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SPACELIKE SUBMANIFOLDS
IN INDEFINITE SPACE FORM Mn+p

p (c)

Yingbo Han

Abstract. In this paper, we get an intrinsic inequality for spacelike subma-
nifolds in indefinite space form Mn+p

p (c), (c > 0). We also get some rigidity
theorems for such spacelike submanifolds.

1. Introduction

Let Mn+p
p (c) be n + p-dimensional connected semi-Riemannian manifold of

constant curvature c whose index is p. It is called indefinite space form of index
p. Let M be an n-dimensional Riemannian manifold immersed in Mn+p

p (c). The
semi-Riemannian metric of Mn+p

p (c) induces the Riemannian metric of M , M is
called a spacelike submanifold. Spacelike submanifolds in indefinite space form
Mn+p
p (c) have been of increasing interesting in the recent years. There are many

results about these submanifolds, for instance, Dong [3], Wu [6, 7], Liu[4]. In [5],
the authors got an intrinsic inequality for spacelike hypersurfaces in de Sitter space
form Mn+1

1 whose index is 1. In this note, we generalize the intrinsic inequality
for spacelike hypersurface of de Sitter space to spacelike submanifolds of indefinite
space form Mn+p

p (c) with index p ≥ 1. From this inequality, we also get some
rigidity theorems for such spacelike submanifolds.

2. Preliminaries

We choose a local field of semi-Riemannian orthonormal frames {e1, . . . , en, en+1,
. . . , en+p} in Mn+p

p (c) such that, restricted to Mn, e1, . . . , en are tangent to Mn.
Let ω1, . . . , ωn be its dual frame field such that the semi-Riemannian metric of
Mn+p
p (c) is given by ds2 =

∑n+p
A=1 εA(ωA)2, where εi = 1, i = 1, . . . , n and εα = −1,
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α = n+ 1, . . . , n+ p. Then the structure equations of Mn+p
p (c) are given by

dωA = −
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0 ,(1)

dωAB = −
∑
C

εCωAC ∧ ωCB + 1
2
∑
CD

KABCDωC ∧ ωD ,(2)

KABCD = cεAεB(δACδBD − δADδBC) .(3)
We restrict these forms to Mn, then
(4) ωα = 0 , α = n+ 1, . . . , n+ p ,

and the Riemannian metric of Mn is written as ds2 =
∑
i ω

2
i . Since

(5) 0 = dωα = −
∑
i

ωα,i ∧ ωi ,

by Cartan’s lemma we may write

(6) ωα,i =
∑
j

hαijωj , hαij = hαji.

From these formulas, we obtain the structure equations of Mn:

dωi = −
∑
j

ωij ∧ ωj , ωij + ωji = 0 ,(7)

dωij = −
∑
k

ωik ∧ ωkj + 1
2
∑
k,l

Rijklωk ∧ ωl ,(8)

Rijkl = c(δikδjl − δilδjk)− (hαikhαjl − hαilhαjk) ,(9)
where Rijkl are the components of curvature tensor of Mn. We call

(10) h =
∑
i,j,α

hαijωi ⊗ ωj ⊗ eα

the second fundamental form ofMn. The mean curvature vector isH =
∑
i,α h

α
iieα =∑

αH
αeα, where Hα =

∑
i h

α
ii. We denote |h|2 =

∑
i,j,α(hαij)2, and |H|2 =∑

α(Hα)2. We call that Mn is maximal if its mean curvature field vanishes, i.e.
H = 0.

Let hαij,k and hαij,kl denote the covariant derivative and the second covariant
derivative of hαij . Then we have hαij,k = hαik,j and

hαij,kl − hαij,lk =
∑
m

hαimRmjkl +
∑
m

hαmjRmikl +
∑
m

hβijRαβkl ,

where Rαβkl are the components of the normal curvature tensor of Mn, that is

Rαβkl =
∑
i

(hαikh
β
il − h

β
ikh

α
il) .

