields to produce simple
Moufang loops. The purpose of this paper is to generalize the construction to
the class of commutative rings, and examine the Moufang loops arising in this
fashion. Specific attention is paid to the construction over the ring of integers
modulo four.

Keywords: Zorn vector matrix, Moufang loop, Paige loop

Classification: 20N05

1. Introduction

The goal of this paper is to take the Zorn vector matrix construction over fields,
which Paige used to create a class of simple Moufang loops [6], and extend it to
commutative rings. This done, it examines the structure of the resulting loops in
general, and then in more detail in one specific case.

Paige defines a Zorn vector matrix algebra over a field, and shows that under
a certain multiplication, it forms an alternative algebra. For a field, F, refer to
this algebra as Zorn(F). Paige then takes the invertible elements of this algebra,
and shows that they form a Moufang loop, which in this paper will be denoted as
Zorn(F)∗. After some preliminaries in Section 2, Section 3 mirrors the construc-
tion over commutative rings, and shows that all of the main properties still hold.
These loops are not simple, since Liebeck showed that all finite nonassociative
simple Moufang loops are Paige loops in [3]. The rest of this paper examines the
structure of these non-simple Moufang loops.

Section 4 examines the projection of Zorn(R)∗ down to Zorn(R/I)∗, for any
ideal I of a ring R. This leads to a convenient decomposition of the original
loop into the kernel of the projection and the image of the projection. The
decomposition also applies to subloops of the original loop, and can be used to
investigate the subloop lattice of such loops.

It is well known that the loop of units of the Zorn vector matrix algebra over
the field Z/pZ, for p a prime, is either a Paige loop itself or a Paige loop when
taken modulo its center [6]. The main motivation for this paper is to examine
the structure of Zorn(Z/nZ)∗ for any integer n, and to see how it relates to the
Paige loops. It is a simple exercise using the Chinese Remainder Theorem to show
that Zorn(Z/pqZ)∗ ∼= Zorn(Z/pZ)∗ × Zorn(Z/qZ)∗ when p and q are relatively
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prime. In this way, the loops can be broken down into a product of loops based
on prime powers. To see the structure of a loop of the form Zorn(Z/peZ)∗ is
difficult in general, so Section 5 investigates the first example, Zorn(Z/4Z)∗, in
some depth. Toward this end, the paper analyzes key pieces of the subloop lattice
of Zorn(Z/4Z)∗, including maximal and minimal subloops.

2. Preliminaries

Definition 2.1. A quasigroup is a set with a binary operation which satisfies the
property that xy = z has a unique solution if any two of the three variables are
fixed.

Definition 2.2. A loop is a quasigroup with an identity element. That is, there
exists an element 1 such that 1x = x1 = x for all x.

Definition 2.3. A Moufang loop further satisfies the Moufang identities:

xy · zx = (x · yz)x, x(y · xz) = (xy · x)z, x(y · zy) = (xy · z)y.

Moufang loops also satisfy the alternative and flexible laws, so that

x(xy) = (xx)y, (xy)y = x(yy), (xy)x = x(yx).

The main result on Moufang loops that is used in this paper is Moufang’s
Theorem [5] which is stated below:

Theorem 2.4. If x, y, and z are elements of a Moufang loop and associate in

any order, then x, y, and z generate an associative subloop.

Combining Moufang’s theorem and the previous identities, it is easy to see that
Moufang loops are diassociative. Thus any two elements generate an associative
subloop. This fact is used repeatedly throughout this paper without specific
mention.

3. The construction

LetR be a commutative ring with identity. The set Zorn(R) is a non-associative
ring constructed in the following way. The elements of Zorn(R) are matrices of
the form [ a u

v b ] where a and b are elements of R, and u and v are elements of R3.
Addition is carried out componentwise. The multiplication is given by

[

a u

v b

] [

c w

x d

]

=

[

ac+ u · x aw + du − v × x

cv + bx + u × w bd+ v · w

]

where u · v and u × v represent the usual dot product and cross product of u

and v.

Proposition 3.1. Zorn(R) is an alternative algebra.
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Proof: Since R is an abelian group under its addition, and addition is carried
out in Zorn(R) componentwise, it is obvious that Zorn(R) forms an abelian group
under addition. Now calculations verify that the multiplication indeed distributes
over the addition:

[

a u

v b

] ([

c w

x d

]

+

[

e y

z f

])

=

[

a u

v b

] [

c+ e w + y

x + z d+ f

]

=

[

ac+ ae+ u · x + u · z aw + ay + ud+ uf − v × x − v × z

cv + ev + bx + bz + u× w + u× y bd+ bf + v ·w + v · y

]

=

[

ac+ u · x aw+ud−v×x

vc+bx+u×w bd+ u · w

]

+

[

ae+ u · z ay + uf − v × z

ve+ bz + u × y bf + u · y

]

=

[

a u

v b

] [

c w

x d

]

+

[

a u

v b

] [

e y

z f

]

.

This is actually fairly obvious, since matrix multiplication is distributive, multi-
plication in the ring is distributive, and both the dot product and cross product
are distributive.

