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Abstract. This paper considers the problem of testing a sub-hypothesis in homoscedastic
linear regression models when the covariate and error processes form independent long
memory moving averages. The asymptotic null distribution of the likelihood ratio type test
based on Whittle quadratic forms is shown to be a chi-square distribution. Additionally,
the estimators of the slope parameters obtained by minimizing the Whittle dispersion is

seen to be n
1/2-consistent for all values of the long memory parameters of the design and

error processes.
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1. Introduction

A classical problem in statistics is to see whether among a given set of predictor

variables a subset of variables is significant or not for predicting a response variable.

In the regression set up this is done by first stipulating a linear regression model

and then testing for the absence of some of these covariates by testing that the

corresponding slope parameters are zero. This is the so called problem of testing a

sub-hypothesis in linear regression set up.

More precisely, let n, p and k be known positive integers with k 6 p. Let Xt1,

1 6 t 6 n (Xt2, 1 6 t 6 n) be k × 1 ((p − k) × 1) random vectors and let Yt,

1 6 t 6 n denote the response variables. Consider the regression model where for

*Research of the first author was partly supported by the NSF DMS Grant 0701430.
Research of the second author was partly supported by the bilateral France-Lithuania
scientific project Gilibert and the Lithuanian State Science and Studies Foundation
grant T-15/07.
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some β1 ∈ R
k and β2 ∈ R

p−k,

(1.1) Yt = β′
1Xt1 + β′

2Xt2 + εt, t = 1, . . . , n.

The problem of interest is to test

H0 : β2 = 0, vs. H1 : β2 6= 0.

In the case of independent homoscedastic errors {εt} and when the design variables

are either non-random or random and i.i.d., this problem has been well studied in

literature, cf. [12] and [16] and references therein. A classical testing procedure is the

likelihood ratio test when errors are Gaussian or the analysis of variance type tests

via the least square theory which are asymptotically valid without the Gaussianity

assumption.

The focus of this paper is to investigate the large sample behavior of an analog of

the likelihood ratio type test for H0 when both the error and the covariate processes

form long memory moving averages and are independent of each other. A discrete

time strictly stationary stochastic process with finite second moment is said to have

long memory if its auto-covariances tend to zero in a hyperbolic fashion as the lag

increases to infinity. Long memory processes arise in numerous physical and social

sciences. See [1], [3], [4], [6] and [7] for more on these processes. Regression models

with long memory in design and errors are useful when the long memory in design

variables may be not enough to explain the long memory in the response process,

cf. [13]. Such models are found useful in economics and finance when observing high

frequency data where spot returns are regressed on forward premiums. See e.g. [2],

[5], [15], among others. See also [10] where some currency exchange data sets are

observed to have long memory.

Let Z := {0,±1, . . .} and let Θ be an open and relatively compact subset of Rd,

d > 1. The process {εt, t ∈ Z} is said to form a long memory moving average if for

some functions α from Θ to (0, 1) and c from Θ to R,

(1.2) εt =
∑

s∈Z

a(t − s; ϑ)ζs, t ∈ Z,

where a(t; ϑ) ∼ c(ϑ)tα(ϑ)/2−1 (t → ∞) and ζj , j ∈ Z, are standardized i.i.d. random

variables having finite fourth moment. Let â(u; ϑ) = (2π)−1
∑

t∈Z

a(t; ϑ)e−itu, u ∈ Π :=

[−π, π] be the Fourier transform of a, where i = (−1)1/2. Then the corresponding

spectral density is f(u; ϑ) = 2π|â(u; ϑ)|2, ϑ ∈ Θ, u ∈ Π. Let

b̂(u; ϑ) =
1

f(u; ϑ)
, u ∈ Π; bt(ϑ) =

∫

Π

eitub̂(u; ϑ) du, t ∈ Z, ϑ ∈ Θ.
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Let X
′
t := (X ′

t1, X
′
t2), β

′ := (β′
1, β

′
2) and define

Λn(ϑ, β) :=

n
∑

t,s=1

bt−s(ϑ)(Yt − X
′
tβ)(Ys − X

′
sβ), β ∈ R

p,

(θ̂n, β̂n) := argmin
(ϑ,β)∈Θ×Rp

Λn(ϑ, β),

Λn(ϑ, β1) :=
n

∑

t,s=1

bt−s(ϑ)(Yt − β1X
′
t1β)(Ys − X

′
s1β1), β1 ∈ R

k, ϑ ∈ Θ,

(θ̂n1, β̂n1) := argmin
(ϑ,β1)∈Θ×Rk

Λn1(ϑ, β1).

