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Abstract. In this paper the notion of robot-manipulators in the Euclidean space is gener-
alized to the case in a general homogeneous space with the Lie group G of motions. Some
kinematic subspaces of the Lie algebra G (the subspaces of velocity operators, of Coriolis
acceleration operators, asymptotic subspaces) are introduced and by them asymptotic and
geodesic motions are described.
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1. Introduction

Roughly speaking the notion of an n-parametric robot-manipulator (briefly an

n-robot) in the Euclidean space E3 is a system of n links bound in n joints such that

the motion of the ith link in the ith joint with respect to the preceding link depends

on the parameter ui. The first joint is fixed to the base. The nth link is called the

effector of the robot. A motion of the effector with respect to the base is determined

by a curve H(t) on the Lie group E(3) of all Euclidean motions in E3. Let E(3) be

the Lie algebra of the group E(3). To the ith joint a unique element Xi ∈ E(3) is

assigned such that the motion of the ith link induced by the ith joint is of the form

exp ui(t)Xi. Then the motion of the effector mediated by the work of all joints is of

the form H(t) = exp u1(t)X1 . . . expun(t)Xn. For details of this concept we refer our

readers to [6]. In this paper we try to generalize this approach in the following way.

Instead of the Euclidean space E3 we will consider a homogeneous spaceM with the

Lie group G which acts transitively on M from the left side, i.e. for any L1, L2 ∈ M

there is an element g ∈ G such that g(L1) := g ◦ L1 = L2.

In Chapter 2 we recall the basic notions of differential geometry such as tangent

vectors (velocities), 2-tangent vectors (accelerations) on differentiable manifolds, Lie
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groups and their Lie algebras. In Definition 1 we explain our approach to asymp-

totic curves on manifolds with connection which is the basic notion of our investiga-

tion.

The third chapter contains our conception of robotics in a homogeneous space with

its Lie group G. The notion of n-parametric robots is introduced in Definition 7.

We deduce the basic form (6) of the covariant acceleration of the robot effector by

means of which we introduce some subspaces in the Lie algebra G connected with

kinematics of robots. This subspaces are used in our investigations of asymptotic

motions of robots. In Remarks 6, 8 we mention the relation of our investigations to

the asymptotic motions of robots in the Euclidean space E3.

2. Notions on differentiable manifolds, Lie groups and

their Lie algebras

In this chapter we roughly recall some notions of differential geometry we will

use, see for example [5], [6] for details. Let M , dimM = n be a smooth manifold

with local coordinates (x1, . . . , xn). A curve (a motion) on M is an injective map γ :

(a, b) → M , γ(t) = (x1 = γ1(t), . . . , xn = γn(t)) where (a, b) ⊂ R is an open interval,

0 ∈ (a, b), γ1(t), . . . , γn(t) are smooth functions. Let γ̇(0) ≡ j1
0γ :=

(
γi(0), γ̇i(0) =

(dγi/dt)(0)
)
or γ̈(0) ≡ j2

0γ :=
(
γi(0), γ̇i(0), γ̈i(0) = (d2γi/dt)(0)

)
denote respectively

a tangent vector (a velocity) or a 2-tangent vector (an acceleration) determined by

the curve γ at x0 = γ(t0 = 0) ∈ M . The set TxM of all tangent vectors at x ∈ M has

a vector space structure of differentiation operators on the space FM of all smooth

functions on M at x, i.e., if X = j1
0γ then Xf =

n∑
i=1

(∂f/∂xi)γ̇i(0). The spaces

TM :=
⊔

x∈M

TxM , T 2M :=
⊔

x∈M

T 2
xM have the fibre manifold structures over M

(T 2
xM denotes the fibre of all 2-tangent vectors at x ∈ M). A chart (xi) on M

induces the chart (xi, xi
1 ≡ ẋi) on TM , the chart (xi, xi

1, x
i
01 := ẋi, xi

11 := ẋi
1) on

T (TM) = TTM and the chart (xi, xi
1 ≡ ẋi, xi

2 ≡ ẍi) on T 2M ⊂ TTM . A vertical

vector on TM is a vector j1
0γ(t), where γ(t) = (xi

0, x
i
1(t)) is a curve in Tx0M and

thus j1
0γ = (xi

0, x
i
1(0), 0, ẋi

1(0)) can be identified with (xi
0, ẋ

i
1(0)) ∈ Tx0M as Tx0M is

a vector space.