While the multiplication is not associative, it does satisfy the alternative law.
That is, x(xy) = (xx)y and (xy)y = x(yy). The calculation is elementary and
only one of the identities is included:

[

a u

v b

] [

a u

v b

]

·

[

c w

x d

]

=

[

a2 + u · v (a+ b)u
(a+ b)v b2 + u · v

] [

c w

x d

]

,

whereas
[

a u

v b

]

·

[

a u

v b

] [

c w

x d

]

=

[

a u

v b

] [

ac+ u · x aw+du−v×x

cv+bx+u×w bd+ v · w

]

.

The upper left coordinate in the first multiplication is

a2c+ cu · v + au · x + bu · x .

In the second multiplication, the upper left coordinate is

a2c+ au · x + cu · v + bu · x + u · (u × w) .

These two clearly coincide since u · (u × w) is zero.
The upper right coordinate in the first multiplication is

(a2 + u · v)w + d(a+ b)u− (a+ b)v × x ,

and in the second multiplication it is

a2w + adu− av × x + bdu + (v · w)u − bv × x − v × (u × w) .

The tow are equal to each other because v × (u × w) = (v ·w)u − (v · u)w.
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Equality in the other coordinates follows similarly, and so the first alternative
law is satisfied. The second can be proved in an analogous fashion. �

Since Zorn(R) is an alternative algebra, the multiplicative elements obey the
Moufang laws:

a(x(ay)) = (axa)y, ((xa)y)a = x(aya), (ax)(ya) = a(xy)a.

This is shown in [1], and Paige references this same work in [6].
Following Paige, define a norm on Zorn(R).

Definition 3.2. The norm of an element, x, is denoted N(x) and defined by
N [ a u

v b ] := ab− u · v.

Note that this is an obvious analogue of the determinant.

Proposition 3.3. The norm is multiplicative on elements of Zorn(R).

Proof:

N

([

a u

v b

] [

c w

x d

])

= N

([

ac+ u · x aw + du − v × x

cv + bx + u× w bd+ v · w

])

= (ac+ u · x)(bd+ v · w) − (aw + ud− v × x) · (cv + bx + u × w)

= acbd+ (u · x)(v ·w) − abw · x − dcu · v + (v × x) · (u × w)

= acbd+ (u · x)(v ·w) − abw · x − dcu · v + (u · v)(w · x) − (u · x)(v ·w)

= ab(cd− w · x) − u · v(cd − w · x)

= (ab− u · v)(cd− w · x)

= N

([

a u

v b

])

N

([

c w

x d

])

.

�

Proposition 3.4. A vector matrix is invertible if and only if its norm is a unit

in R.

Proof: Let M = [ a u

v b ] be an invertible vector matrix. Then:

MM−1 = I ⇒

N(MM−1) = N(I) ⇒

N(M)N(M−1) = 1 ,

so N(M) must be a unit in R. If N(M) is a unit, then

[

a u

v b

] [

N(M)−1b −N(M)−1u

−N(M)−1v N(M)−1a

]

=

[

1 0
0 1

]

.

�

The results of this section are summarized in the following proposition.
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Proposition 3.5. Let Zorn(R)∗ be the set of invertible elements of Zorn(R).
Then Zorn(R)∗ is a Moufang loop.

4. Extensions over a kernel

Let R be a commutative ring with an ideal I. Let

π : Zorn(R)∗ → Zorn(R/I)∗; [aij ] 7→ [aij + I]

be componentwise projection from R to R/I.

Definition 4.1. Define the set Γ to be the pre-image of the identity element of
R/I under the projection π. That is, Γ = π−1{1R/I}.

Note that Γ is a subloop of Zorn(R)∗, since π is a homomorphism.

Definition 4.2. If f : S → R, call a section of f normalized if it maps the
identity of R to the identity of S.

Proposition 4.3. Let i be a normalized section of π. Then Γ × Zorn(R/I)∗

forms a loop with multiplication given by

(4.1) 〈n, q〉 ∗ 〈m, r〉 = 〈(n(qi) ·m(ri))((qr)i)−1 , qr〉.

Proof: The second coordinate of this product is again an element of Zorn(R/I)∗,
but calculation must verify that the first coordinate of the product is an element
of Γ. Since π is a loop homomorphism,

((n(qi) ·m(ri))((qr)i)−1)π = ((n(qi) ·m(ri))π((qr)iπ)−1

= ((nπ(qiπ) ·mπ(riπ)) · ((qr)iπ)−1

= (qr)(qr)−1

= 1 ,

so (n(qi) · m(ri))((qr)i)−1 ∈ Γ. Thus the multiplication is indeed a map from
(Γ × Zorn(R/I)∗)2 to Γ × Zorn(R/I)∗.

