Applications of Mathematics

Fengquan Li; Weiwei Sun

Hyperbolic boundary value problem with equivalued surface on a domain with thin
layer
Applications of Mathematics, Vol. 54 (2009), No. 4, 351-375

Persistent URL: http://dml.cz/dmlcz/140370

Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/140370
http://dml.cz

54 (2009) APPLICATIONS OF MATHEMATICS No. 4, 351-375

HYPERBOLIC BOUNDARY VALUE PROBLEM WITH
EQUIVALUED SURFACE ON A DOMAIN WITH
THIN LAYER*

FENGQUAN L1, WEIWEI SUN, Dalian

(Received August 24, 2007)

Abstract. This paper deals with a kind of hyperbolic boundary value problems with
equivalued surface on a domain with thin layer. Existence and uniqueness of solutions are
given, and the limit behavior of solutions is studied in this paper.
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1. INTRODUCTION

In many practical applications, especially in resistivity well-logging in petroleum
exploitation, boundary value problems with equivalued surface are formulated
(see [8]-[10]). From the physical point of view, the equivalued surface boundary
value condition corresponds to a source. When the equivalued surface boundary
shrinks to an interior point or shrinks to a point on the boundary of the domain,
the limit behaviour of solutions for hyperbolic equations has been discussed in [3]
and [7].

In resistivity well-logging, one may encounter a formation with crack domain, the
resistivity of which is often diffcult to be obtained. However, this crack domain is
a thin layer compared with the whole formation (see [10]). In practical calculation,
the variation of solutions near the thin layer should be quite large, and then in finite
element procedure, it is necessary to have a refined partition of elements near the
thin layer. This causes a complexity in computation. To get rid of this difficulty,

* Project partially supported by NSFC (No0:10401009) and NCET of China (No0:060275).
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when the thin layer is extremely thin (if measured by the mesh size parameter),
the thin layer can be approximately regarded as an interface and corresponding the
boundary value problem with equivalued surface on the thin layer can be approxi-
mately replaced by the boundary value problem with equivalued interface. To prove
the above conclusion, we need to study existence, uniqueness and limit behavior of
solutions for boundary value problems with equivalued surface on a domain with
thin layer. For the case of elliptic equations this has been studied in [11]. In this
paper, we will discuss the case of hyperbolic equations because this kind of boundary
value problem can be used in acoustic well-logging (see [15]).

Here we consider the following hyperbolic boundary value problem with equivalued
surface on the domain with thin layer:

0%u N9 ouy I .
W — Z a_:[,',L (aij (l‘, t)a—:[;j) = ($,t> m Ql U Q27
i,j=1
u=0 on X,
u = C(t) (a function to be determined) on %,
(P1) ou q ou ds 4 A
7 ds = - €. T
. I s ., Bns s+ A(t) a.e. t € (0,7),

u(z,0) = () in Q1 UQo,
0 .

a_?(x70) =¢1($) m QlL_JQQ,

where Ql = Ql X (O,T), QQ = QQ X (O,T), QT = 0 x (O,T), Y =1Ix (O,T),
Y =(T,UQUTY) x (0,T), T is a fixed positive constant, and

N

ou
= Z aij(xvt)ni%7 n = (ny,ng,...,nN)
J

u

ong, 4
3,j=1

denotes the conormal derivative.

Let Q ¢ RY (N > 2) be a bounded domain with smooth outside boundary T
(see Fig. 1). Suppose that € is composed of three non-overlapping subdomains €24,
Q and o, and I and T, are the interfaces of  with €; and s respectively. The
unit normal n = (ny,n2,...,ny) takes the inward and outward directions (or vice
versa) for the domain Q on Ty and I,. In this paper, we will deal with the existence,
uniqueness and limit behavior of weak solutions to problem (P1).

The paper is organized as follows: In Section 2 we will prove the existence and
uniqueness of a weak solution to the problem (P;). In Section 3 we will discuss a
hyperbolic boundary value problem (P) with equivalued interface. In Section 4 the
limit behavior of solutions to the problem (P;) will be studied.
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Figure 1.