If Rαβkl = 0 at point x of Mn we say that the normal bundle connection of Mn

is flat at x and it is well known [1] that Rαβkl = 0 at point x if and only if the
matrix (hαij) are simultaneously diagonalizable at x.
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3. Main results for space-like submanifolds

Lemma 3.1 (Cauchy-Swartz inequality). Let a1, . . . , an; b1, . . . , bn be real numbers,
then (∑

i

aibi

)2
≤
(∑

i

a2
i

)(∑
i

b2
i

)
and the equality holds if and only if there exists a constant λ such that ai = λbi or
bi = λai, i = 1, . . . , n.

Theorem 3.2. If Mn is a space-like submanifold of indefinite space form Mn+p
p (c)

(c > 0), S and ρ are Ricci curvature tensor and the scalar curvature of Mn,
respectively, then

(11) |S|2 ≥ 2cρ(n− 1)− c2n(n− 1)2 .

Moreover, |S|2 = 2cρ(n− 1)− c2n(n− 1)2 if and only if Mn is a spacelike Einstein
submanifolds with S = c(n− 1)g, where g is the Riemannian metric of Mn.

Proof. From the Gauss equation we get

Sij =
∑
k

Rkikj =
∑
k

{
c(δkkδij − δilδjk)−

∑
α

(hαkkhαij − hαikhαjk)
}

= c(n− 1)δij −
∑
α

Hαhαij +
∑
k,α

hαikh
α
jk(12)

So

|S|2 =
∑
ij

S2
ij =

∑
ij

{
c(n− 1)δij −

∑
α

Hαhαij +
∑
k,α

hαikh
α
jk

}2

=
∑
ij

{
c2(n− 1)2δij +

(∑
α

Hαhαij

)2
+
(∑
k,α

hαikh
α
jk

)2

− 2c(n− 1)δij
(∑

α

Hαhαij

)
+ 2c(n− 1)δij

(∑
k,α

hαikh
α
jk

)
− 2
(∑

α

Hαhαij

) (∑
k,α

hαikh
α
jk

)}
= c2n(n− 1)2 +

∑
ij

(∑
α

Hαhαij

)2
+
∑
ij

(∑
k,α

hαikh
α
jk

)2

− 2c(n− 1)|H|2 + 2c(n− 1)
(∑
i,k,α

hαikh
α
ik

)
− 2

∑
i,j

(∑
α

Hαhαij

) (∑
k,α

hαikh
α
jk

)
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and

ρ =
∑
i

Sii =
∑
i

{
c(n− 1)−

∑
α

Hαhαii +
∑
k,α

hαikh
α
ik

}
= cn(n− 1)− |H|2 +

∑
ijα

(hαij)2

= cn(n− 1)− |H|2 + |h|2 ,(13)

So

|S|2 = c2n(n− 1)2 +
∑
ij

(∑
α

Hαhαij

)2
+
∑
ij

(∑
k,α

hαikh
α
jk

)2

− 2c(n− 1)|H|2 + 2c(n− 1)
(
ρ+ |H|2 − cn(n− 1)

)
− 2

∑
i,j

(∑
α

Hαhαij

)(∑
k,α

hαikh
α
jk

)
= 2cρ(n− 1)− c2n(n− 1)2 +

∑
ij

(∑
α

Hαhαij

)2
+
∑
ij

(∑
k,α

hαikh
α
jk

)2

− 2
∑
i,j

(∑
α

Hαhαij

)(∑
k,α

hαikh
α
jk

)
≥ 2cρ(n− 1)− c2n(n− 1)2 +

∑
ij

(∑
α

Hαhαij

)2
+
∑
ij

(∑
k,α

hαikh
α
jk

)2

− 2
(∑

ij

(∑
α

Hαhαij

)2)1/2(∑
ij

(∑
k,α

hαikh
α
jk

)2)1/2

= 2cρ(n− 1)− c2n(n− 1)2 +
{(∑

ij

(∑
α

Hαhαij

)2)1/2

−
(∑

ij

(∑
k,α

hαikh
α
jk

)2)1/2}2
≥ 2cρ(n− 1)− c2n(n− 1)2 .(14)

The first inequality has used Lemma 3.1.
So we have

|S|2 ≥ 2cρ(n− 1)− c2n(n− 1)2 .