Obviously,

〈n, q〉 ∗ 〈1Zorn(R)∗ , 1Zorn(R/I)∗〉 = 〈n(qi)(qi)−1, q〉 = 〈n, q〉

and

〈1Zorn(R)∗ , 1Zorn(R/I)∗〉 ∗ 〈n, q〉 = 〈n(qi)(qi)−1, q〉 = 〈n, q〉 ,

so 〈1Zorn(R)∗ , 1Zorn(R/I)∗〉 acts as an identity on this binar.
Furthermore,

〈n, q〉 ∗ 〈(qi)−1n−1·(q−1i)−1), q−1〉

= 〈n(qi) · ((qi)−1n−1 · (q−1i)−1)(q−1i) · (qq−1)i−1, qq−1〉

= 〈n(qi) · ((qi)−1n−1 · (q−1i)−1)(q−1i), 1Zorn(R/I)∗〉
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= 〈n(qi) · ((qi)−1n−1 · (q−1i)−1(q−1i)), 1Zorn(R/I)∗〉

= 〈n(qi) · (qi)−1n−1, 1Zorn(R/I)∗〉

= 〈1Zorn(R)∗ , 1Zorn(R/I)∗〉.

So the inverse of any element is easily calculated.
This inverse element is actually in the set Γ × Zorn(R/I)∗, specifically

(qi)−1n−1 · (q−1i)−1 ∈ Γ:

((qi)−1n−1 · (q−1i)−1)π = ((qi)−1n−1)π · (q−1iπ)−1

= (qiπ)−1(nπ)−1 · (q−1)−1

= q−1q

= 1Zorn(R/I)∗ .

So indeed this multiplication forms a loop on the set Γ × Zorn(R/I)∗. �

Proposition 4.4. The loops Zorn(R)∗ and Γ×Zorn(R/I)∗ are isomorphic when

the latter is equipped with the multiplication from (4.1).

Proof: Define a map φ : Zorn(R)∗ → Γ × Zorn(R/I)∗; g 7→ 〈g · (gπi)−1, gπ〉.
First, g ·(gπi)−1 must indeed be an element of Γ. Since π is a loop homomorphism,

(g · (gπi)−1)π = gπ · (gπiπ)−1 = gπ · (gπ)−1 = 1Zorn(R/I)∗ .

Therefore g · (gπi)−1 is in Γ.
The following shows that φ is a loop homomorphism. Let g, h ∈ Zorn(R)∗.

Then

gφhφ = 〈g(gπi)−1, gπ〉 ∗ 〈h(hπi)−1, hπ〉

= 〈(g(gπi)−1 · gπi)(h(hπi)−1 · hπi) · ((gπhπ)i)−1, gπhπ〉

= 〈(g · (gπi)−1gπi)(h · (hπi)−1hπi) · ((gh)πi)−1, ghπ〉

= 〈gh · ((gh)πi)−1, ghπ〉

= (gh)φ .

Note that this depends on the multiplication in Zorn(R)∗ being diassociative.
Since Zorn(R)∗ is a Moufang loop, this is fine.

Define another map ψ : Γ × Zorn(R/I)∗ → Zorn(R)∗; 〈n, q〉 7→ n(qi). Next
note that ψ is also a loop homomorphism. In order to ensure that ψ preserves
the identity, it is necessary to force i to preserve the identity. This is the only
restriction on the choice of the section i:

(〈n, q〉 ∗ 〈m, r〉)ψ = 〈(nqi ·mri)((qr)i)−1, qr〉ψ

= (nqi ·mri)((qr)i)−1 · (qr)i

= (nqi ·mri) · ((qr)i)−1(qr)i
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= nqi ·mri

= 〈n, q〉ψ〈m, r〉ψ .

Now it is easy to simply verify that φ and ψ are inverses of each other:

gφψ = 〈g(gπi)−1, gπ〉ψ

= g(gπi)−1 · gπi

= g · (gπi)−1gπi

= g

and

〈n, q〉ψφ = n(qi)φ

= 〈nqi · ((nqi)πi)−1, nqiπ〉

= 〈nqi · (nπqiπi)−1, nπqiπ〉

= 〈nqi · (qi)−1, q〉

= 〈n · qi(qi)−1, q〉

= 〈n, q〉 .

Thus Zorn(R)∗ is isomorphic to (Γ × Zorn(R/I)∗, ∗). In the language of loop
extensions, Zorn(R)∗ is an extension of Γ by Zorn(R/I)∗. �

Now examine possibilities for the structure of Γ. Let A = [ a u

v b ] be an element
of Γ. Then since Aπ = [ 1 0

0 1 ], it must be the case that a and b are both in 1 + I
and that the entries of u and v are in I.

Proposition 4.5. If I2 = 0, then Γ is isomorphic to the direct product I8.

Proof: Note that if all the entries of u and v are in I, then clearly u ·v and the
entries of u× v are all in I2, and hence 0.

Consider the map

f : I8 → Γ; (x1, x2, x3, x4, x5, x6, x7, x8) 7→

[

1 + x1 (x2, x3, x4)
(x5, x6, x7) 1 + x8

]

.