Let F : M → N be a smooth map of manifolds. Then TF : TM → TN or

T 2F : T 2M → T 2N denotes the 1-tangent or 2-tangent prolongation of F , i.e., if

X = j1
0γ(t) ∈ TxM or Z = j2

0γ(t) ∈ T 2
xM then TF (X) = j1

0F (γ(t)) ∈ TF (x)N or

T 2F (Z) = j2
0F (γ(t)) ∈ T 2

F (x)N , respectively.

A smooth vector field on M is a smooth map s : M → TM , s(x) ∈ TxM . It

determines a differentiation operator on the set FM : if f ∈ FM is a real function

on M , f = f(xi), s(x) = (xi, xi
1(x)) then Xf =

n∑
i=1

(∂f(x)/∂xi)xi
1(x). The space
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of all vector fields has the Lie algebra structure when the Lie bracket is defined by

[X, Y ]f = X(Y f) − Y (Xf).

The asymptotic motions we will deal with are connected with special curves on

manifolds with a connection. A linear connection (shortly connection) can be intro-

duced by the so-called parallel transport along curves on a manifoldM . We say that a

connection Γ is given onM if for any curve γ parallel transport along γ is defined that

is a system of such linear maps Pγ independent of parametrization that Pγ(t1, t2) :

Tγ(t1)M → Tγ(t2)M , Pγ(t1, t1) = Id |Tγ(t1)M , Pγ(t1, t2) = Pγ(t, t2) ◦ Pγ(t1, t), t ∈

〈t1, t2〉. By a parallel transport we can define the following covariant differentiation

of a vector field Y along a curve γ(t): ∇γ̇(t0)Y (γ(t)) = j1
t0

(Pγ(t, t0)(Y (γ(t)))).

Definition 1. Let N ⊂ M be a submanifold on M with connection Γ. We say

that a curve γ on N is Γ-asymptotic (Γ-asymptotic at t0) if ∇γ̇(t)γ̇ ∈ Tγ(t)N for

any t (∇γ̇(t0)γ̇ ∈ Tγ(t0)N). A curve γ on M is Γ-geodesic if ∇γ̇ γ̇ = 0.

A Lie group G has two structures: it is both a smooth manifold and a group

where the binary operation G × G → G, (g1, g2) 7→ g1 ◦ g2 is smooth. Every g ∈ G

introduces the left gl : x 7→ g ◦ x and right gr : x 7→ x ◦ g group translations on G.

Their tangential prolongations will be written briefly as ξ◦g := Tgr(ξ), g◦ξ := Tgl(ξ).

Let e ∈ G denote a unit in G. Let X ∈ TeG. Then the rules XR : g 7→ X ◦ g

and XL : g 7→ g ◦ X introduce on G the right and left invariant vector fields. Then

the tangent space TeG : ≡ G is a Lie algebra of G where [X1, X2] = [XL
1 , XL

2 ](e) =

[XR
1 , XR

2 ](e). By the left (right) invariant vector fields the exponential map exp:

G → G is defined as follows. If γ(t) is the integral curve of a field XL (XR) through e,

i.e. γ(0) = e, j1
t0

γ = XL(γ(t0)), then exp(X) = γ(t = 1).

We recall two maps connected with the Lie algebra G:

a) Let GL(G) denote the group of all regular linear maps on G. Then the map

Ad : G → Gl(G), g 7→ Adg, is defined by Adg(X) = g ◦ X ◦ g−1, X ∈ G.

b) Using the tangential prolongation TAd : TG → TGl(G) we obtain the adjoint

map TeAd ≡ ad : TeG ≡ G → L(G) where L(G) is the space of linear maps on G.

We have adX(Y ) = [X, Y ].