2. EXISTENCE AND UNIQUENESS OF WEAK SOLUTION TO PROBLEM (Pl)

In this section, we will discuss the existence and uniqueness of a weak solution to

the problem (P;). We first give the following assumption:

(H,) a;; € Wh(Qr), aij(z,t) = aji(x,t), and there exist two positive con-

(2.3)

stants «, 3 such that

N
a|€|2 < Z az](xat)ftg_] g 6|§|27 \Vlf = (El7§2) R agN) S RN;

nI=t a.e. (z,t) € Qr

Vo = {v: v e Hy(Q), vlg uaur, = constant},

Ulz{’l)

2 € L2(07T7H5(Q))7 Pty Pt € L2(QT)7 (p(J?,T) = a}
Qﬁt((E,T) =0, 90|fj = C(t) 7

where C(t) is an arbitrary function of ¢.
Here we also assume F' € L?(Q,.), A€ H*(0,T), v € Vo, and 91 € L?(Q).
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Definition 2.1. If there exists a measurable function u € L?(0,T;Vy) such that
VSO € U17

T T N
Ju Oy
2.4 U da:dt+/ / a;;———dxdt
( ) /0 /QlLJQQ o 0 JQ Z ! axj axi

ij=1

T
:/ / F(x,t)godxdt—/ Yo(x)p(x,0) dz
0 Q,UQ5 Q1UQ
T

T / @0+ / Alt)gls dr,

0

then we say that u is a weak solution to the problem (P).

Now we can state the existence and uniqueness of a weak solution to the prob-
lem (P;) as follows.

Theorem 2.2. Suppose that F € L*(Q..), Yo € Vo, ¥ € L?(Q), A € H*(0,T)
and (H;) hold, then there exists a unique weak solution u € L*(0,T;V;,) to the
problem (Pq).

Proof. (1) Proof of existence: Let
(2.5) V={v: ve H(Q UQy), v|r =0, v|g U, = constant}

and let V' be the dual space of V.
Here we will use the Galerkin method (see [14], [13], [6], [2], [5] and [12]). Take
a basis {wy}22, of V such that it is a complete orthonormal basis of L?(Q; U Q2),
too. For any fixed n, let S, = span{wi,ws,...,wn}. Let Yon(z) = > copwy and
k=
n
Y1n = Y, c1xwk be the projections of ¥y(x) and ¥1(x) onto S, respectively.

k=1
n

Let @, = Y, cpnwi; the Galerkin equations are as follows
k=1

N

82ﬂn aﬂn &uk
wkd$+/ a;; ———dz
~/521U522 8t2 QU i;l J 8333‘ 8l‘i
(26) = /Q o ka dx + A(t)wk|f1uf2a
1US2
’&'n(m’ O) = ¢On($)a
Oy,

o (,0) = 1, (2).
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Namely, for almost all ¢ € (0, T)

8wl 8wk

(2.7) = / Fuwp dx + A(t)wk|f1uf2a
Q1UQs

ckn(0) = cok,

Chon (0) = 1.
By the theory of systems of ordinary differential equations, the problem (2.7) admits
a unique solution ¢, € C*, k=1,...,n.

Multiplying (2.6) by c},,(t) and summing over k, we obtain

ot i, 0%
SRR [t
(28) 2dt L2fhuﬂg_+ Qﬂﬂbi%: Y 9 ; D0t
ot ot
:/ Fa, )2 o+ a2
QUQ ot At Uty
Integrating (2.8) over (0,7) with respect to t, we get
8u,n ‘ 2 1 / o, Ouy,
: +z aij =
(2.9 QH '7) L2(202) 2 Jo,ua, 1-;1 Y ox; 0wy li=r
// F@ﬁddtf/A(t)@—"~~ dt
QU0 0 Ot 1(TyuTy)x(0,T)
/ / 8a” (z,t) Oy, Oy, du dt
Q1U92 315 815] 8xl
1 Y da, o o 2
; Thoret o | S0l
T3 /91UQ2 Mz::l Y 9, Dy 2 ) L2(2,UQ3)
By (H;) and the Holder inequality, we have
aun - 9
@10 |G gy NPT M0
< ||IF|? —%J/i/i (Qﬁﬁ)dedt
S L2(Qr) 0,00, \ Ot
8un

. dt‘
(FlUFQ)X(O,T)

+N2Haij|\W1,x<QT> / D2 0,00,

o 2
|00
L2(91U92)

+

+ BlDn (-, 012, u0,)-
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Let

(2.11) E(t):/g B ((aﬁgt(t))2+|Dan(t)l2+(an(t))2> dz.