This map is actually a group isomorphism.
Let x = (x1, x2, x3, x4, x5, x6, x7, x8) and y = (y1, y2, y3, y4, y5, y6, y7, y8) be

elements of I8. Then

f(x)f(y) =

[

1 + x1 (x2, x3, x4)
(x5, x6, x7) 1 + x8

] [

1 + y1 (y2, y3, y4)
(y5, y6, y7) 1 + y8

]

=

[

1 + x1 + y1 (x2 + y2, x3 + y3, x4 + y4)
(x5 + y5, x6 + y6, x7 + y7) 1 + x8 + y8

]

= f(x + y) ,
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so f is a homomorphism. The kernel of f is clearly trivial, so f is injective.
Furthermore, f is obviously onto and hence an isomorphism. �

From here on, when this paper refers to Γ× Zorn(R/I)∗, assume the multipli-
cation ∗ defined in (4.1).

Let L be a subloop of Zorn(R)∗ for some commutative ring with identity,
R. Then the same methods detailed above can decompose L into two pieces: a
subgroup of the kernel, and a subloop of Zorn(R/I)∗.

Proposition 4.6. Let L be a subloop of Zorn(R)∗. Choose i : Lπ → L to be a

normalized section of π which maps an element xπ to an element of L∩ (xπ+ I).
Then the set Γ(L) = {x · (xπi)−1 : x ∈ L} = L ∩ Γ is a subgroup of Γ and

L ∼= Γ(L) × Lπ.

Proof: By construction, xπi ∈ L and so Γ(L) is a contained in L. Applying π
to the elements of Γ(L) gives

(x(xπi)−1)π = xπ · (xπiπ)−1 = xπ · (xπ)−1 = 1Zorn(Z/2Z)∗ ,

so Γ(L) is contained in L ∩ Γ.
If x ∈ L∩Γ, then xπ = 1Zorn(R/I)∗ and so since i is normalized, xπi = 1Zorn(R)∗ .

Thus x = x(xπi)−1 ∈ Γ(L) and so Γ(L) = L ∩ Γ, which is obviously a subgroup
of Γ.

The maps φ and ψ restricted to L and Γ(L) × Lπ respectively exhibit the
necessary isomorphism. �

5. The structure of Zorn(Z/4Z)∗

By Proposition 4.4 and Proposition 4.5,

Zorn(Z/4Z)∗ ∼= (Z/2Z)8 × Zorn(Z/2Z)∗

with the appropriate multiplication (4.1).
To begin, this section will examine the behavior of the images of elements of

Zorn(Z/2Z)∗ under a normalized section, i.

Proposition 5.1. Let x ∈ Zorn(Z/2Z)∗ be of order 2, and let i be a normalized

section of the projection map π. Then xi is of order either 2 or 4 in Zorn(Z/4Z)∗.

Proof: Since

(xi · xi)π = xiπ · xiπ = x2 = 1

in Zorn(Z/2Z)∗, (xi · xi) is in the kernel of π, referred to above as Γ. Call
(xi · xi) = g. Then (xi)3 = g · xi and

(xi)4 = (g · xi)xi = g(xi · xi) = g2 = 1

in Zorn(Z/4Z)∗. Thus the order of xi divides 4, and since x is not the identity in
Zorn(Z/2Z)∗, it must be of order either two or four. �
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Proposition 5.2. Let y ∈ Zorn(Z/2Z)∗ be of order 3, and let i be a normalized

section of the projection map π which maps y2 to (yi)2. Then yi is of order 3 or

6 in Zorn(Z/4Z)∗.

Proof: This proof is much the same as the previous one. Since y2 6=1 in
Zorn(Z/2Z)∗, (yi)2 /∈ Γ. Then (yi)3π = 1 in Zorn(Z/2Z)∗ so (yi)3 ∈ Γ. Thus,
(yi)6 = ((yi)3)2 = 1 in (Z/4Z)∗. The order of yi must divide 6, but the order is
not 2, so it must be 3 or 6. �

5.1 Maximal subloops. Let G be a noncommutative group of order n. Then
let M2n(G) denote the nonassociative Moufang loop constructed from G via the
loop extension process that Chein describes in [2].

Note that M24(A4) and M12(S3) are the maximal subloops of Zorn(Z/2Z)∗, as
shown in [4].

Proposition 5.3. If L is a maximal subloop of Zorn(Z/4Z)∗, then it is of the

form

Z/2Z7 × Zorn(Z/2Z)∗, Z/2Z8 ×M12(S3), or Z/2Z8 ×M24(A4).

Proof: Let L be a subloop of Zorn(Z/4Z)∗. Then L is isomorphic to Γ(L)×Lπ
by Proposition 4.6. Note that in the multiplication

〈n, 1〉 ∗ 〈m, r〉 = 〈(n ·m(ri))(ri)−1, r〉 ,

the kernel element 〈n, 1〉 does not affect the second coordinate at all. This means
that every subloop of the form Γ(L) × Lπ is a subloop of Γ × Lπ. Thus, if L
is maximal, then either Γ(L) = Γ or Lπ = Zorn(Z/2Z)∗. If Γ(L) = Γ then Lπ
must be a maximal subloop of Zorn(Z/2Z)∗, and if Lπ = Zorn(Z/2Z)∗, then Γ(L)
must be a maximal subloop of Γ. These possibilities are exactly those listed in
the proposition. �

An example of a maximal subloop of the form Z/2Z7×Zorn(Z/2Z)∗ is the loop
of all elements of Zorn(Z/4Z)∗ that have norm 1 as opposed to norm 3.