Let Γ be a connection on G. Let X1, . . . , Xr be a base in G, dimG = r, let X̃i be

the right invariant vector fields on G given by Xi, i = 1, . . . , r. Let ∇X̃i
X̃j = Γk

ijX̃k

be the equations of Γ in the base X̃1, . . . , X̃r with the Christoffel functions Γk
ij .

Let γ(t) be a curve on G and let B =
r∑

i=1

BiX̃i be a vector field on G, b(t) =

r∑
i=1

bi(t)X̃i(γ(t)), where bi(t) = Bi(γ(t)) is the restriction of B to γ. Denote by

τ(t) = γ̇(γ(t)) =
r∑

i=1

ai(t)X̃i(γ(t)) the vector field of the tangent vectors of γ. We
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get ∇γ̇B = ∇τB =
r∑

j=1

τ(Bj)X̃j(γ) +
r∑

i,j=1

aibj(∇X̃i
X̃j)|γ and then

∇γ̇B =

r∑

j=1

ḃjX̃j(γ) +

r∑

i,j=1

aibjΓk
ijX̃k|γ , ḃj = τ [Bj(γ(t))],(1)

∇γ̇ γ̇ =

r∑

j=1

ȧjX̃j(γ) +

r∑

i<j

aiaj(Γk
ij + Γk

ji)X̃k|γ +

r∑

i=1

(ai)2Γk
iiX̃k|γ ,(2)

where we use the Einstein sum convention with respect to index k: AkDk :=
r∑

k=1

AkDk.

The tangent prolongations of the right group translation on G determine the par-

allel transport PR along curves on G: if γ(t) is a curve on G, X ∈ Tγ(t1)G then

PR
γ (t1, t2)(X) = X ◦ γ−1(t1) ◦ γ(t2) ∈ Tγ(t2)G. It means that the PR-transport

from Tg1G into Tg2G (g1 = γ(t1), g2 = γ(t2)) does not depend on curves from g1

into g2. Denote by
RΓ the connection given by PR. It is invariant. As vector fields X̃i

are right invariant, hence PR
γ (t, t2)X̃i is constant and thus ∇X̃i

X̃j = 0, RΓk
ij = 0 in

the base X̃1, . . . , X̃r. Therefore the relation (2) in the case of the connection
RΓ is

of the form

(3) R∇γ̇ γ̇ =

r∑

j=1

ȧjX̃j(γ).

R em a r k 1. It is well known, see [2], that there is a one-to-one correspondence

between the right invariant connections on G and the space of G-value bilinear

forms ξ on G, ∇X̃1
X̃2 = ˜ξ(X1, X2). For example, the connection

RΓ is given by

ξ(X1, X2) = 0. Using (2) it is easy to show that the relation (3) is true for any con-

nection Γ on G which is given by the form ξ(X1, X2) = k[X1, X2], k ∈ R. Therefore

all these connections have common asymptotic curves.

Definition 2. Let N ⊂ G be a submanifold of G. A curve γ(t) on N is called

asymptotic (asymptotic at γ(t0)) if it is
RΓ-asymptotic (RΓ-asymptotic at γ(t0)). It

is called geodesic if it is RΓ-geodesic.

For any curve γ(t) on G we have γ̇(t) =
r∑

i=1

ai(t)X̃i(γ(t)). Denote Yγ(t) := γ̇(t) ◦

γ−1(t) =
r∑

i=1

ai(t)Xi ∈ G. Then Ẏγ(t) =
r∑

i=1

ȧiXi ∈ G.

Using the equation (3) we obtain

Lemma 1. Let γ(t) be a curve on G. Then (R∇γ̇ γ̇) ◦ γ−1 = Ẏγ .
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Corollary. A curve γ on G is geodesic iff Ẏγ = 0. If γ is an integral curve of a

right invariant vector field then γ is geodesic.

Definition 3. An element Ẏγ will be said to be an operator of the covariant

acceleration given by a curve γ on G.