The analog of the likelihood ratio test for H0 would be based on

Qn := −2[Λn(θ̂n, β̂n) − Λn1(θ̂n1, β̂n1)].

Strictly speaking, in the case of Gaussian errors the exact likelihood ratio test would

have the elements of the inverse of the covariance matrix as weights in the quadratic

forms Λn’s instead of {bt−s(ϑ)}. The above quadratic forms are their Whittle ap-

proximations. For this reason we shall call the test that rejects H0 in favor of H1

when Qn is large the Whittle test.

In the next section we give minimal sufficient conditions on the spectral density

f(u; ϑ) and the process Xt under which the null distribution of Qn is seen to con-

verge to a chi-square distribution. The class of covariate processes satisfying these

conditions includes the short and long memory moving averages. Additionally, we

show that the consistency rate for the minimizers θ̂n and β̂n is n1/2. Some proofs

appear in the last section.

2. Assumptions and main results

To proceed we need to describe some additional needed assumptions on the spectral

density f(u; ϑ). In the sequel, θ, β0 denote the true values of ϑ, β, respectively, and

Θ0 denotes an arbitrarily small neighborhood of θ. For any twice differentiable

function h(ϑ, β) let

∇βh(ϑ, β) = (∂h(ϑ, β)/∂βj)j=1,...,p;

∇2
ϑβh(ϑ, β) = (∂2h(ϑ, β)/∂ϑi∂βj)i=1,...,d; j=1,...,p,

∇ϑh(ϑ, β) = (∂h(ϑ, β)/∂ϑi)i=1,...,d;

∇2
ββh(ϑ, β) = (∂2h(ϑ, β)/∂βi∂βj)i,j=1,...,p.
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We write∇2
ββh(θ, β0) for∇2

ββh(ϑ, β)|ϑ=θ,β=β0
, ∇2

ϑβh(ϑ, β0) for∇2
ϑβh(ϑ, β)|β=β0

, etc.

We assume the following conditions on the spectral density f(u; ϑ) where f−1

stands for 1/f , cf. [9] and [14].

(a.1) f(u; ϑ), u ∈ Π, determines ϑ uniquely and
∫

π

−π
log f(u; ϑ) du = 0, ϑ ∈ Θ0.

(a.2)
∫

Π log f(u; ϑ) du is twice differentiable under the sign of integral.

Furthermore, there exist a function α from Θ to (0, 1) that is continuous at θ and a

constant C < ∞ satisfying the following conditions (a.3)–(a.6).

(a.3) f(u, ϑ) is continuous at all (u, ϑ), u 6= 0, ϑ ∈ Θ0, f−1 is continuous on

Π × Θ0 and

f(u; ϑ) 6 C|u|−α(ϑ), ∀ (u, ϑ) ∈ Π × Θ0.

(a.4) ∇ϑf−1 and ∇2
ϑϑf−1 are continuous on Π × Θ0 and

|∇ϑf−1(u; ϑ)| 6 C|u|α(ϑ),

|∇2
ϑϑf−1(u; ϑ)| 6 C|u|α(ϑ)/2, ∀ (u, ϑ) ∈ Π × Θ0.

(a.5) |∇ϑ(∂f−1(u; ϑ)/∂u)| 6 C|u|α(ϑ)−1, ∀ (u, ϑ) ∈ Π × Θ0

(a.6) f−1(u; ϑ) 6 C|u|α(ϑ)/2, ∀ (u, ϑ) ∈ Π × Θ0.