Note that a copy of the lattice of subloops of Zorn(Z/2Z)∗ exists at the top of
the lattice of subloops of Zorn(Z/4Z)∗. That is, if Lπ is a subloop of Zorn(Z/2Z)∗,
then the subloops Z/2Z8 ×Lπ form a lattice isomorphic to the subloop lattice of
Zorn(Z/2Z)∗ as described in [7].

5.2 Minimal subloops.

Lemma 5.4. Let
[ e y

z f

]

be an element of Zorn(Z/4Z)∗, and let
[

2a+1 2u
2v 2b+1

]

and
[

2c+1 2w
2x 2d+1

]

be elements of Γ. These three elements generate an associative

subloop.
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Proof: Note that since the off-diagonal entries of elements in Γ must be even,
and the diagonal elements must be odd, they may be written in the form appearing
in the lemma. Consider

M =

[

e y

z f

] [

2a+ 1 2u
2v 2b+ 1

]

·

[

2c+ 1 2w
2x 2d+ 1

]

=

[

2ea+ e+ 2y · v 2eu + 2by + y − 2z × v

2az + z + 2fv + 2y × u 2bf + f + 2z · v

] [

2c+ 1 2w
2x 2d+ 1

]

.

Then the entries of M are as follows:

M11 = 2ec+ 2ea+ e+ 2y · v + 2y · x ;

M12 = 2ew + 2eu + 2dy + 2by + y − 2z× v − 2z × x ;

M21 = 2cz + 2az + z + 2(y × u) + 2fx + 2fv + 2(y × w) ;

M22 = 2w · z + 2df + 2bf + f + 2z · u .

On the other hand,

M ′ =

[

e y

z f

]

·

[

2a+ 1 2u
2v 2b+ 1

] [

2c+ 1 2w
2x 2d+ 1

]

=

[

e y

z f

] [

2a+ 2c+ 1 2w + 2u
2v + 2x 2b+ 2d+ 1

]

,

and so the entries of M ′ are:

M ′

11 = 2ea+ 2ec+ e+ 2y · v + 2y · x ;

M ′

12 = 2ew + 2eu + 2by + 2dy + y − 2z × v − 2z× x ;

M ′

21 = 2az + 2cz + z + 2fv + 2fx + 2y × w + 2y × u ;

M ′

22 = 2z ·w + 2z · u + 2bf + 2df + f .

Note that these correspond exactly to the entries of M . By Moufang’s Theorem,
since these elements associate in one order, they form an associative subloop [5].

�

This tells us a great deal about the structure of the subloops of the form
G× L, where G is a subloop of Γ and L is a cyclic subloop of Zorn(Z/4Z)∗. Let
L = 〈x〉, then for any element g ∈ Γ, 〈x, g〉 is a group because Moufang loops
are diassociative. Since Γ is itself a group, Lemma 5.4 shows that any loop of the
form G× L must also be associative and hence a group.

It is now possible to begin describing the possible subloops of Zorn(Z/4Z)∗.
Proposition 4.6 shows that every subloop L ⊆ Zorn(Z/4Z)∗ can be written as
Γ(L) × Lπ, where Γ(L) is a subloop (subgroup in this case) of Γ ∼= (Z/2Z)8 and
Lπ is a subloop of Zorn(Z/2Z)∗.
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Note that elements of Γ have the form
[

2a+1 (2b,2c,2d)
(2e,2f,2g) 2h+1

]

since they must

project down to the identity element in Zorn(Z/2Z)∗.

5.3 Subloops of the form Γ(L) × C2. For this development, choose the invo-

lution in Zorn(Z/2Z)∗ to be the element x0 :=
[

0 (111)
(111) 0

]

, and for the sake of

simplicity, choose x0i =
[

0 (111)
(111) 0

]

i =
[

0 (111)
(333) 0

]

. Note that
[

0 (111)
(333) 0

]

has

order two in Zorn(Z/4Z)∗.

Proposition 5.5. For 0 ≤ n ≤ 8, there exist loops in Zorn(Z/4Z)∗ which are

isomorphic to (Z/2Z)n × C2.

Proof: Obviously, the loop generated by x0i is isomorphic to C2, which is iso-
morphic to (Z/2Z)0 × C2.

By adding elements of Γ to the generating set one at a time, the other subloops
of the form (Z/2Z)n × C2 can be constructed. Ideally, the dimension of Γ(L)
would increase by one for each added kernel element, however, if g ∈ Γ, then
(x0i)g(x0i) ∈ Γ, so an arbitrary choice of kernel element may increase the dimen-
sion of Γ(L) more than this. To build the subloops one dimension at a time, it
is necessary that (x0i)g(x0i) is not a new kernel element for each g ∈ Γ added.
A convenient set of such elements is the set of elements which commute with x0i.