Recall that we say that a Lie group G acts smoothly from the left side on a

manifold M if there is a smooth map F : G × M → M such that for every g0 ∈ G

the map g̃0 : M → M , g̃0(x) = F (g0, x) is a smooth diffeomorphism and the map

g 7→ g̃ is an injective homomorphism G → Diff M where Diff M denotes the group of

all diffeomorphisms on M . So we have F (e, x) = x, F (g1 ◦ g2, x) = F (g1, g̃2(x)). Let

TF : T (G×M) = TG×TM → TM be the tangent prolongation of F . Denote by F :

TF |TG×M → TM the restriction of TF to TG⊕O where O denotes the zero section

O : M → TM , x 7→ 0 ∈ TxM , which can be identified with M , F(j1
t0

g(t), x) =

j1
t0

(F (g(t), x)) = j1
t0

(g̃(t)(x)). Let γ(t) be a curve on the group G. Without loss of

generality we can suppose γ(0) = e.

Definition 4. The motion t 7→ L(t) = g̃(t)(L0) = F (g(t), L0) will be called the

G-motion of a point L0 ∈ M .

Let us express velocities and accelerations of G-motions. We get

L̇(t0) := j1
t0

(L(t)) = j1
t0

F (g(t), L0) = j1
t0

g̃(t)(L0) = F(j1
t0

g(t), L0).

As for h ∈ G we have F(j1
t0

g(t), h̃(L0)) = F(j1
t0

(g(t))◦h, L0) and L0 = g̃−1(t0)(L(t0))

we get

L̇(t0) = F(j1
t0

g(t), L0) = F(j1
t0

g(t), g̃−1(t0)(L(t0)))

= F(j1
t0

g(t) ◦ g−1(t0), L(t0)) = F(ġ(t0) ◦ g−1(t0), L(t0)) = F(Y (t0), L(t0)),

where Y (t0) := ġ(t0) ◦ g−1(t0) will be called the velocity operator of G-motions.

Analogously

L̈(t0) = j2
t0

(L(t)) = j1
t0

(L̇(t))

= j1
t0
F(Y (t), L(t)) = TF(Ẏ (t0) + L̇(t0)) := L̈C0(t0) + TF(L̇(t0)).

As Ẏ (t0) is a vertical vector in V TG hence L̈C0 is a vertical vector in V TM which we

can identify with a tangent vector in TL(t0)M . As an element Ẏ (t0) is connected with

the covariant derivation R∇ hence L̈C0(t0) will be called a covariant acceleration of

G-motions.

Finally, recall the notion of the homogeneous space. Let GL = {g ∈ G, g(L) = L}

or G(L) denote the isotropy subgroup or the orbit of a point L ∈ M , respectively.
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Then M is called a homogeneous G-space if G(L) = M for any L and GL1 , GL2 are

isomorphic for any L1, L2 ∈ M and thusM = G/GL. As examples we can introduce:

1. The group G which acts on itself by the left group translation: g̃1(g) = g1 ◦ g.

Then Gg = e, G(G) = G.

2. Euclidean space E3 with the group E(3) of all Euclidean motions.

3. Robots in G-homogeneous spaces

Let M be a G-homogeneous space, dimM = n, dimG = r. A rigid body in M

is a subset of M which is homeomorphic with a closed interval in Rn. Two solid

bodies s1, s2 are called G-equivalent if there is g ∈ G such that g̃(s1) = s2. We

suppose that the group G acts on M so that if s1 = g̃1(s2), s1 = g̃2(s2) for solid

bodies s1, s2 then g1 = g2.

From the roughly technical point of view an n-parametric robot-manipulator

(shortly n-robot) in M is a sequence of n solid bodies called links. Each neigh-

boring links, both the (i− 1)st and the ith, are connected in the common joint such

that the ith link and all succeeding links carry out the motion exp uiXi, Xi ∈ G,

forced by the work of the ith joint and controlled by the ui-parameter. The last link

is called an effector E of the robot. From the mathematical point of view this can

be formulated as follows.

Definition 5. Let X1, . . . , Xn be elements of the Lie algebra G. An n-pa-

rametric robot-manipulator (shortly n-robot) in M is a smooth map R : U → G,

(u1, . . . , un) 7→ expu1X1 ◦ . . . ◦ expunXn, where U ⊂ Rn is an open neighborhood of

0 ∈ Rn of admissible parameters.