From (2.10)—(2.11), we obtain

(2.12) Ha“" ‘

. 2
L2(Q1UQ2) + o[ Din(, 7-)HLQ(QM%)

&1 (IF o + EO)+ [ E) o)
/0 TA(t)%

where C = max{1, 8, N2| a;|lw.= Qs }-
By integration by parts, the Sobolev imbedding theorem (see [12]), the Young
inequality and the trace theorem, we obtain

+2

o dt
(Fl UFQ) X (O,T)

)

(2.13) 8“”

dt‘
flufz)X(O,T)

< Cz5< | IDB R + Gl i)

e ( [ 10wl + (a0 dx)
Q1UQs
+ Cé||A||?'-Il(O,T)

e / (Dm0, 00 + im0, 000) s

where (5 is a positive constant depending on |f‘1|, Cj is a positive constant depending
on ¢, T, and ¢ is an arbitrary small postive constant.
According to the definition of E(t), we have

(2.14) au"

dt‘
(T ULL) % (0,T°)

< 025( [ 1D + () )
Q1UQs
+CaB(O0) + ol AlBom + Ca [ B0t
0

Since @y, (-, 7) = Un(-,0) + [ (9, /0t) dt

2(iin (-,0))? + 2T /OT(%)2 at.

(2.15) a2 (-, 7) 5

N
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Integrating (2.15) over 27 U Qg2, we have

(2.16) liin () g < Cs (E(O) +f " E() dt),

where C5 = max{2, 2T}.
Putting (2.16), (2.14), and (2.12) together, one can deduce that

(2.17)

8un - .
|5 + | Dt D)2 00 + 1 ™) 20,00

el

Lz(Qluﬂz)

< C4(||F||%2(QT) + E(0) +/0 E(t) dt> + Csl|l Al o.m)

4 025</QIUQ2[|DM.,T)|2 + (i (7)) dx),

where Cy = max{C1,Cs,Cs}.
Let 6 = %C{l min{c, 1}, then it is easy to get

2

(2.18) Hau"

")

w12 G .00 + i Dl 0,000

The above inequality may be written as

(2.19) E(r) < Cs <||F||2L2(QT) + E(0) +/O E(t)dt+ ||A||%{1(0,T)).
Using Gronwall’s inequality, we get

(2.20) E(1) < Cs(I1F172(0r) + 1Y0nllyy + 19101720y + 1Al F1 0.1))
< Co([1F N2 + 19oll¥ + 9101720y + 1470 0,1))-

Hence for a.e. t € (0,7,

Ol ( )‘

@21) il Ez@unn + 1DE O @000+ | 7552 aoan
< CG(||F||L2(QT) + [[eoll¥, + ||’¢11||L2(Q) + ”AH%U(O,T))'

Thus we get

(222)  anllz20,mv) < (CeT) 2 (I Fll2(@r) + 1%ollve + 191l 220y + 1Al 0,7)):

(2.23) H Ot

Loo 0,7 L2(91U92))

1 2
< Cs*(I1F Il 2@y + ¥ollve + 11l 20y + 1Al o.1)-
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Integrating (2.7) over (t,t + At), we get
At Oty Owy,
(2.24) Chom (t + AL) — ¢, ( / / i — dzdr
g g Q,UQ; 12:: J dx; Ox;

t+At T
= / / Fuopdxdr + / A(T)wk|f‘1uf‘2 dr.
t Q1UQ, 0

On the basis of (H;), (2.22), and the trace theorem, we arrive at

(2.25) [chon (t + At) — o (O] < Orllwillv]At]2,

where C7 is a positive constant independent of n, k.

From the above inequality, we can deduce that for any fixed positive integer k,
Ckn 18 equicontinuous with respect to n in [0, 7). Thus by the Ascoli-Arzela theorem,
we can extract a subsequence of {c}, } (still denoted by {c},,}) such that as n — occ.

(2.26) Cen — di uniformly in [0, T].

Let cx(t) = f(f di(7) dT + cox, where cor, = (0, wr), then ¢} (t) = di(t) and

(2.27) Ckn — ¢g uniformly in [0, T].
For any postive integer r < n, (2.23) yields
(2.28) S ()2 < Cs, VEE (0,7),
k=1

where Cg is a positive constant independent of n, k, . Let n — oo in (2.28), then
for any postive integer r we have

T

(2.29) > (6(1)* < Cs.

k=1
From (2.29), Holder’s inequality and Parseval’s identity it follows that

T

(2.30) S (@ (1)? < Zz(/o 2 (7) dr>t+2;c§k

k=1

ZT/ )2 dr + 2|12, < Co.
0 k=1

where Cy is a positive constant independent of n, k, r and t.
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Let di(x, t) = i::ck(t)wk(x), then @ (2, ) — i / (t)wn(2), and (2.30) and (2.29)
0,

imply that @(z,t), @ (z,t) € L?(Q2; U Qy), Vt € [0,T].
For any fixed postive integer k, it follows from (2.26) and (2.27) that

(231) (ﬁ;z(a t) - ﬁl('v t)a wk) = C;cn - C;c — 0, uniformly in [Oa T]
and
(2.32) (Un(-,t) —a(-,t), wr) = ckn — ¢ — 0, uniformly in [0, 7.