Using arguments as in [8] and [9] one can see that fractional autoregressive moving

average processes satisfy these conditions.

About the design covariates X
′
t = (Xt,1, Xt,2, . . . , Xt,p) we shall assume that

Xt,i =

p
∑

j=1

∑

s∈Z

Bij(t − s)ξs,j , t ∈ Z,(2.1)

∑

s∈Z

B2
ij(s) < ∞, i, j = 1, 2, . . . , p.

We further assume that ξs := (ξs,1, . . . , ξs,p)
′, s ∈ Z are i.i.d. standardized r.v.’s,

independent of ζs, s ∈ Z, implying the independence of designs and errors in (1.1).

The above condition (2.1) includes both the short memory (in particular, i.i.d.) and

the long memory random designs, but it does not allow for an intercept parameter

in (1.1).

Let

V (ϑ) :=

∫

Π

g(u)f−1(u; ϑ) du, W (ϑ) :=

∫

Π

f(u; ϑ)∇2
ϑϑf−1(u; ϑ) du,

where g(u) is the matrix-valued spectral density of Xt of order p × p. Write

g(u) =

(

g11(u) g12(u)

g12(u)′ g22(u)

)

, V (ϑ) =

(

V11(ϑ) V12(ϑ)

V12(ϑ)′ V22(ϑ)

)

,
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where g12(u) and g22(u) are matrix-valued (cross-)spectral densities of Xt1 and Xt2

having dimensions k × p and (p − k) × (p − k), respectively. We are now ready to

state the following theorem.

Theorem 2.1. Assume the model (1.1), where (a.1)–(a.6), (2.1) hold and V (θ)

is positive definite. Then, under H0, Qn =⇒ 8π
2χ2

p−k.

We remark here that a similar chi-square limit distribution seems to hold also in

the case when the intercept parameter µ (unknown mean) is included in the model,

provided one does not test for µ = 0 but only for absence of some random zero mean

covariates. However, the consistency rate of the Whittle estimate of µ seems to be

n(1−α(θ))/2, i.e., much slower than the rate n1/2 for the remaining parameters. This

case will be dealt with elsewhere when dealing with general deterministic designs.

The proof of the above theorem is facilitated by the following lemma. For any

positive integer q, let Nq(µ, Σ) denote the q-dimensional normal distribution with

mean vector µ and the covariance matrix Σ. Let Zθ and Zβ denote two independent

random vectors with Zθ (Zβ) having Nd(0, 16π
3W (θ)) (Np(0, 8π

3V (θ))) distribution.

Then (Z ′
θ, Z

′
β)′ has Nd+p(0, Γ) distribution where

Γ :=

(

16π
3W (θ) 0

0 8π
3V (θ)

)

.

We also need to define

Λn0(ϑ) := Λn(ϑ, β0) :=

n
∑

t,s=1

bt−s(ϑ)εtεs, Znθ := n−1/2∇ϑΛn0(θ),(2.2)

Tn(ϑ) :=

n
∑

t,s=1

bt−s(ϑ)εtXs, Znβ := n−1/2Tn(θ),

Tn1(ϑ) :=

n
∑

t,s=1

bt−s(ϑ)εtXs1, Znβ1 := n−1/2Tn1(θ),

An(ϑ) :=

n
∑

t,s=1

bt−s(ϑ)XtX
′
s, β′

0 := (β′
01, β

′
02).

We are now ready to state

Lemma 2.1. Under the conditions of Theorem 2.1,

Λn(θ̂n, β̂n) = Λn(θ, β0) −
1

2
Z ′

nθ(2πW (θ))−1Znθ − Z ′
nβ(2πV (θ))−1Znβ + op(1)(2.3)

(Z ′
nθ, Z

′
nβ) =⇒ (Z ′

θ, Z
′
β).(2.4)
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We remark here that (2.3) also holds under H0. The proof of Lemma 2.1 is

postponed till later. We use it to yield the following proof.