Now we will prove the second part of this theorem.
If Mn is a spacelike Einstein submanifold with S = c(n− 1)g, then we have the

following equations:

|S|2 = c2n(n− 1)2 , and ρ = cn(n− 1) ,

i.e.

|S|2 = 2cρ(n− 1)− c2n(n− 1)2 .
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Conversely, if the Eq. (14) becomes an equality, then all the inequality of Eq. (14)
will become equality. From the Lemma 3.1, there exist a constant λ such that∑

α

Hαhαij = λ
∑
k,α

hαikh
α
jk

or

λ
∑
α

Hαhαij =
∑
k,α

hαikh
α
jk for all i, j ∈ {1, . . . , n}(15)

and ∑
ij

(∑
α

Hαhαij

)2
=
∑
ij

(∑
k,α

hαikh
α
jk

)2
.(16)

(I) If λ = 0, we know that

(17)
∑
α

Hαhαij = 0 or
∑
k,α

hαikh
α
jk = 0 for all i, j ∈ {1, . . . , n} .

then
(18) H = 0 or

∑
i,k,α

[hαik]2 = 0

If H = 0, then Mn is maximal. From the Eq. (14), we have the following
equations:

|S|2 = 2cρ(n− 1)− c2n(n− 1)2 +
∑
ij

(∑
α

Hαhαij

)2
+
∑
ij

(∑
k,α

hαikh
α
jk

)2

− 2
(∑

ij

(∑
α

Hαhαij

)2)1/2(∑
ij

(∑
k,α

hαikh
α
jk

)2)1/2

= 2cρ(n− 1)− c2n(n− 1)2 +
∑
ij

(∑
k,α

hαikh
α
jk

)2
.(19)

We have that

(20)
∑
ij

(∑
k,α

hαikh
α
jk

)2
= 0 ,

for i, j ∈ {1, . . . , n}. From this equation, we get

(21)
∑
k,α

hαikh
α
ik = 0 for i = 1, . . . , n .

So hαij = 0, for i, j ∈ {1, . . . , n} and α ∈ {n + 1, . . . , n + p}, i.e. Mn is totally
geodesic.

If
∑
i,k,α[hαik]2 = 0 ,so hαij = 0, for i, j ∈ {1, . . . , n} and α ∈ {n+ 1, . . . , n+ p},

i.e. Mn is totally geodesic.
From the Eq. (12), we know that

(22) Sij = c(n− 1)δij .
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(II) If λ 6= 0, from the equation
∑
αH

αhαij = λ
∑
k,α h

α
ikh

α
jk, and equation (16),

we have the following equation:

(23) (λ2 − 1)
[∑
ij

(∑
k,α

hαikh
α
jk

)2]
= 0 ,

then
∑
ij

(∑
k,α h

α
ikh

α
jk

)2 = 0 or λ2 = 1.
If
∑
ij

(∑
k,α h

α
ikh

α
jk

)2 = 0, then
(∑

k,α h
α
ikh

α
jk

)2 = 0 for all i, j. So hαij = 0, for
i, j ∈ {1, . . . , n} and α ∈ {n+ 1, . . . , n+ p}, i.e. Mn is totally geodesic.

If λ2 = 1, then λ = 1 or λ = −1. If λ = −1, then
∑
αH

αhαij = −
∑
k,α h

α
ikh

α
jk,

so we have that H2 + |h|2 = 0, i.e. h = 0. If λ = 1, then
∑
αH

αhαij =
∑
k,α h

α
ikh

α
jk.

From equation (12), we have the following equation:
(24) Sij = c(n− 1)δij .

�

Remark 3.3. When p = 1, i.e. Mn is a space-like hypersurface, the inequality
given in [5].

Corollary 3.4. If Mn is a maximal space-like submanifold of indefinite space form
Mn+p
p (c)(c > 0), S and ρ are Ricci curvature tensor and the scalar curvature of

Mn, respectively, then
(25) |S|2 = 2cρ(n− 1)− c2n(n− 1)2

if and only if Mn is totally geodesic.