But {wg}72, is a complete orthonormal basis of L2(Q; U Q2), thus

(2.33) i, — @' weakly in C([0, T]; L*(Q1 U Qs))
and
(2.34) iy, — @ weakly in C([0,T]; L*(Q1 U Qy)).

Thus (2.22) and (2.34) imply that
(2.35) i, — @ weakly in L?(0,T;V).

Next, (2.33)—(2.34) yield

(2.36) i (-,0) — @(-,0) weakly in L*(£2; U Q)
and
(2.37) tip(+,0) — (-, 0) weakly in L*(Q; U Q).

Consequently @(0) = g, @'(0) = 1.

For any given sequence of smooth function {vy(t)}52, defined in [0,7] with
vk(T) = 0 and v, (T') = 0, multiplying the Galerkin equation (2.6) by wvi(t) and
using integration by parts, we obtain

(2.38) / / UnVgrwi dr dt + / / (%)k 8un v, dx dt
01UQ Qluﬂz i 8:51 8xj

// kawkdxdt—l—/ Avg(t )wk|rlur2

Q1UQs

[ mnOerde+ [ @
Q1UQs

Q1UQs
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According to (2.35)—(2.37), letting n — oo in (2.38), it is easy to prove that

N

ot
(2.39) / / WURrwr dr dt + / / aij Oy, O Uk dz dt
Q1UQ5 (951 UQ2 a a

/ / Fopw, do dt + / Avg(t )wk|r uf, d
Q1UQ 0
- / Yo () vkt (0)wy, doe + / 1 (x) vk (0)wy, da.
Q1UQs

Q1UQs

For any postive integer 7, let

T

(2.40) p(z,t) = Z v (t)wg ().

k=1

Replacing v (t)wk (z) by the above (z,t) in (2.39), we have

T T N ~
. Op(z,t) Ou

241 // Up (x,t)dxdt—f—// aij —dxdt
( ) 0 JOQ1UQs " 0 JQUQ g:% J 8xi 8xj

T T
:/0/521U92F¢($7t)dmdt+/0 ASO(x’t”(flufz)x(o,T)dt
B / Wol@)r(z, 0) dz + / U (@)(,0) da.

Q1UQ

Q1UQs

Since the set composed of all functions like (2.40) is dense in the space Uy,
(2.41) holds for any ¢ € U; too.
Let

(2.42) . {ﬂ, ze(@QU Q2),

C(t), zex.

It is easy to verify that u € L?(0,T;Vp) and satisfies (2.4). Thus we obtain that u is
a weak solution to the problem (Py).
(2) Proof of uniqueness: Assume that u; and us are two weak solutions to (P1)

and let u = uy — ug, then u satisfies

T T
(2.43) // ugattda:dt+// 0, 2890 qpar—0, veeu.
0 Q1UQ5 0 Q’i,j a a

ForO<h<Tand 0<b<T —h, let

(2.44) h
1
_/ u(va)dTv 0<t<1—‘—h7 R 0’ t>ba
up =< h J; Q= t
0 t>T—h u, (z,7)dr, 0<t<D,
) = ) b
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and

t>b I,
(2.45) 5 = O’t > b, b E/hw(x,T)dT, h<t<T,
. = _ 5

/U(x,T)dT, o<t<b; "

b

It is easy to prove that ¢; € Uy. Taking ¢ = ¢, in (2.43), we have
e

(2.46) I, = // ttdxdtf// — Gt =) g ar
Qluﬂz Q1 U h
h
/ ug?:t(x,t)dxdt— _/ / ugbt(x,t—h)dxdt
Q1UQ2 h Jo Q1UQ5

T—
1 T—h 1 T—h
== / / up(x,t)dedt — — / / u(x,t + h)py(z,t) de dt
hiJo  Jaua, hiJo  Jaue,
/T

—h _
/ u(z,t + h) — u(x,t) Be(a ) da dt
Q1UQs h

0
T—h b
— / / (uh)tsbt dxdt = — / / @tt@t dx dt.
0 Q1UQ 0 JQ1UQ

Similarly, we also have

ou 9y,
(2.47) I = //Z i B B dt dz

7,]1

1 [ op(x, )
/ / Z Qjj 833] ( /t_h 81}1' d’T) dx dt

1 T=h prih X Ou(z,t) 0p(z, T)
= E,/Q/o /T Z a;j(z,t) oz, oz, dtdr dx

2,7=1

8ua:t) 0p(x, T)
// Z aij (¥ z; )h dx; d dt.