P r o o f of Theorem 2.1. Apply Lemma 2.1 under H0 to obtain

Λn(θ̂n, β̂n1) = Λn(θ, β01) −
1

2
Z ′

nθ(2πW (θ))−1Znθ(2.5)

− Z ′
nβ1(2πV11(θ))

−1Znβ1 + op(1).

Under H0, Λn(θ, β0) = Λn(θ, β01), (2.3) and (2.5) yield that

(2.6) Qn = 2[Z ′
nβ(2πV (θ))−1Znβ − Z ′

nβ1(2πV11(θ))
−1Znβ1] + op(1).

Hence (2.4) implies that Qn =⇒ Q := 2[Z ′
β(2πV (θ))−1Zβ − Z ′

β1(2πV11(θ))
−1Zβ1],

where Zβ1 is the vector of the first k components of Zβ. Now the claim follows

from the following fact. Let Z ∼ Np(0, Σ) where Σ is a positive definite covariance

matrix, and let Z1 denote its first k components with covariance matrix Σ11. Then

the distribution of Z ′Σ−1Z − Z ′
1Σ

−1
11 Z1 is χ2

p−k. See, e.g., [16]. �

P r o o f of (2.3) of Lemma 2.1. Assume that (2.4) holds. By using an argument

as in [11], one can verify that under the assumed set up (θ̂n, β̂n) is consistent for

(θ, β0). In other words, for all aufficiently large n, θ̂n ∈ Θ0, β̂n ∈ B0 with probability

arbitrarily close to 1, where Θ0 ∋ θ, B0 ∋ β0 are arbitrarily small neighborhoods of

the true parameters. The Taylor expansion around (θ, β0) yields

Λn(θ̂n, β̂n) = Λn(θ, β0) + (θ̂n − θ)′∇ϑΛn(θ, β0) + (β̂n − β0)
′∇βΛn(θ, β0)(2.7)

+
1

2
(θ̂n − θ)′∇2

ϑϑΛn(θ∗n, β∗
n)(θ̂n − θ)

+ (β̂n − β0)
′∇2

ϑβΛn(θ∗n, β∗
n)(θ̂n − θ)

+
1

2
(β̂n − β0)

′∇2
ββΛn(θ∗n, β∗

n)(β̂n − β0),

where (θ∗n, β∗
n) ∈ Θ × R

p are some random vectors such that

(2.8) ‖θ∗n − θ‖ 6 ‖θ̂n − θ‖ = op(1), ‖β∗
n − β0‖ 6 ‖β̂n − β0‖ = op(1).

We shall prove below that the following asymptotic relations hold:

n1/2g(θ̂n − θ) = −(2πW (θ))−1Znθ + op(1),(2.9)

n1/2(β̂n − β0) = (2πV (θ))−1Znβ + op(1).(2.10)

Now, the Taylor expansion yields

(2.11) Λn(ϑ, β) = Λn0(ϑ) − 2(β − β0)
′Tn(ϑ) + (β − β0)

′An(ϑ)(β − β0).

�
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The following lemma will also be proved later.

Lemma 2.2. Under the assumptions of Theorem 2.1 the following hold:

n−1∇2
ϑϑΛn0(ϑ) → 2πW (ϑ),(2.12)

n−1∇ϑTn(ϑ) → 0,(2.13)

n−1An(ϑ) → 2πV (ϑ),(2.14)

uniformly in ϑ ∈ Θ0 a.s. Moreover,

(2.15) n−1 sup
ϑ∈Θ0

(|∇ϑAn(ϑ)| + |∇ϑϑAn(ϑ)| + |∇ϑTn(ϑ)| + |∇ϑϑTn(ϑ)|) = Op(1).