We shorten (u1, . . . , un) ≡ (u) := R(u) and speak about the position (u) of the

effector E . A controlling curve is a curveH(t) = (u1(t), . . . , un(t)) in U . It determines

a curve γ(t) = exp u1(t)X1 ◦ . . . ◦ exp un(t)Xn in G and then the motion γ̃(t)(E) of

the effector, see Definition 4. In the sense of our considerations in Chapter 2 the

elements γ̇(t0) = j1
t0

γ(t), γ̈(t0) = j2
t0

γ(t), R∇γ̇(t0)γ̇(t), Ẏ (t0) = γ̈(t0) ◦ γ−1(t0) will

be called the velocity, the acceleration, the covariant acceleration operators of the

effector E , respectively. The map Ju : TRn → G, Ḣ 7→ TR(Ḣ) ◦ (R(H))−1 will be

called the Jacobian of the robot at (u).

A ui-curve across a position (u0) = (u1
0, . . . , u

n
0 ) on G is the curve γi(t, u0) =

R(Hi(t, u0)), Hi(t, u0) = (u1
0, . . . , u

i−1
0 , ui

0 + t, ui+1
0 , . . . , un

0 ). The motion of the ef-

fector E determined by Hi(t, u0) will be called the i-basic motion of E forced by

the ith joint. Recall that δi(t) = exp(ui
0 + t)Xi is the integral curve of the right-

invariant vector field XR
i through expui

0Xi and thus j1
0δi(t) = δ̇i(t) = Xi ◦ exp ui

0Xi,

which is the image of Xi at the right group translation exp ui
0Xi. Then ji

0γi(t, u0) =

(exp u1
0X1 ◦ . . . ◦ expui−1

0 Xi−1)Xi(exp ui
0Xi ◦ . . . ◦ exp un

0Xn). Denote ∂i(u0) :=
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j1
0γi(t, u0) = TRj1

0Hi(t, u0) = TR(u1
0, . . . , u

n
0 ; 0, . . . , 0, 1, 0, . . . , 0). Then for a gen-

eral curve γ(t) = R(u1(t), . . . , un(t)) = expu1(t)X1 ◦ . . . ◦ expunXn we have

γ̇(t0) = j1
0γ(t) = TR(u1(t0), . . . , u

n(t0), u̇
1(t0), . . . , u̇

n(t0))

= u̇1(t0)∂1(u0) + . . . + u̇n(t0)∂n(u0).

Using the right group translation by the element γ−1(t0) we get

(4) Yi(u0) ≡ Yi(t0) := ∂i(u0) ◦ γ−1(t0) = Adgi(t0)Xi,

where gi(t0) = expu1(t0)X1 ◦ . . . ◦ expui−1(t0)Xi−1, (u0) = γ(t0),

(5) Y (u0) = γ̇(t0) ◦ γ−1(t0) = u̇1(t0)Y1(u0) + . . . + u̇n(t0)Yn(u0), (u0) = γ(t0).

By the relation (4), Yi(t) = Adgi(t)Xi. Differentiating it with respect to t we

get Ẏi(t0) = j1
t0

Yi(t) = j1
t0

(Adgi(t)Xi) = (j1
t0

Adgi(t))(Xi), where j1
t0

Adgi(t) =

TAd(j1
t0

gi(t)) = Tgi(t0)Ad(ġi(t0)).

Let us consider the curve hi(t) = gi(t) ◦ g−1
i (t0). Recall that Adh◦g = AdhAdg.

We have two expressions of j1
t0

Adhi(t):

j1
t0

(Adhi(t)) =

{
Thi(t0)Ad(ḣi(t0)) = ad(ḣi(t0)) ≡ adḣi(t0)

, as hi(t0) = e,

j1
t0

(Adgi(t))Adg
−1
i

(t0)
.