1,7=1

Applying (2.46) and (2.47) to (2.43), we get

b
L 1)\ 0P
2.48 // dzdt = // E ai;( ulz dz dt.
( ) o Jo,ue, Pt Pt j 8x] )haxl

7,j=1
Consequently,
]. ~ 2 ]- A~ 2
(2.49) 5”%('» b)HLZ(QlLJQQ) - —||50t('v O)HLz(QlLJQQ)
u(z,t)\ 0P
i dz dt.
// Z a] 83:3 )h&at:z
2,7=1
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Taking h — 0 in (2.49) and using Lemma 3.2 in [4], we have

(2.50) Lo o) </b/ g: One a77d dt.
. 5 228 L2(QUQs) S 0o 22, zga 8

However,

oy 0
(2.51) // Z ”8;” &;’d xdt
i,7=1 J v
10 & a on on
_5/0/92_:& zJ(’9xjc3‘xl)d wdt

__//Zaa”a:t On 877d g
ot dx; Ox; '

2,7=1

Thus

1. ) on 9n ,
(2.52) S 126 D)Iz2 (0, 00, + /Z YD, 8% "lizo

8a” x,t) 877 on
// Z ot 8a:J 8xzd o dt.

2,7=1

By (Hy), we get

253) 10D xnn + | | Z (20Y el <cn [ ] Z 90V

where Cjp is a positive constant only depending on [|a;;|w1.(gQ,), N and o

According to the definition of 7, we have

@54) 1o B0 + [, Z( / (2,7) d7>2dx
<cm//z(/ g—lw,ﬂdf) dzdi
cu [ S([ Bt [ Gt o
o [ $5(f e

2
+2010//Z( 8x (z,7 dT) dx dt.
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The chain of inequalities (2.54) yields

2
2.55 (1 —2C40d) 7)dr | d
(2.59) /Z<a Jar) do

2010// (/ ot x,r)dr>2dxdt.

Set

~ N t ou 2
(2.56) E(t) = /QZUO 8—3%(95,7) dT> dz.

i=1
Then (2.55) can be written as
~ b ~
(2.57) (1 -2C10b)E(b) < 2010/ E(t)dt.
0

Choose a positive constant by = 1Cj' such that

~ b ~
(2.58) B(b) < 4C1 / Bltydt Vb e [0, bo).

0

By Gronwall’s inequality, it is easy to get
(2.59) E(b) =0 VYbe0,bg).

Consequently, (2.54), (2.56), and (2.59) imply that

(2.60) u(z,b) =0 ae. z € (QUN), Vb e |[0,by).

Applying the same argument on the intervals [bg, 2bg], [2bo, 3bg]. . . , we can thus prove
that

(2.61) u(z,t) =0 a.e. (z,t) € Q1 U Q2.

Using (2.61) and the trace theorem, we can deduce that
(2.62) u(z,t) =0 ae. (z,t) € Q.

Thus the proof of uniqueness is completed. O
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3. HYPERBOLIC BOUNDARY VALUE PROBLEM WITH
EQUIVALUED INTERFACE

In this section, we will study the existence and uniqueness of the weak solution to
a hyperbolic boundary value problem with equivalued interface.

In order to study the limit behavior of solutions to the problem (P), we need to
study the following equivalued interface problem (P). Here we give another division
of Q as shown in Fig. 2. Q is composed of two non-overlapping subdomains ; and
Qg, and T is the interface of Q; and Q5. Denote Ql =0 x (0,7), Qg =0y x (0,7),
Yo =T x(0,7).

Figure 2.

In this section we will consider the following hyperbolic boundary value problem
with equivalued interface:

N

82u 8 - 8'{1; . e A
Eﬁ_g;%ﬂ%mwaﬂme in Q1 UQa
u=0 on E,

uy =u_ = C(t) (a function to be determined) on X,

(P)
A(aﬁi )+ ds = A(%) ds + A(t) ae. te(0,T),

’LL(J,‘, 0) = wO(x) in Q,
X =) in 0,

where the subscripts + and — denote the values on both sides of T.
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We give the following assumption:
(Hi) ai; € Wh*(Qr), aij(z,t) = aji(z,t), and there exist two positive con-
stants «, 3 such that

N
(31) Oé|£|2 < Z dz](xat)ngj < ﬂ|£|27 Vf = (5175% .. 75]\7) S RN;
=t a.e. (z,t) € Q.
Let
(3.2) Vi = {v: v € Hy(Q); v|p = constant},

33) U= { “P € L*(0,T; Hy (), w1, ou € L*(Qr), ¢(x,T) = 07}
“Ulawn =0 ¢ls, = C(t).