Note that (2.11), (2.12)–(2.14), (2.15) and (2.8) imply the convergence of the

second derivatives in (2.7) (in probability):

n−1∇2
ϑϑΛn(θ∗n, β∗

n) → 2πW (θ),(2.16)

n−1∇2
ϑβΛn(θ∗n, β∗

n) → 0,(2.17)

n−1∇2
ββΛn(θ∗n, β∗

n) → 4πV (θ).(2.18)

The representation (2.3) now follows from (2.7) and (2.9), (2.10), (2.4) and (2.16)–

(2.18). Relations (2.4) and (2.9), (2.10) are proved in Sections 2 and 3 below. �

3. Proof of the CLT in (2.4)

Recall the definitions of εt and Xt from (1.2) and (2.1). In the sequel, we shall

suppress θ in a(t; θ) in (1.2) and some other notation. The following proof of (2.4) has

its roots in [9]. For notational simplicity, we shall assume that d = p = 1, in particu-

lar, that Xt is a scalar process. The idea of the proof is to approximate the quadratic

forms Znθ, Znβ by the corresponding “diagonal” forms Z̃nθ, Z̃nβ defined as follows.

Let â1(u) := (2π)1/2â(u)|∇ϑb̂(u)|1/2, â2(u) := (2π)1/2â(u)|∇ϑb̂(u)|1/2 sgn(∇ϑb̂(u)),

aj(t) :=
∫

Π
eituâj(u) du, j = 1, 2, G(t) :=

∑

s∈Z

bt−sB(s), t ∈ Z, and

(3.1) ε̃jt :=
∑

s∈Z

aj(t − s)ζs, j = 1, 2, X̃t :=
∑

s∈Z

G(t − s)ξs,

where ξs ≡ ξs,1, B(s) ≡ B11(s). Then the approximating quadratic forms are

(3.2) Z̃nθ := n−1/2
n

∑

t=1

(ε̃1tε̃2t − Eε̃1tε̃2t), Z̃nβ := n−1/2
n

∑

t=1

εtX̃t.

241



The processes {ε̃jt}, j = 1, 2 follow the definition in [9, (1.9)] with weights aj(t),

j = 1, 2 defined through their Fourier transforms as in [9, (2.1), (2.2)].

Note that
∑

t∈Z

G(t)2 < ∞ since the Fourier transform Ĝ(u) = (2π)−1
∑

s∈Z

G(s)eisu,

u ∈ Π satisfies Ĝ(u) = 2πb̂(u)B̂(u) = 2πf−1(u)B̂(u) where B̂ is the Fourier transform

of (B(s)), and so Ĝ ∈ L2(Π) by the assumption of boundedness of f−1. In particular,

the process {X̃t} in (3.1) is a well-defined moving average process independent of

the process {εt}. Clearly, for d = p = 1, (2.4) follows from

(3.3) (Z̃nθ, Z̃nβ) =⇒ N2(0, Γ)

and

(3.4) E(Znθ − Z̃nθ)
2 = o(1), E(Znβ − Z̃nβ)2 = o(1).

The first relation in (3.4) follows from [9, Lemmas 1 and 4]. Then

E(Znβ − Z̃nβ)2 = n−1
n

∑

t2,t2=1

∑

s1,s2 6∈[1,n]

bt1−s1
bt2−s2

Eεt1εt2EXs1
Xs2

(3.5)

=

∫

Π2

f(x)g(z) dxdz

(

n−1/2

∫

Π

Dn(x + y)Dn(y − z)(f−1(y) − f−1(z)) dy

)2

,

where Dn(x) :=
n
∑

s=1
eisxe−i(n+1)x/2 is the Dirichlet kernel. Recall that

|Dn(x)| 6 πnc|x|c−1, ∀ 0 < c < 1, x ∈ Π,

6 2πn(1 + n|x|)−1, ∀x ∈ Π.

Using these bounds and the boundedness and continuity of f−1, it follows that the

bracketed expression in (3.5) is bounded in x, z, n, and tends to zero as n → ∞.

This proves (3.4).

Next, we turn to the proof of (3.3). We use an approach similar to that in [9, proof

of Thm. 3]. Accordingly, we define below “2M -memory” (M < ∞) approximations

ε̃M
it :=

∑

|t−s|6M

aM
i (t − s)ζs,(3.6)

εM
i :=

∑

|t−s|6M

aM (t − s)ζs,(3.7)

X̃M
t :=

∑

|t−s|6M

GM (t − s)ξs,(3.8)
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to (3.1) and (1.2), and the corresponding quadratic forms:

(3.9) Z̃M
nθ := n−1/2

n
∑

t=1

(ε̃M
1t ε̃M

2t − Eε̃M
1t ε̃M

2t ), Z̃M
nβ := n−1/2

n
∑

t=1

εM
t X̃M

t .