Let M =
[

2a+1 (2b,2c,2d)
(2e,2f,2g) 2h+1

]

∈ Γ. Then

[

0 (111)
(333) 0

] [

2a+ 1 (2b, 2c, 2d)
(2e, 2f, 2g) 2h+ 1

] [

0 (111)
(333) 0

]

=

[

2h+ 1 2u
2v 2a+ 1

]

,

where u = (c + d + e + f + g, b + d + e + f + g, b + c + e + f + g) and v =
(b+ c+ d+ f + g, b+ c+ d+ e+ g, b+ c+ d+ e+ f). This leads to the equations

2b = 2(c+ d+ e+ f + g) ,

4b = 2(b+ c+ d+ e+ f + g) ,

0 = 2(b+ c+ d+ e+ f + g) ,

so (b + c + d + e + f + g) must be even, or equivalently, there must be an even
number of twos and an even number of zeros between the two off diagonal vectors.
Obviously, a = h as well. Since this restricts two of the eight dimensions of Γ,
there are 26 vector matrices that commute with x0i.

Choose {M1,M2, . . .M6} to be a generating set for the subgroup of Γ which
commutes with x0i. Then the elements M1, . . . ,M6 can be added to L one at a
time to obtain loops isomorphic to (Z/2Z)m × C2 for 0 ≤ m ≤ 6.

For a loop of the form (Z/2Z)7×C2 an element of Γ which does not necessarily
commute with x0i, but for which (x0i)M(x0i) is generated by the kernel elements
already added is needed. Note that
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[

0 (111)
(333) 0

] [

1 (000)
(000) 3

] [

0 (111)
(333) 0

]

=

[

3 (000)
(000) 1

]

=

[

1 (000)
(000) 3

] [

3 (000)
(000) 3

]

.

Since
[

3 (000)
(000) 3

]

is a matrix that commutes with x0i, it must be generated

by {M1,M2, . . . ,M6}, and so is an element of the subloop generated by {M} ∪
{M1,M2, . . . ,M6}. Therefore, adding M to the subloop (Z/2Z)6 ×C2 constructs
a subloop isomorphic to (Z/2Z)7 × C2. Then, of course, adding any remaining
element of the kernel to this subloop gives a subloop isomorphic to Γ × C2

∼=
(Z/2Z)8 × C2. �

Thus, above the loop C2 in the subloop lattice is a chain of loops:

(Z/2Z)8 × C2

(Z/2Z)7 × C2

OO

...

OO

(Z/2Z) × C2

OO

C2

OO

5.4 Subloops of the form Γ(L) × C3. To construct subloops of this form, an

element of order three in Zorn(Z/2Z)∗ must be chosen. Choose y0 =
[

1 (011)
(110) 0

]

.

For convenience choose a section that maps y0 to an element of order three in
Zorn(Z/4Z)∗. Let i be such that

[

1 (011)
(110) 0

]

i =

[

3 (033)
(110) 0

]

and
[

0 (011)
(110) 1

]

i =

[

0 (011)
(330) 3

]

.

Note then that (y2
0)i = (y0i)

2, and that y0i has order three. Obviously, the loop
generated by y0i is isomorphic to C3, which is isomorphic to (Z/2Z)0 × C3.
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First, in the same way as done above, look for elements of Γ to add to the
starting subloop to increase its size. Again, the elements which commute with y0i
are a convenient starting place:

[

3 (033)
(110) 0

] [

2a+ 1 (2b, 2c, 2d)
(2e, 2f, 2g) 2h+ 1

] [

3 (033)
(110) 0

]

−1

=

[

3 (033)
(110) 0

] [

2a+ 1 (2b, 2c, 2d)
(2e, 2f, 2g) 2h+ 1

] [

0 (011)
(330) 3

]

=

[

2b+ 2c+ 2h+ 1 2(g, a+f+c+h+b, a+g+h+e+c+b)
2(b+g+d+f+e, c+ g, b+ g) 2a+ 1 + 2b+ 2c

]

.

If this kernel element commutes, it must be the case that

[

3 (033)
(110) 0

][

2a+ 1 (2b,2c,2d)
(2e,2f,2g) 2h+ 1

][

3 (033)
(110) 0

]

−1[
2a+ 1 (2b,2c,2d)

(2e,2f,2g) 2h+ 1

]

=

[

1 (000)
(000) 1

]

,

Solving the resulting system of equations shows that there are four elements
which commute with y0i. Those four elements in particular are:

[

1 (000)
(000) 1

]

,

[

3 (000)
(000) 3

]

,

[

1 (022)
(220) 3

]

,

[

3 (022)
(220) 1

]

.

So it is possible to add any one of the non-identity elements to the starting
subloop and obtain a subloop isomorphic to (Z/2Z)×C3, and add another element
to obtain a subloop isomorphic to (Z/2Z)2 × C3. Now, just as before, elements
which do not commute with y0i but for which (y0i)M(y0i)

−1M is a kernel element
which is already contained in Γ(L) can be added to increase the dimension of the
subloop.