Definition 3.1. If there exists a measurable function u € L?(0,T;V;) such that
Vel

du O¢p
(3.4) //ugottdxdt—f—//z ”8 8 dx dt

-/ / Fatjpdodt = [ in(o)g(@,0)da
/% dex—i—/ A(t)els, dt,

then we say that u is a weak solution to the problem (P).

Theorem 3.2. Suppose that F € L*(Qr), v € Vi, 91 € L?(Q), A € HY(0,T)
and (Hy) hold, then there exists a unique weak solution u € L*(0,T;V;) to the
problem (P).

Proof. The proof of this theorem is similar to Theorem 2.2, we omit the details.
O

365



4. LIMIT BEHAVIOR OF SOLUTIONS TO THE PROBLEM (P;)

In this section, we will study the limit behavior of solutions to the boundary value
problem (P). More precisely, let € > 0 be a small parameter and replace 21, s, Q by
QF, Q3, Q¢, and the interfaces I} and I by the interface f‘f and f‘§, respectively, as
shown in Fig. 3. Let Q5 = Q5 x (0,T), Q5 = Q5 x (0,T), X. = ([fUQUTY) x (0,T).

Figure 3.

Here we will discuss the following problem:

2 N
T Y g (e ngE) = ey mofues

ot? o0z; Oz,
1,7=1
ue =0 on X,
u. = C.(t) (a function to be determined) on .,
(Pe) ou ou
—ds = A e. T
' Oz ds b O ds + A(t) a.e. t € (0,7),
ue(z,0) = ¢§(x) in Qf UQS,
e (2,0) = ¥i(2) in Q5 U ;.

We give the following assumptions:
(Hs) I c QF, Ve > 0; QF shrinks to I, as ¢ — 0.
(Hs) Given any domain € such that I c Q C Q, then for any € > 0 small
enough, we have Q¢ c V.
(Hy) af; € Wl’x(QT), a;;(w,t) = aj;(w,t), and there exist three positive con-
stants K7, « and (8 independent of € such that

(4.1) a5 e oy < K



and

N
(4.2) ale? <> (@068 < BIEP, VE=(&.6,..., &) ERY,

nI=t a.e. (z,t) € Qr.

(Hs) Given any domain €' such that T' C ' C Q, then as ¢ — 0,

(4.3) ag;(x,t) — a;j(x,t) strongly in L=((Q\ Q) x (0,T)).
Set
(4.4) Vi = {v: ve H}(Q), Vlgeupsufy = constant},
SDE € L2(Oa T’ H&(Q)), SOEUSDEtt € L2(QT)7 SOE(IE’ T) = 07
(4.5) U: =< pe
@e, (2, T) =0, 505|25 = C:(t).

Definition 4.1. If there exists a measurable function u. € L?(0,T;V§) such that
V(p € UE7

T T N
Oue Oy
4.6 // Ue P dxdt+// E as; dx dt
(46) 0 JOsuNs " 0 v, ST Oz Ow;

T
= [ [ Fanedear- [ @@
o Jasuas Qs U0S

T
4 / il 0)de + / Alt)els, dt,

then we say that u. is a weak solution to the problem (P;).

Remark 4.2. For every fixed ¢ > 0, if (4.2) and v§ € Vg, ¢5 € L*(Q), F €
L?(Q7),and A € H'(0,T) hold, we can similarly prove that the problem (P.) admits
a unique weak solution u. € L2(0,T; V() in the sense of Definition 4.1.

Now we give the limit behavior of solutions to the problem (P.) as follows.

Theorem 4.3. Suppose that (H;)—(Hs) and F € L*(Qr), A € H'(0,T) hold. If
ase — 0,

(4.7) Pi(x) — Yo(x)  weakly in Vi
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and

(4.8) Ui(w) — ¢1(x)  weakly in L*(Q),
then for every weak solution u. to (P.) we have

(4.9) u. —u weakly in L*(0,T; V1),

where u is the weak solution to the problem (P) and the definition of V; can be seen
in (3.2).

Before we give the proof of Theorem 4.3, we need the following Lemma.

Lemma 4.4. Under the hypotheses (Hy) and (H3), for any given ¢ € U, there
exist @, € U, such that as e — 0,

(4.10) we — ¢ strongly in U,

where U is as in (3.3).

Proof. For convenience, we may assume that the origin is an interior point
of Q (see Fig. 2).

For fixed £ > 0 small enough, let Q5 = {z(1 —¢): z € W}, Q) ={z/(1—¢): z €
Qo}, Q5 =Q\ Q, Q° = Q) \ Q5.