Relation (3.3) follows from

(3.10) Z̃M
nθ, Z̃

M
nβ) =⇒ N2(0, ΓM )

for any M < ∞, where ΓM is a covariance matrix, and

lim
M→∞

‖ΓM − Γ‖ = 0,(3.11)

lim
M→∞

lim sup
n→∞

E(Z̃M
nθ − Z̃nθ)

2 = 0,(3.12)

lim
M→∞

lim sup
n→∞

E(Z̃M
nβ − Z̃nβ)2 = 0,(3.13)

see [9, p. 97] for details.

The approximating processes (i.e., the weight functions aM
i (t), aM (t), GM (t))

are defined through their Fourier transforms. In particular, the sequences (aM
i (t))

(i = 1, 2) are defined in [9, p. 96]. Relation (3.12) also follows from [9, (3.8)].

The CLT in (3.10) is a consequence of the fact that the approximating processes

in (3.6)–(3.8) are all stationary and 2M -dependent.

It remains to show the existence of aM (t), GM (t) satisfying (3.13). Consider the

Fourier transforms â, Ĝ (the transfer functions of filters {εt}, {X̃t}), then V (θ) =
∫

Π g(x)f−1(x) dx =
∫

Π |â(x)Ĝ(x)|2 dx < ∞. Note that

EZ̃2
nβ = 4π

2n−1

∫

Π2

D2
n(x + y)|â(x)Ĝ(z)|2 dxdz.

We shall prove below that

(3.14) n−1

∫

Π2

D2
n(x + y)|â(x)Ĝ(z)|2 dxdz → 2π

∫

Π

|â(x)Ĝ(x)|2 dx.

Put

aK(j) :=

∫

Π

e−ijxâ(x)1(|â(x)| 6 K) dx,(3.15)

GK(j) :=

∫

Π

e−ijxĜ(x)1(|Ĝ(x)| 6 K) dx,

and

(3.16) εt,K :=
∑

j∈Z

aK(j)ζt−j , X̃t,K :=
∑

j∈Z

GK(j)ξt−j .
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Then

n−1E

( n
∑

t=1

(εtX̃t − εt,KX̃t,K)

)2

(3.17)

= 4π
2

∫

Π2

D2
n(x + z)|â(x)Ĝ(z)|2(1 − 1(|â(x)| 6 K, |Ĝ(x)| 6 K)) dxdz

→ 8π
3

∫

Π

|â(z)Ĝ(z)|21(|â(z)| > K or |Ĝ(z)| > K) dz, n → ∞,

where we have used (3.14) and the well-known fact that a similar convergence holds

for any bounded measurable functions instead of â and Ĝ. Next, using boundedness

of truncated (by K) transfer functions in (3.15), one can approximate them in L4(Π)

by trigonometric polynomials of degree 2M similarly to [9, p. 96], and the corre-

sponding moving averages by 2M -dependent moving averages. More precisely, for

any K, ε > 0 there exist M > 0 and trigonometric polynomials âM , ĜM such that

the Fourier coefficients aM (j) =
∫

Π eijxâM (x) dx, GM (j) =
∫

Π eijxĜM (x) dx vanish

for |j| > M and

(3.18)

∫

Π

(|â(x)1(|â(x)| 6 K)− âM (x)|4 + |Ĝ(x)1(|Ĝ(x)| 6 K)− ĜM (x)|4) dx < ε.

Similarly to (3.17),

n−1E

( n
∑

t=1

(εM
t X̃M

t − εt,KX̃t,K)

)2

(3.19)

→ 8π
3

∫

Π

|â(x)Ĝ(x)1(|â(x)| 6 K, |Ĝ(x)| 6 K) − âM (x)ĜM (x)|2 dx.