Then we get adḣi(t0)
= j1

t0
(Adgi(t))Adg

−1
i

(t0)
, i.e. j1

t0
(Adgi(t)) = adḣi(t0)

Adgi(t0), and

thus

(j1
t0

Adgi(t))(Xi) = adḣi(t0)(Yi(t0)) = [ḣi(t0), Yi(t0)].

As

j1
t0

gi(t) = ġi(t0) = TR(u1(t0), . . . , u
i−1(t0), 0, . . . , 0; u̇1(t0), . . . , u̇

i−1(t0), 0, . . . , 0)

= u̇1(t0)∂1(u0) + . . . + u̇i−1(t0)∂i−1(u0)

we get

ḣi(t0) = ġi(t0) ◦ g−1
i (t0) = u̇1(t0)Y1(t0) + . . . + u̇i−1(t0)Yi−1(t0),

Ẏi(t0) = (j1
t0

Adgi(t))(Xi) = [ḣi(t0), Yi(t0)] =
i−1∑

j=1

u̇i(t0)[Yj(t0), Yi(t0)].

Then by (5) we conclude for the covariant acceleration operator Ẏ (t0):

(6) Ẏ (t0) =

n∑

i=1

üi(t0)Yi(t0) +
∑

k<i

[Yk(t0), Yi(t0)]u̇
k(t0)u̇

i(t0) := ẎJ + ẎC .

It means that the covariant acceleration operator consists of two terms: ẎC will be

called the C-acceleration operator and ẎJ will be referred to as the joint acceleration

operator.
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R em a r k 2. The relation (6) is essential for our investigation. Its form is the

same as in the case of the robots in the Euclidean space E3. We had to use another

method to develop it, instead of the matrix calculus used in E3, see [3], [6].

The relation (6) inspires us to introduce the following subspaces connected with

kinematics of robots, which are crucial for our approach to asymptotic motions.

Definition 6. Denote

• V T (u) := span(Y1(u), . . . , Yn(u)) is the velocity operators subspace at (u),

shortly called the V -subspace at (u).

• AC(u) := span([Y1(u), Y2(u)], . . . , [Yn−1(u), Yn(u)]) is called the C-subspace

at (u).

• AS(u) := span(V T (u)∩AC(u)) is called the asymptotic subspace at (u), briefly

the AS-subspace.

• COV (u) := span(V T (u) + AC(u)) is called the COV -subspace (the subspace

of covariant acceleration operators at (u)).

For (u) = (0) we use the short notation V T , AC, AS, COV . The rank of a robot

is d = max
(u)∈U

(dimV T (u)).

R em a r k 3. Evidently the rank of the Jacobian Ju is equal to dimV T (u). If

d = n = dimV T then there is a neighborhood V of 0 ∈ Rn such that R(V ) ⊂ G is

an immersed submanifold, see for example [5].

Now we turn to the investigation of asymptotic motions of robots. By our Defi-

nition 1 an asymptotic curve is introduced as a special curve on a submanifold of a

manifold with a connection. In Definition 2 the asymptotic curve on a Lie group G

is introduced as an asymptotic curve with respect to the connection RΓ determined

by the right group translation. By Remark 1 we can use instead RΓ any connection

given by the bilinear vector form k[X1, X2] on the Lie algebra G of G.

Let us denote T (u) := span(∂1(u), . . . , ∂n(u)). If dimV T = n then T (u) is the

tangent subspace of the immersed submanifold R(V ). As V T (u) is the image of T (u)

in a group translation therefore dimV T (u) = dimT (u). By Lemma 1 the covariant

acceleration operator Ẏ (u) from COV (u) is the image of R∇γ̇ γ̇ in the same group

translation. Therefore the element R∇γ̇ γ̇ belongs to T (u) iff Ẏ (u) ∈ V T (u).

Definition 7. Let d < dimG. A motion u(t) of a robot is said to be asymptotic

or asymptotic at (u0) if Ẏ (u(t)) ∈ V T (u(t)) for all u(t) or Ẏ (u(t0)) ∈ V T (u(t0)),

respectively. A position (u) is said to be flat if any motion through (u) is asymptotic

at (u). A robot is flat if there is a neighborhood of flat positions (u). We say that a

motion of a robot is geodesic if Ẏ = 0.