Defining T = {z(1 —¢): = € T'} and assuming I, T§ are the interfaces of (°
with QF and Q5, we can write I'® x (0,T) = X, (see Fig. 4).

Figure 4.
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Let

+
(A1 =2)z) = sup oH(@1) (@) €05 x (0,7),
' x(0,T)

+ ~ ~ ~
ot =4 (#@Dlrnor = 5w @t b)), (@) € [[FUQUTE) x (0,7),

e x(0,T)
T +
(e(5=t) = s ot@b) . (@) €5 x(0,7),
1-¢ T x(0,T)
and
(e =wt) = inf @=@)  (@0)€0fx(0,T),
o =14 (@@, Dlpgom — _inf o (x,0) , (at) e (FuUTs) x (0,7),
O.T) " peso,1)
L _ 3 - B €
(o(==1) Lt (@) . (2.1 € Q5 x (0,7).

Obviously ¢t € Ue, ¢- € U, so we have . € U.. It is easy to prove that ¢ and
- strongly converge to ¢ and ¢~ in U respectively. We omit the details. O

Proof of Theorem 4.3. For any given £ > 0, the problem (P.) admits a unique
weak solution u. € L2(0,7;Vg) by Theorem 2.2 and (4.6) holds. Furthermore,
checking the proof of Theorem 2.2, we can deduce that u’ € C([0,T]; L?(925 U Q3)).
Thus (4.6) can be written as

T T N
Oue Oy
4.11 —// Uetp dxdt—l—// E as; dx dt
( ) 0 Jasuag o 0 Je, ST Oz Ow;

T
= [ [ Fatedsars [ wi@eeo)ds
0 SUQS QU0

T
+/ Alt)gls, dt, Yo €U,
0

ForO<7<Tand 0< h <7, let

1 t
(4.12) 5 — ﬁ/thueh(%a)do, h<t<T,
’ eh — —
0, t < h,
where
1 o+h
(4.13) u g/ ue(7,6)ds, 0<o<7—h,
’ eh = o
0, oczT1T—h,
and u’, = Qucp/Ot. _
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Taking ¢ = @_;, in (4.11), we have

. Ou: 0p,7,
(4.14) . de dt ch qg dt
//euge““"eht ! *// Z Y02, ox,

:// F(a:,t)@sﬁdxdt+/ V() 6o (, 0) d
0 fUQ; Q1UQs
T
+ / At)p.als, dt.

Similarly to (2.46) and (2.47), it is easy to prove that

T
(4.15) —// Uet Pey dx dt
0 Josueg

. /T l : H2 t ! /h/ /(t) Ly dzdt
u e e d u u xzd y
9 0 dt ehll L2(Q5UQ5) L o Jasuos e eh

. Oue 0p,
(4.16) / / Z % (;;hd xdt

2,7=1
Th 8u€h . Oue
/ /Z 5‘% ”5‘ )d dt
i,j=1
8u
_ ch <
o [ G [

/ Z 8u6 Oueh, e T—h
@ 8a: h Ox; 0

T—h 8u€h duc(t + h)
ail)' dzdt
T

i,7=1
T—h / ou
Uep 6 € dz dt
/ / Z 8% 7'] 5‘xj v
1 ou’ . Ou
_ 2| aq “eh g © dt,
h/Q a:/o Ox; / ”8
T
(4.17) / / F(z,t)p.p dedt
o Josuas
T—h 1 h h
= / / uly, Fy dodt — E/ dx/ u’ehda/ Fdt,
0 cUQs QU0 0 -
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(4.18) /Q  i@)pae0)de =0,

(4.19) /O AWy,

1 T—h 1 h h
:T/ /u'EhAhdsdt——~/ ds/ u’ehda/ Adt
|F| 0 r h|r| r 0 o
! / Apdslp " — = /h/ Al dsdt
= — Uep Ap AS - = Ueh S
0] J © b ST
1 h 1 h
+—~/u5 Ods/ Atdt——~// uen Adt.
p Jp e ds A dE =g e

Taking h — 0 in (4.14)—(4.19), we obtain

. Ougc Ou, T
(4.20) 5/0 —lulllZz s uas) At + 5 / Z i 9w; O x‘o

8u5 Oou,
——// Z as;) =, Bz, At

2,7=1

T 1 1 T
= // u'EFdxdt—l—T/uE(T)A(T)ds—T//usA'dsdt.
0 Josues IR T Jo J&

Thus, by (Hy), (4.7)—(4.8), the Sobolev imbedding theorem (see [12]), the Young
inequality, and the trace theorem, we obtain

(4.21) [ul(7)lI72 (05005 + all Due(7)lI72 (o)
<HFN L2 + BIVEIR, + 151172 ) + CON Al 0.1