Clearly, by (3.18), the right-hand side of (3.19) does not exceed CKε1/2, i.e. it can

be made arbitrarily small by an appropriate choice of M and the approximating

polynomials. Together with (3.17) and the fact that the right-hand side of (3.17)

vanishes as K → ∞, this concludes the proof of (3.13). Relation (3.11) easily follows

from relations (3.14), (3.17), (3.19).

It remains to show the limit (3.14). Using n−1
∫

Π
D2

n(x+y) dy = 2π, the difference

between the left- and right-hand sides in (3.14) can be rewritten as

un := n−1

∫

Π

|Ĝ(z)|2 dz

∫

Π

D2
n(x − z)(|â(x)|2 − |â(z)|2) dx

=

∫

Π

g(z)f−1(z) dz

{

n−1

∫

Π

D2
n(x − z)

(f(x)

f(z)
− 1

)

dx

}

.
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Write un =
∫

Π
f−1(z)g(z)jn(z) dz, where jn(z) denotes the quantity in the curly

brackets. Further, split un =
∫

|z|<δ . . . +
∫

z∈Π,|z|>δ . . . =: un1(δ) + un2(δ). Note

that un2(δ) = o(1) for any fixed δ > 0, which follows from the fact that jn(z) =

o(1) uniformly in |z| > δ, z ∈ Π, which fact in turn follows from joint continuity

of f(x)/f(z) on x, z ∈ [−π,−δ] ∪ [δ, π] for any δ > 0 fixed. It remains to show

that un1(δ) → 0 (δ → 0) uniformly in n. As g is integrable, it suffices to show

that f−1(z)jn(z) is bounded on (−δ, δ) uniformly in n. Using (a.6) and the bound

D2
n(x) 6 Cn2/(1 + n2x2), for 0 < z < δ one obtains

f−1(z)|jn(z)| 6 f−2(z)n−1

∫

Π

D2
n(x − z)f(x) dx + Cf−1(z)

6 C

∫ ∞

0

nzα dx

(1 + n2(x − z)2)xα
+ O(1)

= C

∫ ∞

0

nz du

(1 + n2z2(1 − u)2)uα
+ O(1) =: CJn(z) + O(1).

Let nz > 1, then

Jn(z) 6 nz

∫

|1−u|61/nz

u−α du + (nz)−1

∫

|1−u|>1/nz

(1 − u)−2u−αdu 6 C.

Next, let nz 6 1, then

Jn(z) 6 nz

∫ 1+1/nz

0

u−α du + (nz)−1

∫

1+1/nz

(u − 1)−2u−α du = O((nz)α) = O(1).

This proves the boundedness of f−1(z)jn(z) as well as un = o(1) and the limit

in (3.14), thereby completing the proof of the CLT in (2.4).

4. Proof of (2.9)–(2.10)

Next, we prove the n1/2-consistency of the estimator (θ̂n, β̂n). Under some regu-

larity conditions, (θ̂n, β̂n) is a unique solution in Θ0 × B0 of the equation

n
∑

t,s=1

∇ϑbt−s(θ̂n)(Yt − X ′
tβ̂n)(Ys − X ′

sβ̂n) = 0,(4.1)

n
∑

t,s=1

bt−s(θ̂n)∇β(Yt − X ′
tβ̂n)(Ys − X ′

sβ̂n) = 0.(4.2)

Relation (4.2) yields

(4.3) β̂n = β0 + Â−1
n T̂n,
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where Ân := An(θ̂n), T̂n := Tn(θ̂n) and where An(ϑ), Tn(ϑ) are defined in (2.2)

above. Note the equation in (4.1) for θ̂n is the same as in [14, p. 134]. Therefore we

can use the results in [14] to estimate |θ̂n−θ| given a rate of |β̂n−β0| and vice versa.

Namely, since θ̂n = argminϑ Λ̃n(ϑ) where Λ̃n(ϑ) := Λn(ϑ, β̂n), so expanding (4.1) as

in [14] yields

(4.4) 0 = ∇ϑΛ̃n(θ̂n) = ∇ϑΛ̃n(θ) + ∇2
ϑϑ(ϑ∗

n)(θ̂n − θ).