R em a r k 4. Let us recall that a subspace H ⊂ G is called a Lie subalgebra of G

if it is closed with respect to Lie bracket, i.e. if [H,H] ⊂ H. If H is a Lie subalgebra

of G then there is a Lie subgroup H of G such that H is the Lie algebra of H .
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R em a r k 5. The relation (6) immediately gives:

a) A motion u(t) is asymptotic at (u0) iff its C-acceleration operator ẎC is an

element of the asymptotic space As(u0). At this position we also say that the

C-acceleration is tangential.

b) In particular, if ẎC = 0 then this motion is asymptotic. For example: if

u̇i(t0) 6= 0 and u̇j(t0) = 0 for all j 6= i (in this case we say that only the

ith joint works), then this motion is asymptotic at (u0).

c) A position (u) is flat iff AC(u)∩V T (u) = AC(u), i.e. iff AC(u) ⊂ V T (u), i.e. if

V T (u) is a Lie subalgebra. A robot is flat if V T is a Lie subalgebra of G.

R em a r k 6. The first author who studied asymptotic motions of robots in E3

with group E(3) of Euclidean motions was Karger, see for example [3], [4]. He intro-

duced asymptotic motions by the Levi-Civita connection of the pseudo-Riemannian

manifold (E(3), Kl), where Kl is the Klein bilinear form on the group E(3). As this

connection is just the Cartan connection on E(3) determined by the bilinear vector

form 1
2 [X1, X2] in the Lie algebra e(3) of E(3), according to Remark 1 our approach

is consistent with Karger’s one in the case when R : U → E(3) is an immersed

submanifold in E(3).

Definition 8. Motions when only such i1, . . . , ik-joints work that the subspace

span(Yi1 , . . . , Yik
) is a subalgebra are called t-asymptotic (for example, all motions

when V T is a subalgebra or when they are caused by the work of only one joint are

t-asymptotic). The others are called nt-asymptotic.

Proposition 1. Let at (u0) the asymptotic space be zero, AC(u0) ∩ V T (u0) = 0

and dimAC(u0) =
(
n
2

)
. Then a motion is asymptotic at (u0) iff only one joint works

at (u0) = u(t0).

P r o o f. By assumption a motion u(t) is asymptotic iff ẎC(t0) = 0. Proof follows

from the relation (6) and from the linear independence of [Y1, Y2]t0 , . . . , [Yn−1, Yn]t0 .

�

R em a r k 7. Every geodesic motion is asymptotic and ẎC = −ẎJ . An asymptotic

motion with zero Coriolis acceleration is geodesic iff also ẎJ = 0. If n = dimV T

then ẎJ = 0 iff all joint velocities are constant, u̇i = ci, i = 1, . . . , n. To obtain

concrete information about the asymptotic motions we need to know the properties

of the group G, first of all the subgroups of the Lie group G and the subalgebras of

the Lie algebra G. Therefore in the next part of this paper we will investigate two

cases n = 2, n = 3 < dimG only.

1) n = 2. In this case AC(u) = span([Y1, Y2]) and AC(u) ∩ V T (u) = 0 or AC(u) ∩

V T (u) = AC(u). This immediately gives
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Proposition 2. In the case n = 2 < dimG there are only t-asymptotic motions.

2) n = 3. There are four cases:

a) If AC(u0) = 0 then V T (u0) is a subalgebra and (u0) is flat.

b) dim AC(u0) = 1. Then at least one element from [Y1, Y2], [Y1, Y3], [Y2, Y3]

is not zero. Let for example [Y1, Y2] 6= 0. If AC(u0) ∩ V T (u0) = AC(u0)

then V T (u0) is a subalgebra and (u0) is flat. Let AC(u0) ∩ V T (u0) = 0

and [Y1, Y3] = k1[Y1, Y2], [Y2, Y3] = k2[Y1, Y2]. Then a motion u(t) is

asymptotic at (u0) iff ẎC(u0) = 0, i.e. iff u̇1u̇2 + k1u̇
1u̇3 + k2u̇

2u̇3 = 0.