L (N2 4+ Cn) / | Duc ()22
0
+ / L (1) 122 e sy A + 011 Duc(P) 12 -

where C1; is a positive constant independent of €.
Taking 0 = /2 in (4.21) and using Gronwall’s inequality, we get

(4.22) [luz(T)1Z2 (s uas) + 1 Due(T)ll72 (0
< Ca(IF T2 + IIWGIT, + 1951720 + 1Al 0.my), V7 € (0,7),

where C12 is a positive constant independent of €.
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Thus, from (4.7)—(4.8) and (4.22) it follows that

(4.23) llucll 20, 75v1) < Chs,

where (3 is a positive constant independent of e.
Hence, there exists a subsequence of {u.} (still denoted by {u.}) and a measurable
function u such that as ¢ — 0,

(4.24) ue — v weakly in L*(0,T;V1).
By Lemma 4.4, for any given ¢ € U, there exists ¢, € U, such that
(4.25) we — ¢ strongly in U.

For a fixed €y > 0 and for any 0 < € < g9, we have Qf c O and ey € Ue, so
taking ¢ = ¢, in (4.6), we have

T T N
Oue 0pe
(4.26) // UePe dxdt—i—// as; — dzdt
0 Jasuos o 0 Qi;I Yoz Ox;

T
= / / F(z,t)pe, dxdt — / Y5 (x)eot(x,0) dz
o Jasuag QsUns

T
s @0 et [ A5,
QUQ5 0

By (4.24), (4.7)—(4.8), and the absolute continuity of the Lebesgue integral, as
e — 0, it is easy to prove that

T T
(4.27) / / UePeorr dz dt — / / UPeote A dt,
o Jasuas 0 Ja

T T
(4.28) / / F(z,t)pe, dodt — / / Fpe, dadt,
0 Josung 0 Jo

(4.20) | @m0 de = [ do(o)pai(e0)ds

QsUOs Q
(4:30) [ wi@ea@ode— [ wi)e,@0d

QsUQS Q
We now prove that

T N T N
Oue 0. _ Ou Oy,

4.31 / / as; © dadt —>/ / ajj———=dz dt.
( ) 0 Qi;l ]8.13j 8331 0 Qi;l J 81‘]' 8JLL'
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For any given € such that I' € ' C Q, we have

T T
aus 8806 8u 8305
4.32 S dzxdt — a; S dxdt
( 5 ) /0/ ”81‘] Ox; / / j@xj ox;
aue 8906 ou &pe
= & dxdt — a; ° dx dt
/ / i D, s / / s
_ 8u6 0pe
° dxdt
/ /Q\Q’ W 8373 Ox;

B )85060
dz dt
//Q\Q, gl 81,‘J ox;

=h+L+I3+1,

For any given 6 > 0, by (Hy), (Hy), (4.24), and the absolute continuity of the
Lebesgue integral, we can take € so small that

(4.33) ||+ |I2| < =6.

N =

Once such Q' is chosen, by (Hs) and (4.24)—(4.25), there exists 0 < £, < £ such that
for any € with 0 < € < €7,

(4.34) |I3] + |I1] < 6.

N =

From (4.32)—(4.34), the validity of (4.31) follows.
Letting € — 0 in (4.26), (4.27)—(4.31) yields

T T N
ou 0.
4. eotr dx dt E a; o dzdt
( 35) ‘/()‘/QUSO ott AT +A /Qi’j ]8 axz

T
= / /F(x,t)goe() dmdt—/wo(m)goe()t(x,O)dm
0 Ja Q

T
+ [ @0t [ At s,

The convergence (4.25) and Lemma 1.2 in [12] imply that as g — 0

(4.36) ©o, — ¢ strongly in C([0,T]; L*())
and
(4.37) gl — ¢ strongly in C([0,T]; L*(2)).
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Hence as ¢g — 0, we also have

(4.38) ©eo (2,0) — ©(2,0)  strongly in L*(Q)
and
(4.39) ¢l (2,0) = ¢'(2,0) strongly in L*(Q).

By (4.25) and the trace theorem, we get

(4.40) @ — @ strongly in L*(Xg), as g9 — 0.
Hence
(4.41) 90€0|iao = ‘P60|io — 90|io strongly in L2(0,T).

Letting eg — 0 in (4.35), by (4.25), (4.38)—(4.39), and (4.41) we deduce that u sat-

isfies (3.4). By the uniqueness of the weak solution to the problem (P), (4.24) holds

for the whole sequence {u.}. This completes the proof of Theorem 4.3. (]
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