Proof. If Mn is totally geodesic, then from equations (12) and (13),
|S|2 = c2n(n− 1)2 , and ρ = cn(n− 1) ,

i.e.

|S|2 = 2cρ(n− 1)− c2n(n− 1)2 .

Conversely, from equations H = 0, (19), (20) and (21), we know that Mn is
totally geodesic. �

Theorem 3.5. If Mn is a complete spacelike submanifold with flat normal bundle
and with positive sectional curvature immersed in indefinite space form Mn+p

p (c),
(c > 0, p ≥ 2, n ≥ 2), S and ρ are Ricci curvature tensor and the scalar curvature
of Mn, respectively, then
(26) |S|2 = 2cρ(n− 1)− c2n(n− 1)2

if and only if Mn is totally geodesic.

Proof. If Mn is totally geodesic, then from equations (12) and (13),
|S|2 = c2n(n− 1)2 , and ρ = cn(n− 1) ,

i.e.

|S|2 = 2cρ(n− 1)− c2n(n− 1)2 .
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Conversely, from case (I) and case (II) in the proof of Theorem 3.2, we will prove
that Mn must be geodesic under the conditions: λ = 1 and

(27)
∑
α

Hαhαij =
∑
k,α

hαikh
α
jk ,

for i, j ∈ {1, . . . , n}.
If H = 0, from Corollary 3.4, we know that Mn is totally geodesic. Now we

suppose H 6= 0, and choose en+1 = H
|H| . Then, it follows that

(28) H =
∑
i

hn+1
ii en+1 , and Hα =

∑
i

hαii = 0 , α > n+ 1 .

Since the normal bundle of Mn is flat, we choose e1, · · · , en such that

hαij = λαi δij , for α = n+ 1, . . . , n+ p .

From equation (27), we have the following equations:

(29) |H|2 = |Hn+1|2 = |h|2 .

Taking the covariant derivative of (29), we obtain

(30) Hn+1Hn+1
k =

∑
ijα

hαijh
α
ij,k

and by Lemma 3.1, we have

(31) |H|2|∇H|2 ≤ |h|2|∇h|2 .

Then the Laplacian of |h|2 is given by:
1
24|h|

2 = 1
24|H|

2 = |∇h|2 +
∑
ijα

hαij4hαij

= |∇h|2 +
∑
i

λn+1(Hn+1) + 1
2Rijij(λ

α
i − λαj )2(32)

We define an operator 2 acting on any function f by:

2f =
∑
ij

(Hn+1δij − hn+1
ij )f,ij

Since (Hn+1δij−hn+1
ij ) is trace free, it follows from [2] that 2 is self-adjoint relative

to L2-inner product of Mn, i.e.,∫
Mn

f2g =
∫
Mn

g2f .

Thus we have

2Hn+1 =
∑
ij

(Hn+1δij − hn+1
ij )Hn+1

ij

= 1
24|H|

2 − |∇H|2 −
∑
i

λn+1(Hn+1)(33)
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From equations (30),(31),(32),(33),

(34) 2Hn+1 ≥ 1
2Rijij(λ

α
i − λαj )2 .

Because Sij = c(n−1)δij , we see by the Bonnet-Myers theorem that Mn is bounded
and hence compact.

Since 2 is self-adjoint, we have

(35) 0 ≥
∫
Mn

1
2Rijij(λ

α
i − λαj )2 .

Then, by hypothesis Rijij > 0, so λαi = λαj for α ∈ {n + 1, . . . , n + p} and
i, j ∈ {1, . . . , n}.

From equation (27), we have
(36) (n− 1)(λn+1

1 )2 = (λn+2
1 )2 + · · ·+ (λn+p

1 )2.

From equation (28), we have
(37) nλn+2

1 = · · · = nλn+p
1 = 0 ,

then we have
(38) (n− 1)(λn+1

1 )2 = 0,
so λn+1

1 = λn+2
1 = · · · = λn+p

1 = 0, i.e. Mn is a totally geodesic submanifold. �
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