From (2.12) and consistency of (θ̂n, β̂n) it follows that n−1∇2
ϑϑΛ̃n(ϑ∗

n) = 2πW (θ) +

op(1) a.s. and therefore

(4.5) |θ̂n − θ| = Op(|n
−1∇ϑΛ̃n(θ)|)

according to (4.4). However,

(4.6) ∇ϑΛ̃n(θ) = n1/2Znθ + ∇ϑΛn2(θ)(β̂n − β0) + (β̂n − β0)
′∇ϑΛn3(θ)(β̂n − β0),

where Znθ = Op(1) (see (2.4)) and

∇ϑΛn3(θ) :=

n
∑

t,s=1

∇ϑbt−s(θ)XtX
′
s = Op(n),(4.7)

∇ϑΛn2(θ) :=

n
∑

t,s=1

∇ϑbt−s(θ)εtX
′
s = Op(n

3/4),(4.8)

see [14], (3.2), (3.4). From (4.5) and (4.6)–(4.8) we conclude

|θ̂n − θ| = Op(n
−1/2) + Op(n

−1/4|β̂n − β0|) + Op(|β̂n − β0|
2)(4.9)

= Op(n
−1/2) + Op(|β̂n − β0|

2)

= Op(max(|β̂n − β0|
2, n−1/2)).

Next, we shall estimate |β̂n − β0| given a rate of |θ̂n − θ|. From (4.3) we obtain

|β̂n − β0| =

∣

∣

∣

∣

Â−1
n

n
∑

t,s=1

(bt−s(θ̂n) − bt−s(θ))Xtεs + Â−1
n

n
∑

t,s=1

bt−s(θ)Xtεs|(4.10)

6 |θ̂n − θ| sup
ϑ′∈Θ0

|nA−1
n (ϑ′)| sup

ϑ′′∈Θ0

|n−1∇ϑTn(ϑ′′)|

+ n−1/2 sup
ϑ∈Θ0

|nA−1
n (ϑ)||Znβ |.
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Here Znβ = Op(1) (see (2.4)), sup
ϑ∈Θ0

|nA−1
n (ϑ)| = Op(1) (see (2.14)), and

sup
ϑ′′∈Θ0

|n−1∇ϑTn(ϑ′′)| = Op(1)

(see (2.15)). Therefore from (4.10) we obtain

(4.11) |β̂n − β0| = Op(max(|θ̂n − θ|, n−1/2)).

Substituting (4.9) into (4.11) and using |β̂n − β0| = op(1) yields

(4.12) |β̂n − β0| = Op(n
−1/2),

which in turn together with (4.9) yields

(4.13) |θ̂n − θ| = Op(n
−1/2).

Next, we prove (2.9) and (2.10). Using nÂ−1
n → (2πV (θ))−1 a.s. (which follows

from (2.14) and the consistency of θ̂n), from (4.3) we obtain

n1/2(β̂n − β0) = (2πV (θ))−1Znβ + Op(n
−1/2|Tn(θ̂n) − Tn(θ)|) + op(1),

where

|Tn(θ̂n) − Tn(θ)| =
∣

∣

∣
(θ̂n − θ)′∇ϑTn(θ) + (1/2)(θ̂n − θ)′∇2

ϑϑTn(ϑ∗
n)(θ̂n − θ)|

6 n|θ̂n − θ||n−1∇ϑTn(θ)| + n|θ̂n − θ|2 sup
ϑ∈Θ0

|n−1∇2
ϑϑTn(ϑ)|

= op(n
1/2)

according to (4.13), (2.13) and (2.15). This proves (2.10). Relation (2.9) follows

from [14, Thm. 1.2] and (4.12).

Relations (2.12)–(2.14) follow from a generalization of the results in [11]. Finally,

the details of the proof of (2.15) are completely analogous to those appearing in [14,

p. 146]. This concludes the proof of Lemma 2.1.
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