The element (y0i)M(y0i)
−1M was calculated in general above. Unfortunately,

it is not possible for (y0i)M(y0i)
−1M to be one of the four elements already added

to Γ(L). Suppose that (y0i)M(y0i)
−1M is

[

3 (000)
(000) 3

]

. Solving the resulting

system of equations shows that there is no matrix with this property. The same
analysis on the other remaining kernel matrices gives the same conclusion.

If (y0i)M(y0i)
−1 is an element of the set generated by M and the above matri-

ces, then (y0i)M(y0i)
−1 = MN , where N is one of those four matrices. This

implies that (y0i)M(y0i)
−1M = N , which was just shown to be impossible.

Therefore (y0i)M(y0i)
−1 is linearly independent from the generating set. Thus,

no matter what kernel element is added to the kernel, the dimension of the ker-
nel will increase by at least two. This means that it is impossible to obtain a
subloop isomorphic to (Z/2Z)3 ×C3 by adding kernel elements to the previously
constructed subloop (Z/2Z)2 × C3.
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Thus, adding any other element of the kernel, M , to the subloop (Z/2Z)2 ×C3

creates a subloop isomorphic to (Z/2Z)4 ×C3. Note that when M is added, then
(y0i)M(y0i)

−1 is also generated as demonstrated above. Conjugating this new ele-
ment simply provides (y0i)

−1M(y0i), since y0i has order three. But (y0i)
−1M(y0i)

is just the inverse of (y0i)M(y0i)
−1, and therefore the dimension increases by two

and no more.
It is possible to construct a subloop isomorphic to (Z/2Z)3 × C3. Simply

add a kernel elements which is not fixed by conjugation with y0i to the subloop

isomorphic to (Z/2Z)×C3 generated by y0i and
[

3 (000)
(000) 3

]

to obtain a subloop

isomorphic to (Z/2Z)3 × C3. Further combinations of kernel elements construct
subloops of each possible order. Sample generating sets for all the possible types
of subloops are listed in Table 1.

So above C3 in the subloop lattice is a lattice of subloops that looks like:

(Z/2Z)6 × C3
// (Z/2Z)7 × C3

// (Z/2Z)8 × C3

(Z/2Z)4 × C3

OO

// (Z/2Z)5 × C3

OO

// (Z/2Z)6 × C3

OO

(Z/2Z)2 × C3

OO

// (Z/2Z)3 × C3

OO

// (Z/2Z)4 × C3

OO

C3

OO

// (Z/2Z) × C3

OO

// (Z/2Z)2 × C3

OO

It is important to note that although all of these subloops exist, they are not al-
ways nested inside each other as the corresponding C2 subloops are. For instance,
the (Z/2Z)6 ×C3 above is not contained in the (Z/2Z)7 ×C3 above, though both
are obviously contained in (Z/2Z)8 × C3.

5.5 Subloops of the form Γ(L) × S3. For convenience, use the elements x0

and y0 from above as generators of S3. Extending the section i from the first two
examples to the whole loop, causes the image of this loop to be a copy of S3 in
Zorn(Z/4Z). Only one kernel element commutes with both x0i and y0i, and that

is
[

3 (0,0,0)
(0,0,0) 3

]

. The calculations showing this are contained in the previous

subsections. Clearly, there is a loop isomorphic to Z/2Z × S3 which is generated
by

[

3 (0, 3, 3)
(1, 1, 0) 0

]

,

[

0 (1, 1, 1)
(3, 3, 3) 0

]

,

[

3 (0, 0, 0)
(0, 0, 0) 3

]

.

As before elements M ∈ Γ such that x0iMx0i and y0iM(y0i)
−1 are in MΓ(L)

could be added to increase the size of the subloop in a controlled manner.
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First consider the elements which are fixed under conjugation by y0i. Note
that

x0i

[

1 (022)
(220) 3

]

x0i =

[

3 (022)
(220) 1

]

,

which is also fixed under conjugation by y0i. Thus, since there are four such
elements, including these kernel elements fixed by y0i constructs a subloop iso-
morphic to Z/2Z2 × S3. Note that this subloop already contains the element
[

3 (000)
(000) 3

]

so it cannot further be augmented by including it.

Now consider kernel elements which are fixed under conjugation by x0i, but not
under conjugation by y0i. There are two possibilities for such a kernel element, M .
First, it is possible that y0iM(y0i)

−1 is another element fixed under conjugation
by x0i. In this case, the dimension of the kernel will increase by three, since the
kernel elements M , y0iM(y0i)

−1, (y0)
−1iMy0i and their products, but no others

will be generated.
Analysis of this sort can continue, and by looking at elements which are fixed

by some conjugation maps, but not others, a sublattice which includes examples
of every possible order of subloop of the form Γ(L) × S3 results.