There are nt-asymptotic motions (for example when u̇1 = 0, k2 = 0).

c) dim AC(u0) = 2. We can suppose [Y2, Y3] = c2[Y1, Y2] + c3[Y1, Y3]. If

AC(u0) ∩ V T (u0) = 0 then a motion is asymptotic at (u0) iff u̇2(u̇1 +

c2u̇
3) = 0, u̇3(u̇1 + c3u̇

2) = 0 at t0. If u̇2u̇3 = 0 then there are only t-

asymptotic motions. If u̇2u̇3 6= 0 then there are nt-asymptotic motions

only in two cases: c2 = 0, c3 = 0 or c2c3 6= 0. Let dimAC(u) ∩ V T (u) = 1.

Then AC(u) ∩ V T (u) = span(Ŷ ), Ŷ = k2[Y1, Y2] + k2[Y1, Y3]. Then

a motion is asymptotic iff ẎC = λŶ , i.e. iff u̇2(u̇1 + c2u̇
3) = λk2 and

u̇3(u̇1 + c3u̇
2) = λk3. There are nt-asymptotic motions in this case. If

dim AC(u) ∩ V T (u) = 2, i.e. AC(u) ⊂ V T (u), then V T (u) is a subalgebra

and (u) is flat.

d) If dimAC(u) = 3 then [Y1, Y2], [Y1, Y3], [Y2, Y3] is a basis in AC(u). If

AC(u) ∩ V T (u) = 0 then by Proposition 1 a motion is asymptotic iff just

one joint works. Let AC(u) ∩ V T (u) 6= 0, AC(u) ∩ V T (u) 6= AC(u). Let

Ŷ ∈ AC(u)∩V T (u), Ŷ 6= 0, Ŷ = k12[Y1, Y2]+k13[Y1, Y3]+k23[Y2, Y3]. Then

the motion ẎC = λŶ is asymptotic iff the system of differential equations

(7) u̇1u̇2 = λk12, u̇1u̇3 = λk13, u̇2u̇3 = λk23

has a solution. For λ = 0 only ui-motions are asymptotic. For λ 6= 0

the solution of the system (7) depends on the coefficients k12, k13, k23 and

thus on the geometry of robots. There are nt-asymptotic motions. We

conclude:

Proposition 3. In the case n = 3 < dimG there are nt-asymptotic motions and

they are determined by a system of non-linear differential equations for unknown

controlling functions ui(t) containing u̇i(t) only in the “u̇iu̇j-product” forms. Their

solutions depend on the geometrical properties of the robots only.

R em a r k 8. In our paper [1] we described all asymptotic motions of 3-parametric

robots in the Euclidean space E3. For example:

a) Motions of 3-robots when the axis of the rotational joint is orthogonal to the

axes of two prismatic joints are t-asymptotic as in this case V T is a subalgebra.
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b) Motions when the axis of the rotational joint is parallel to the axis of a prismatic

joint are t-asymptotic.

c) Motions of the RTT or TTR robots when all joint axes are complanar, all joints

work and the rate of prismatic joint velocities is equal to the rate of the corre-

sponding coordinates of the unit vector of the rotational joint angular velocity

in the basis formed by unit vectors of translating velocities of the prismatic

joints are nt-asymptotic.

4. Conclusion

In this paper referring to robots in the Euclidean space E3 we model the n-robot

in an arbitrary homogeneous space M with the left action of a Lie group G. Mo-

tions of such robots are generated by curves on G. Therefore the properties of the

group G influence the properties of the robot motions. On every Lie group G there

is a connection RΓ the parallel transport of which is determined by the right group

translations. So on every n-robot there are at least n asymptotic motions through a

position (u) induced by asymptotic curves on G with respect to the connection RΓ.

This result generalizes the ones of Karger [3] and Selig [6] who use the Levi-Civita

connection induced by a regular and symmetric bilinear form in the case of an n-robot

in the Euclidean space E3. Our results have geometric character and demonstrate

an interesting application of the Lie groups and the Lie algebras in robotics.
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