(Z/2Z)7 × S3
// (Z/2Z)8 × S3

(Z̃/2Z)4 × S3
// (Z/2Z)5 × S3

//

OO

(Z/2Z)6 × S3

OO

(Z/2Z)3 × S3
//

~
~

~
~

~
~

~
~

~
~

>>
~

~
~

~
~

~
~

~
~

~

(Z/2Z)4 × S3

~
~

~
~

~
~

~
~

~
~

>>
~

~
~

~
~

~
~

~
~

~

S3
//

CC
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Z/2Z × S3
//

OO

>>
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}

(Z/2Z)2 × S3

OO

>>
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}

The loops in the lattice are listed by generators in Table 2. The loop denoted

(Z̃/2Z)4 × S3 is just a different copy of (Z/2Z)4 × S3 with different generators.

6. Further inquiry

The investigations performed in this paper for the lattices over C2, C3 and S3

could be carried out for every subloop of Zorn(Z/2Z)∗, and that would give a
very complete description of the subloop lattice. From there, it may be possi-
ble to generalize some statements about the structure of Zorn(Z/p2Z)∗ or even
Zorn(Z/peZ)∗.

Each of the three intervals looked at above gives a distributive subloop lattice
but the subloop lattice of the smallest Paige loop from [7] is not distributive.
Perhaps any non distributive lattice features of Zorn(Z/4Z)∗ is tied directly to
the lattice of Zorn(Z/2Z)∗ and not the kernel structure at all.
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Table 1. Generators for groups of the form ΓL × C3

Loop Generators

C3

�

3 (033)
(110) 0

�

(Z/2Z) × C3

�

3 (033)
(110) 0

�

,

�

3 (000)
(000) 3

�
(Z/2Z)2 × C3

�

3 (033)
(110) 0

�

,

�

3 (000)
(000) 3

�
,

�
1 (022)

(220) 3

�
(Z/2Z)3 × C3

�

3 (033)
(110) 0

�

,

�
3 (000)

(000) 3

�
,

�
1 (020)

(002) 1

�
(Z/2Z)4 × C3

�

3 (033)
(110) 0

�

,

�
3 (000)

(000) 3

�
,

�
1 (022)

(220) 3

�
,

�
1 (020)

(002) 1

�
(Z/2Z)5 × C3

�

3 (033)
(110) 0

�
,

�
3 (000)

(000) 3

�
,

�
1 (020)

(002) 1
�

,

�
1 (200)

(020) 1

�
(Z/2Z)6 × C3

�

3 (033)
(110) 0

�
,

�
3 (000)

(000) 3

�
,

�
1 (022)

(220) 3
�

,

�
1 (020)

(002) 1

�
,

�
1 (200)

(020) 1

�

(Z/2Z)7 × C3

�

3 (033)
(110) 0

�
,

�
3 (000)

(000) 3

�
,

�
1 (022)

(220) 3

�
,

�
1 (020)

(002) 1

�
,

�
1 (200)

(020) 1

�
,

�
1 (222)

(000) 1

�
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Table 2. Generators for groups of the form ΓL× S3

Loop Generators

S3

[

3 (033)
(110) 0

]

,

[

0 (333)
(111) 0

]

(Z/2Z) × S3

[

3 (033)
(110) 0

]

,

[

0 (333)
(111) 0

]

,

[

3 (000)
(000) 3

]

(Z/2Z)2 × S3

[

3 (033)
(110) 0

]

,

[

0 (333)
(111) 0

]

,

[

1 (022)
(220) 3

]

(Z/2Z)3 × S3

[

3 (033)
(110) 0

]

,

[

0 (333)
(111) 0

]

,

[

1 (022)
(000) 1

]

(Z/2Z)4 × S3

[

3 (033)
(110) 0

]

,

[

0 (333)
(111) 0

]

,

[

1 (022)
(220) 3

]

,

[

1 (022)
(000) 1

]

(Z̃/2Z)4 × S3

[

3 (033)
(110) 0

]

,

[

0 (333)
(111) 0

]

,

[

1 (220)
(000) 1

]

(Z/2Z)5 × S3

[

3 (033)
(110) 0

]

,

[

0 (333)
(111) 0

]

,

[

3 (000)
(000) 3

]

,

[

1 (220)
(000) 1

]

(Z/2Z)6 × S3

[

3 (033)
(110) 0

]

,

[

0 (333)
(111) 0

]

,

[

1 (022)
(220) 3

]

,

[

1 (220)
(000) 1

]

(Z/2Z)7 × S3

[

3 (033)
(110) 0

]

,

[

0 (333)
(111) 0

]

,

[

1 (022)
(000) 1

]

,

[

1 (220)
(000) 1

]
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[7] Vojtěchovský P., Investigation of subalgebra lattices by means of Hasse constants, Algebra

Universalis 50 (2003), no. 1, 7–26; MR2026823 (2004j:20128).

Mathematics Department, Iowa State University, Ames, IA 50011, USA

E-mail: wellsat@iastate.edu

(Received October 20, 2009, revised February 12, 2010)


		webmaster@dml.cz
	2014-07-30T07:57:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




